SciELO - Scientific Electronic Library Online

 
vol.8 número3Computation of the Euler Number of a Binary Image Composed of Hexagonal CellsExperimental Evaluation of Sugar Cane Bagasse Storage in Bales System índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.8 no.3 Ciudad de México dic. 2010

 

Impact of Delay Spread on IEEE 802.15.4a Networks with Energy Detection Receivers

 

P. Medina*1, J. R. Gallardo2, J. Sánchez2, F. Ramírez–Mireles4

 

1 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Carretera Ensenada–Tijuana No. 3918, Zona Playitas, Ensenada, B. C. México. C.P. 22860 *E–mail: pmedina@cicese.mx

2 Alcatel–Lucent University Ottawa 600 March Road Ottawa, Ontario, K2K 2E6 Canada.

3 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada–Tijuana No. 3918, Zona Playitas, Ensenada, B. C. México. C.P. 22860

4 Instituto Tecnológico Autónomo de México (ITAM), Río Hondo #1, Col. Progreso Tizapán Del. Álvaro Obregón C.P.01080, México, D.F.

 

ABSTRACT

This work analyzes the impact of delay spread on IEEE 802.15.4a networks using energy detection (ED) receivers. Specifically, we review the typical values for delay spread in Ultra Wide Band (UWB) systems reported to date for indoor, outdoor and industrial environments, and study how the delay spread impacts the bit–error rate with and without Multiuser Interference (MUI).

Keywords: IEEE 802.15.4a, delay spread, energy detection (ED), impulse radio ultra wide band (IR–UWB), multiuser interference (MUI).

 

RESUMEN

En este trabajo se analiza el impacto del esparcimiento del retardo en redes IEEE 802.15.4a con receptor detector de energía (ED). Específicamente, se hace una revisión de los valores típicos del esparcimiento del retardo en las transmisiones de banda ultra ancha (UWB) reportados hasta la fecha en escenarios de interiores, exteriores e industriales, y además se estudia cómo el esparcimiento de retardo impacta la tasa de error de bit con y sin interferencia multiusuario (MUI).

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] IEEE 802.15.4a–2007. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low–Rate Wireless Personal Area Networks (LR–WPANs). Amendment 1: Add alternate PHYs. IEEE Standard 802.15.4a, 2007 Edition.         [ Links ]

[2] IEEE 802.15.4–2006. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low–Rate Wireless Personal Area Networks (LR–WPANs). IEEE Standard 802.15.4, 2006 Edition.         [ Links ]

[3] Urkowitz H., Energy detection of unknown deterministic signals, Proc. of IEEE, vol. 55, April 1967, pp. 523–531.         [ Links ]

[4] Win M. Z., Scholtz R. A. & Barnes M. A., Ultra–wide bandwidth signal propagation for indoor wireless communications, IEEE International Conference on Communications 1997.         [ Links ]

[5] Hall D. J., Indoor Propagation Analysis Techniques for Characterization of Ultra–wideband RF Environments, Wireless personal communications: bluetooth tutorial and other technologies, Kluwer Academic Publisers, 2002.         [ Links ]

[6] Yano S., Investigating the ultra–wideband indoor wireless channel, IEEE 55th Vehicular Technology Conference, 2002.         [ Links ]

[7] Ghassemzadeh S.S., Jana R., Rice C.W., Turin W. & Tarokh V., A statistical path loss model for in–home UWB channels, IEEE Conference on Ultra Wideband Systems and Technologies, 2002.         [ Links ]

[8] Win M. Z., Ramírez–Mireles F., Scholtz R. A. & Barnes M. A., Ultra–wide bandwidth signal propagation for outdoor wireless communications, IEEE 47th Vehicular Technology Conference, 1997, vol. 1, pp. 251–255.         [ Links ]

[9] Di Renzo M., Graziosi F., Minutolo R., Montanari M. & F. Santucci, The ultra–wide bandwidth outdoor channel: From measurement campaign to statistical modelling, Mobile Networks and Applications, Volume 11, Number 4, August 2006 , pp. 451–467(17).         [ Links ]

[10] Kim C.W., Sun X., Chiam L.C., Kannan B., Chin F.P.S. & Garg H.K., Characterization of ultra–wideband channels for outdoor office environment, IEEE Wireless Communications and Networking Conference, 2005.         [ Links ]

[11] Karedal J., Wyne S., Almers P., Tufvesson F. & Molisch A. F., UWB channel measurements in an industrial environment, IEEE Global Telecommunications Conference, 2004.         [ Links ]

[12] Karedal J., Wyne S., Almers P., Tufvesson F. & Molisch A. F., Statistical analysis of the UWB channel in an industrial environment, IEEE 60th Vehicular Technology Conference, 2004.         [ Links ]

[13] Scholtz R. A., Multiple Access with Time–Hopping Impulse Modulation, invited paper, Proceedings of IEEE MILCOM conference, December 1993.         [ Links ]

[14] Ramírez–Mireles F., Impulse Radio Ultrawideband: IR–UWB signal design and system performance, ISBN 978–3–639–26607–8, published by VDM Verlag, Germany, 2010.         [ Links ]

[15] Ramírez–Mireles F., Performance of UWB N–Orthogonal PPM in AWGN and Multipath Channels, in IEEE Transactions on Vehicular Technology, Vol. 56, No. 3, May 2007, pp. 1272–1285.         [ Links ]

[16] Molish F. A., Orlik P., Sahinoglu Z. & Zhang J., UWB–based sensor networks and the IEEE 802.15.4a standard – a tutorial, First International Conference on Communications and Networking in China, 2006.         [ Links ]

[17] Bastidas–Puga E.R., Ramírez–Mireles F., Muñoz–Rodríguez D., On Fading Margin in Ultrawideband Communications over Multipath Channels, IEEE Transactions on Broadcasting, Vol. 51, Issue 3, September 2005, pp. 366–370.         [ Links ]

[18] Hashemi H., Impulse Response Modeling of Indoor Radio Propagation Channel, IEEE Journal on Selected Areas in Communications, 1993.         [ Links ]

[19] Kunisch J. & Pamp J., Measurement results and modeling aspects for the UWB radio channel, IEEE Conference on Ultra Wideband Systems and Technologies, 2002.         [ Links ]

[20] Ramírez–Mireles F., On the Capacity of UWB over Multipath Channels, IEEE Communications Letters, Vol. 9, Issue 6, June 2005, pp. 523–525.         [ Links ]

[21] Molish F. A., Balakrishnan K., Cassioli D., Chong C., Emami S., Fort A., Karedal J., Kunisch J., Schantz H., Schuster U. & Siwiak K., IEEE 802.15.4a channel model – final report, 2004.         [ Links ]

[22] Flury M., Merz R., Le Boudec J.–Y. & Zory J., Performance Evaluation of an IEEE 802.15.4a Physical Layer with Energy Detection and Multi–User Interference, IEEE International Conference on Ultra–Wideband (ICUWB 2007), September 2007.         [ Links ]

[23] D'amico A. A., Megali U., Arias–de–Reyna E., Energy Detection UWB Receivers with Multiple Energy Measurements, IEEE Transactions on Wireles Communications, vol. 6, no. 7, June 2007.         [ Links ]

[24] Tian Z., Sadler B.M., Weighted energy detection of ultra–wideband signals, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications. New York, USA, June 2005.         [ Links ]

[25] Ramírez–Mireles F., Quantifying the Degradation of Combined MUI and Multipath Effects in Impulse–Radio UWB, in IEEE Transactions on Wireless Communications, Vol. 6, No. 8, August 2007, pp. 2831-2836.         [ Links ]

[26]. Ramírez–Mireles F., Transmission Power Management for IR–UWB WSN Based on Node Population Density, in "Wireless Sensor and Actor Networks II", IFIP International Federation for Information Processing Book Series, ISBN 978–0–387–09440–3, published by Springer Boston, May 2008, pp. 37–48.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons