Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.8 no.3 Ciudad de México dic. 2010
A Theoretical Framework for Modeling Asymmetric, Nonpositive Definite and Nonuniform Distance Functions on Rn
H. SánchezLarios*1, S. GuillénBurguete2
1,2 Instituto de Ingeniería, Universidad Nacional Autónoma de México Edificio 12 del Instituto de Ingeniería, Circuito Exterior, Ciudad Universitaria, 04360 México, D. F *Email: herica.sanchez@ciencias.unam.mx
ABSTRACT
In this paper, we give theoretical foundations for modeling distance functions on the usual Euclidean space Rn, where distance may refer to physical kilometers, liters of fuel consumed, time spent in traveling, or transportation cost. In our approach, a distance function d is derived from a function F0 called the fundamental function of d. Our distance functions, unlike metrics, can be asymmetric and nonpositive definite, and unlike the Lp norms, they can be nonuniform. We illustrate our theoretical framework by modeling an asymmetric and nonuniform distance function on R2 which can take negative values.
Keywords: Distance function, isotropy, nonuniformity, asymmetry, weighted Lpnorm.
RESUMEN
En este artículo se dan bases teóricas para modelar funciones distancia sobre el espacio euclidiano usual Rn, donde distancia se puede referir a kilómetros, litros de combustible consumidos, tiempo de recorrido, o costo de transporte. En nuestro enfoque, una función distancia d se obtiene a partir de una función Fo llamada la función fundamental de d. Estas funciones distancia, a diferencia de las métricas, pueden ser asimétricas y no positivas definidas, y a diferencia de las normas Lp, pueden ser no uniformes. Se ilustra el marco teórico propuesto a través del modelado de una función distancia asimétrica y no uniforme sobre R2 la cual puede tomar valores negativos.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] Brimberg J., Walker J. H., Love R. F., Estimation of Travel Distances with the Weighted Lp norm: Some Empirical Results, Journal of Transport Geography, Vol. 15, 2007, pp. 6272 [ Links ]
[2] Üster H., and Love R. F., Formulation of Confidence Intervals for Estimated Actual Distances, European Journal of Operational Research, Vol. 151, 2003, pp. 586-601 [ Links ]
[3] Berens W. and Körling F., Estimating Road Distances by Mathematical Functions, European Journal of Operational Research, Vol. 21, 1985, pp. 5456. [ Links ]
[4] Brimberg J. and Love R. F, A New Distance Function for Modeling Travel Distances in a Transportation Network, Transportation Science, Vol. 26, No. 2, 1992, pp. 129137 [ Links ]
[5] Brimberg J. and Love R. F., General Considerations on the Use of the Weighted Lp Norm as an Empirical Distance Measure, Transportation Science, Vol. 27, No. 4, 1993, pp. 341349 [ Links ]
[6] Love R. F and Morris J. G., Mathematical Models of Road Travel Distances, Management Sciences, Vol. 25, 1979, pp. 130139 [ Links ]
[7] SánchezLarios Hérica, GuillénBurguete Servio, Modeling of Distance Functions on a Manifold, Nonlinear Analysis: Real World Applications, Vol.11, No. 4, 2010, pp. 30013007 [ Links ]
[8] A. Bóna, M. A. Slawinski, Raypaths as Parametric Curves in Anisotropic, Nonuniform Media: DifferentialGeometry Approach, Nonlinear Analysis TMA, Vol. 51, No. 6, 2002, pp. 983994 [ Links ]
[9] Kristály A., Morosanu, Róth Á, Optimal Placement of a Deposit Between Markets: RiemannFinsler Geometrical Approach, J Optim Theory Appl, Vol. 139, 2008, pp. 263-276 [ Links ]
[10] M. J. Hodgson, R. T. Wong, J. Honsaker, The pCentroid Problem on an Inclined Plane, Operations Research, Vol. 35, 1987, pp. 221233 [ Links ]