Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.6 no.2 Ciudad de México ago. 2008
Wireless Communication Protocol Based on EDF for Wireless Body Sensor Networks
Raúl Aquino-Santos1, Apolinar González Potes2, Víctor Rangel-Licea3, Miguel A. García-Ruiz1, L. A. Villaseñor-González4, Arthur Edwards-Block1
1 Facultad de Telemática, Universidad de Colima, C. P. 28045, Colima, Colima, México aquinor@ucol.mx, mgarcia@ucol.mx, arted@ucol.mx
2 Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima. Coquimatlán, Colima, México apogon@ucol.mx
3 Departamento de Telecomunicaciones, Universidad Nacional Autónoma de México, México, D. F. victor@fi-b.unam.mx
4 Departamento de Electrónica y Telecomunicaciones, CICESE, Carr. Tijuana-Ensenada, Km. 113, Ensenada, B. C. N., México. luisvi@cicese.mx
ABSTRACT
This paper presents a wireless communication protocol based on the Earliest Deadline First policy for wireless body sensor networks. This work advances a previous effort by proposing using an implicit Earliest Deadline First policy to guarantee real-time communication by optimizing network traffic flow, although this strategy may imply using the totality of bandwidth resources. The proposed protocol uses a slotted time-triggered medium access transmission control that is collision-free, even in the presence of hidden nodes. The protocol has been analytically modeled using Colored Petri Networks and Simulated in OPNET.
Keywords: wireless body sensor networks, wireless communication protocol, Earliest Deadline First, Wireless Ad Hoc Networks.
RESUMEN
Este trabajo presenta un protocolo de comunicación inalámbrica basado en una política de "El más próximo tiempo de expiración primero" para redes de sensores corporales inalámbricas. El presente, mejora un esfuerzo previo proponiendo el uso de una política del más próximo tiempo de expiración primero implícito (Implicit EDF) para garantizar comunicación en tiempo real a través de la optimación del flujo de tráfico en la red, aunque esta estrategia podría implicar usar la totalidad de los recursos de ancho de banda. El protocolo propuesto utiliza un control de transmisión de acceso al medio con ranuras de tiempo, que son libres de colisiones, aún en la presencia de nodos escondidos. El protocolo ha sido analíticamente modelado a través de redes de Petri coloreadas y simulado en OPNET.
DESCARGAR ARTÍCULO EN FORMATO PDF
REFERENCES
[1] Warneke, B. Last, M. Liebowitz, B. Pister, KSJ. Smart dust: communicating with a cubic-millimeter computer. Computer 2001; 34(1): 44-51. [ Links ]
[2] Kahn, JM. Katz, RH. Pister, KSJ. Next century challenges: mobile networking for smart dust. In: Proceedings of the International Conference on Mobile Computing and Networking, Boston, MA, pp. 271-278, 1999. [ Links ]
[3] HealtService24 Project. http://www.healthservice24.com/ Access on 18 January 2008. [ Links ]
[4] Myheart Project. http://www.hitech-projects.com/ Access on 18 January 2008 [ Links ]
[5] Go, AS. Hylek, EM. Phyllips, KA. Chang, Y. Henault, LE. Selby, JV. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the Anticoagulation and Risk Factors in Atrial fibrillation (ATRIA) study. The Journal of the American Medical association 2001; 285(18): 2370-2375. [ Links ]
[6] Brown, AS. Lipid management in patients with diabetes mellitus. American Journal of Cardiology 2005; 96(4A): 26-32. [ Links ]
[7] Thomas, Falck. Javier, Espina. Jean-Pierre, Ebert. Daniel, Dietterle. BASUMA The sixth sense for chronically ill patients. Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), pp. 57-60, 2006. [ Links ]
[8] Srdjan, Krco. Implementation solution and issues in building a personal sensor network for health care monitoring. Proceedings of the 4TH Annual IEEE Conference on Information Technology Applications in Biomedicine. pp. 350-353, 2003. [ Links ]
[9] Ze, Zhao. Li, Cui. EasiMed: A remote health care solution. Proceedings of the 2005 IEEE Engineering in Medicine and Biology, pp. 2145-2148, 2005. [ Links ]
[10] Ming-Hui, Jin. Ren-Guey, Lee. Chen-Yan, Kao. You-Rui, Wu. D. Frank, Hsu. Tse-Ping, Dong. Kuan-Tsae, Huang. Sensor Network Design and Implementation for Health Telecare and Diagnosis Assistance Applications. Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05), vol. 2, pp. 407-411, 2005. [ Links ]
[11] Carmen, C. Y. Poon. Yuan-Ting, Zhang. A Novel Biometrics Method to Secure Wireless Body Area Sensor Networks for Telemedicine and M-Health. IEEE Communications Magazine, pp. 73-81, 2006. [ Links ]
[12] James, F. Knight. Anthony, Schwirtz. Fotis, Psomadelis. Chris, Baber. Huw, W. Bristow. Theodoros, N. Arvanitis. The design of the SensVest. Pers Ubiquit Comput, vol. 9, pp. 6-19, 2005. [ Links ]
[13] Astro, teller. John, Stivoric. The BodyMedia Platform: Continuos Body Intelligence. Proceeding of the 1st ACM workshop on Continuous archival and retrieval of personal experiences, pp, 114-115, 2004. [ Links ]
[14] Lena, Mamykina. Elizabeth, D. Mynatt. David, Kaufman. Investigating Health Management Practices of individuals with Diabetes. Proceedings of the SIGCHI Conference on Human factors in Computing Systems, pp. 927-936, 2006. [ Links ]
[15] Loren, Schwiebert. Sandeep, K. S. Gupta. Jennifer, Weinmann. Research Challenges in 7th Wireless Networks of Biomedical Sensors. Proceedings of the annual International Conference on Mobile Computing and Networking, pp. 151-165, 2001. [ Links ]
[16] Stankovic, J. A. Abdelzaher, T. E. Chenyang, Lu. Lui, Sha. Hou, J. C. Real-Time Communication and Coordination in Embedded Sensor Networks. Proceeding of the IEEE, vol. 91, issue 7, pp, 1002-1022, 2003. [ Links ]
[17] Caccamo, C. Zhang, L. Y. The Capacity of Implicit EDF in Wireless Sensor Networks. Proceeding of the 15th Euromicro Conference on Real-Time Systems. Pp. 267-275, 2003. [ Links ]
[18] Tullio, Facchinetti. Giorgio, Buttazzo. Luis, Almeida. Dynamic Resource Reservation and Connectivity Tracking to Support Real-Time Communication among Mobile Units. EURASIP Journal on Wireless Communications and Networking, pp. 712-730, 2005. [ Links ]
[19] Huan, Li. Shenoy, P. Ramamritham, K. Scheduling Communication in Real-Time Sensor Applications. Proceeding of the Real-Time and Embedded Technology and Applications Symposium. Pp. 10-18, 2004. [ Links ]