Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.7 no.1 Ciudad de México abr. 2009
Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems
H. Rezazadeh*1, M. Ghazanfari2, S. J. Sadjadi3, Mir.B. Aryanezhad4, A. Makui5
1,2,3,4,5 Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran, Tel.: 00989144027521; Fax: 00981712240855; *Email: Hassan.Rezazadeh@gmail.com; hrezazadeh@tabrizu.ac.ir
ABSTRACT
The concept of virtual cellular manufacturing system (VCMS) is finding acceptance among researchers as an extension to group technology. In fact, in order to realize benefits of cellular manufacturing system in the functional layout, the VCMS creates provisional groups of resources (machines, parts and workers) in the production planning and control system. This paper develops a mathematical model to design the VCMS under a dynamic environment with a more integrated approach where production planning, system reconfiguration and workforce requirements decisions are incorporated. The advantages of the proposed model are as follows: considering the operations sequence, alternative process plans for part types, machine timecapacity, worker timecapacity, crosstraining, lot splitting, maximal cell size, balanced workload for cells and workers. An efficient linear programming embedded particle swarm optimization algorithm is used to solve the proposed model. The algorithm searches over the 01 integer variables and for each 01 integer solution visited; corresponding values of integer variables are determined by solving a linear programming subproblem using the simplex algorithm. Numerical examples show that the proposed method is efficient and effective in searching for near optimal solutions.
Keywords: Dynamic virtual cellular manufacturing system; production plannig; particle swarm optimization; linear programming.
RESUMEN
El concepto de sistema de manufactura celular virtual (SMCV) está siendo aceptado entre los investigadores como una extensión de la tecnología de grupos. De hecho, para hacer realidad los beneficios del sistema de manufactura celular en el diseño funcional, el SMCV crea grupos provisionales de recursos (máquinas, partes y trabajadores) en la planificación de la producción y el sistema de control. En el presente trabajo se describe el desarrollo de un modelo matemático para diseñar el SMCV en el marco de un entorno dinámico con un enfoque más integrado en donde se incorporan la planificación de la producción, la reconfiguración del sistema y las decisiones relacionadas con los requisitos de la fuerza de trabajo. Las ventajas del modelo propuesto son las siguientes: considera la secuencia de operaciones, planes de proceso alternativos según los tipos de partes, tiempo de trabajo de la máquina, tiempo de trabajo del trabajador, capacitación mixta, división del trabajo, tamaño máximo de la célula y carga de trabajo balanceada para las células y trabajadores. Para resolver el modelo propuesto se usa un algoritmo eficiente de optimización por enjambre de partículas embebidas de programación lineal. El algoritmo busca en las variables enteras 01 y cada variable entera 01 visitada; los valores correspondientes de las variables enteras se determinan resolviendo una parte de un problema de programación lineal por medio del algoritmo simple. Mediante ejemplos numéricos se demuestra que el método propuesto es eficiente y efectivo en la búsqueda de soluciones casi óptimas.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] Askin, R.G., Huang, Y., (2001). Forming effective worker teams for cellular manufacturing. International Journal of Production Research, 39(11), 24312451. [ Links ]
[2] Balakrishnan, J., Cheng, C.H., (2005). Dynamic cellular manufacturing under multi period planning horizons. Journal of manufacturing technology management 16 (5), 516530. [ Links ]
[3] Baykasoglu, A., (2003). Capabilitybased distributed layout approach for virtual manufacturing cells. International journal of production research 41(11), 25972618. [ Links ]
[4] Clerc, M., Kennedy, J., (2002). The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Transaction on Evolutionary Computation 6, 5873. [ Links ]
[5] Drolet, J., Abdulnour G., Rheault M., 1996. The cellular manufacturing evolution. Computers & industrial engineering 31(1), 139142. [ Links ]
[6] Eberhart, R.C., Shi, Y., 1998. Evolving artificial neural networks, in: Proceedings of the International Conference on Neural Networks and Brain, (1998), pp. PL5PL13. [ Links ]
[7] Irani, S.A., Cavalier, T.M., Cohen, P.H., (1993). Virtual manufacturing cells: exploiting layout design and inter cell flows for the machine sharing problem. International journal of production research 31(4), 791810. [ Links ]
[8] Kennedy, J., Eberhart, R.C., (1995). Particle swarm optimization, in: Proceedings of the IEEE International Conference on neural Networks, vol. IV, 1995, pp. 19421948. [ Links ]
[9] Kennedy, J., Eberhart, R.C., (1997). A discrete binary version of the particle swarm algorithm. Proc world multi conference on Systemics, Cybernetics and Informatics. NJ: Piscatawary, 41044109. [ Links ]
[10] Kennedy, J., Eberhart, R.C., Shi, Y., (2001). Swarm intelligence. San Francisco, CA: Morgan Kaufmann. [ Links ]
[11] Mak, K.L., Lau, J.S.K., Wang, X.X., (2005). A genetic scheduling methodology for virtual cellular manufacturing systems: an industrial Application. International Journal of production research 43(12), 24232450. [ Links ]
[12] Mak, K.L., Wang, X.X., (2002). Production scheduling and cell formation for virtual cellular manufacturing systems. International Journal of Advanced Manufacturing Technology 20(2), 144152. [ Links ]
[13] Min, H., Shin, D., (1993). Simultaneous formation of machine and human cells in Group technology: A multiple objective approach. International Journal of Production Research, 31(10), 23072318. [ Links ]
[14] Montreuil, B., Drolet, J., Lefrancois, P., (1992). The design and management of virtual cellular manufacturing systems. In Proceedings of American Production & Inventory Control Society Conference, 45 October, Quebec, Montreal, pp. 410414. [ Links ]
[15] Nomden, G., Slomp, J., Suresh, N.C., (2006). Virtual manufacturing cells: a taxonomy of past research and identification of future research. International journal of flexible manufacturing systems. 17, 7192. [ Links ]
[16] Nomden, G., Van der Zee, DJ., (2008). Virtual cellular manufacturing: configuring routing flexibility. International journal of production economics, doi: 10.1016/j.ijpe. [ Links ]
[17] Norman, B.A., Tharmmaphornphilas, W., Needy, K.L., Bidanda, B., Warner, R.C., (2002). Worker assignment in cellular manufacturing considering technical and human skills. International Journal of Production Research, 40(6), 14791492. [ Links ]
[18] Onwubolu, G.C., (2002). Emerging optimization techniques in production planning and control. London: Imperial College Press. [ Links ]
[19] Ratchev, S.M., (2001). Concurrent Drocess and facility prototyping for formation of virtual manufacturing cells. Integrated Manufacturing Systems 12(4), 306315. [ Links ]
[20] Rheault, M., Drolet, J.R., Abdulnour, G., (1995). Physically reconfigurable virtual cells: a dynamic model for a highly dynamic environment. Computers & Industrial Engineering 29(4), 221225. [ Links ]
[21] Saad, S.M., Baykasoglu, A., Gindy, N.N.Z., (2002). An integrated framework for reconfiguration of cellular manufacturing systems using virtual cells. Production Planning & Control 13(4), 381393. [ Links ]
[22] Sarker, B.R., Li, Z., 2001. Job routing and oDerations scheduling: a networkbased virtual cell formation approach. Journal of the Operational Research Society 52(6), 673681. [ Links ]
[23] Shigenori, N., Takamu, G., Toshiku, Y., Yoshikazu, F., (2003). A hybrid particle swarm optimization for distribution state stimation, IEEE Transaction on Power Systems 18 (2003) 6068. [ Links ]
[24] Shi, Y., Eberhart, R.C., (1998). A modified particle swarm optimizer. Proc IEEE Congress on Evolutionary Computation, NJ: Piscataway, 69173. [ Links ]
[25] Simpson, J.A., Hocken, R.J., Albus, J.S., (1982). The Automated Manufacturing Research Facility of the National Bureau of Standards. Journal of manufacturing systems, 1 (1), 1732. [ Links ]
[26] Slomp, J., Chowdary, B.V., Suresh, N.C., (2004). Design and operation of virtual manufacturing cells. In Proceedings of FAIM Conference, Tampa, FL. [ Links ]
[27] Slomp, J., Chowdary, B.V., Suresh, N.C., (2005). Design of virtual manufacturing cells: a mathematical programming approach. Robotics and Computer Integrated Manufacturing 21(3), 273288. [ Links ]
[28] Slomp, J., Bokhorst, J.A.C., Molleman, E., (2005). Crosstraining in a cellular manufacturing environment. Computers & Industrial engineering, 48(3), 609624. [ Links ]
29) Subash, B.A., Nandurkar, K.N., Thomas, A., 2000. Development of virtual cellular manufacturing systems for SMEs. Logistics Information Management 13(4), 228242. [ Links ]
[30] Suer, G.A., (1996). Optimal operator assignment and cell loading in laborintensive manufacturing cells. Computers and Industrial Engineering, 26(4), 155159. [ Links ]
[31] Suresh, N.C., Slomp, J., (2001). Labor assignment and grouping in cellular manufacturing: A multiobjective methodology. International Journal of Production Research, 39(18), 41034131. [ Links ]
[32] Tandon, V., (2000). Closing the gaD between CAD/CAM and optimized CNC end milling, Master thesis, Purdue School of Engineering and Technology, Indiana University, Purdue University, Indianapolis. [ Links ]
[33] Teghem, J., Pirlot, M., Antoniadis, C., (1995). Embedding of linear programming in a simulated annealing algorithm for solving a mixed integer production planning problem. Journal of Computational and Applied Mathematics 64, 91102. [ Links ]
[34] Thomalla CS (2000) Formation of virtual cells in manufacturing systems. In Proc. Group Technology/Cellular Manufacturing World Symposium, San Juan, Puerto Rico, pp. 1316. [ Links ]
[35] Vakharia, A.J., Moily, J.P., Huang, Y., (1999). Evaluating virtual cells and multistage flow shoDs: An analytical approach. International Journal of Flexible Manufacturing Systems 11(3), 291314. [ Links ]
[36] Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y., (1999). A particle swarm optimization for reactive power and voltage control considering voltage stability, in: Proceedings of the International Conference on Intelligent System Application to Power Systems, 1999, pp. 117121. [ Links ]