Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.8 no.3 Ciudad de México dic. 2010
Impact of Delay Spread on IEEE 802.15.4a Networks with Energy Detection Receivers
P. Medina*1, J. R. Gallardo2, J. Sánchez2, F. RamírezMireles4
1 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Carretera EnsenadaTijuana No. 3918, Zona Playitas, Ensenada, B. C. México. C.P. 22860 *Email: pmedina@cicese.mx
2 AlcatelLucent University Ottawa 600 March Road Ottawa, Ontario, K2K 2E6 Canada.
3 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera EnsenadaTijuana No. 3918, Zona Playitas, Ensenada, B. C. México. C.P. 22860
4 Instituto Tecnológico Autónomo de México (ITAM), Río Hondo #1, Col. Progreso Tizapán Del. Álvaro Obregón C.P.01080, México, D.F.
ABSTRACT
This work analyzes the impact of delay spread on IEEE 802.15.4a networks using energy detection (ED) receivers. Specifically, we review the typical values for delay spread in Ultra Wide Band (UWB) systems reported to date for indoor, outdoor and industrial environments, and study how the delay spread impacts the biterror rate with and without Multiuser Interference (MUI).
Keywords: IEEE 802.15.4a, delay spread, energy detection (ED), impulse radio ultra wide band (IRUWB), multiuser interference (MUI).
RESUMEN
En este trabajo se analiza el impacto del esparcimiento del retardo en redes IEEE 802.15.4a con receptor detector de energía (ED). Específicamente, se hace una revisión de los valores típicos del esparcimiento del retardo en las transmisiones de banda ultra ancha (UWB) reportados hasta la fecha en escenarios de interiores, exteriores e industriales, y además se estudia cómo el esparcimiento de retardo impacta la tasa de error de bit con y sin interferencia multiusuario (MUI).
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] IEEE 802.15.4a2007. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for LowRate Wireless Personal Area Networks (LRWPANs). Amendment 1: Add alternate PHYs. IEEE Standard 802.15.4a, 2007 Edition. [ Links ]
[2] IEEE 802.15.42006. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for LowRate Wireless Personal Area Networks (LRWPANs). IEEE Standard 802.15.4, 2006 Edition. [ Links ]
[3] Urkowitz H., Energy detection of unknown deterministic signals, Proc. of IEEE, vol. 55, April 1967, pp. 523531. [ Links ]
[4] Win M. Z., Scholtz R. A. & Barnes M. A., Ultrawide bandwidth signal propagation for indoor wireless communications, IEEE International Conference on Communications 1997. [ Links ]
[5] Hall D. J., Indoor Propagation Analysis Techniques for Characterization of Ultrawideband RF Environments, Wireless personal communications: bluetooth tutorial and other technologies, Kluwer Academic Publisers, 2002. [ Links ]
[6] Yano S., Investigating the ultrawideband indoor wireless channel, IEEE 55th Vehicular Technology Conference, 2002. [ Links ]
[7] Ghassemzadeh S.S., Jana R., Rice C.W., Turin W. & Tarokh V., A statistical path loss model for inhome UWB channels, IEEE Conference on Ultra Wideband Systems and Technologies, 2002. [ Links ]
[8] Win M. Z., RamírezMireles F., Scholtz R. A. & Barnes M. A., Ultrawide bandwidth signal propagation for outdoor wireless communications, IEEE 47th Vehicular Technology Conference, 1997, vol. 1, pp. 251255. [ Links ]
[9] Di Renzo M., Graziosi F., Minutolo R., Montanari M. & F. Santucci, The ultrawide bandwidth outdoor channel: From measurement campaign to statistical modelling, Mobile Networks and Applications, Volume 11, Number 4, August 2006 , pp. 451467(17). [ Links ]
[10] Kim C.W., Sun X., Chiam L.C., Kannan B., Chin F.P.S. & Garg H.K., Characterization of ultrawideband channels for outdoor office environment, IEEE Wireless Communications and Networking Conference, 2005. [ Links ]
[11] Karedal J., Wyne S., Almers P., Tufvesson F. & Molisch A. F., UWB channel measurements in an industrial environment, IEEE Global Telecommunications Conference, 2004. [ Links ]
[12] Karedal J., Wyne S., Almers P., Tufvesson F. & Molisch A. F., Statistical analysis of the UWB channel in an industrial environment, IEEE 60th Vehicular Technology Conference, 2004. [ Links ]
[13] Scholtz R. A., Multiple Access with TimeHopping Impulse Modulation, invited paper, Proceedings of IEEE MILCOM conference, December 1993. [ Links ]
[14] RamírezMireles F., Impulse Radio Ultrawideband: IRUWB signal design and system performance, ISBN 9783639266078, published by VDM Verlag, Germany, 2010. [ Links ]
[15] RamírezMireles F., Performance of UWB NOrthogonal PPM in AWGN and Multipath Channels, in IEEE Transactions on Vehicular Technology, Vol. 56, No. 3, May 2007, pp. 12721285. [ Links ]
[16] Molish F. A., Orlik P., Sahinoglu Z. & Zhang J., UWBbased sensor networks and the IEEE 802.15.4a standard a tutorial, First International Conference on Communications and Networking in China, 2006. [ Links ]
[17] BastidasPuga E.R., RamírezMireles F., MuñozRodríguez D., On Fading Margin in Ultrawideband Communications over Multipath Channels, IEEE Transactions on Broadcasting, Vol. 51, Issue 3, September 2005, pp. 366370. [ Links ]
[18] Hashemi H., Impulse Response Modeling of Indoor Radio Propagation Channel, IEEE Journal on Selected Areas in Communications, 1993. [ Links ]
[19] Kunisch J. & Pamp J., Measurement results and modeling aspects for the UWB radio channel, IEEE Conference on Ultra Wideband Systems and Technologies, 2002. [ Links ]
[20] RamírezMireles F., On the Capacity of UWB over Multipath Channels, IEEE Communications Letters, Vol. 9, Issue 6, June 2005, pp. 523525. [ Links ]
[21] Molish F. A., Balakrishnan K., Cassioli D., Chong C., Emami S., Fort A., Karedal J., Kunisch J., Schantz H., Schuster U. & Siwiak K., IEEE 802.15.4a channel model final report, 2004. [ Links ]
[22] Flury M., Merz R., Le Boudec J.Y. & Zory J., Performance Evaluation of an IEEE 802.15.4a Physical Layer with Energy Detection and MultiUser Interference, IEEE International Conference on UltraWideband (ICUWB 2007), September 2007. [ Links ]
[23] D'amico A. A., Megali U., AriasdeReyna E., Energy Detection UWB Receivers with Multiple Energy Measurements, IEEE Transactions on Wireles Communications, vol. 6, no. 7, June 2007. [ Links ]
[24] Tian Z., Sadler B.M., Weighted energy detection of ultrawideband signals, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications. New York, USA, June 2005. [ Links ]
[25] RamírezMireles F., Quantifying the Degradation of Combined MUI and Multipath Effects in ImpulseRadio UWB, in IEEE Transactions on Wireless Communications, Vol. 6, No. 8, August 2007, pp. 2831-2836. [ Links ]
[26]. RamírezMireles F., Transmission Power Management for IRUWB WSN Based on Node Population Density, in "Wireless Sensor and Actor Networks II", IFIP International Federation for Information Processing Book Series, ISBN 9780387094403, published by Springer Boston, May 2008, pp. 3748. [ Links ]