Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.9 no.2 Ciudad de México ago. 2011
Planeand SpaceFilling Trees by Means of Chain Coding
E. Bribiesca*1, N. EspinosaDominguez2
1,2 Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de México Apdo. Postal 20726, México, D.F., 01000. Fax: (5255)56223620 *Email: ernesto@leibniz.iimas.unam.mx
ABSTRACT
An algorithm for constructing fractal trees is presented. Fractal trees are represented by means of the notation called the unique tree descriptor [E. Bribiesca, A method for representing 3D tree objects using chain coding, J. Vis. Commun. Image R. 19 (2008) 184198]. In this manner, we only have a onedimensional representation by each fractal tree via a chain of basefive digit strings suitably combined by means of parentheses. The unique treedescriptor notation is invariant under rotation and translation. Furthermore, using this descriptor it is possible to obtain the mirror image of any fractal tree with ease. In this paper, we focus on fractal planefilling trees and spacefilling trees.
Keywords: Fractal trees, tree descriptor, planefilling trees, spacefilling trees, chain coding.
RESUMEN
Se presenta un algoritmo para la construcción de árboles fractales. Un árbol fractal es representado por medio de la notación llamada descriptor único de árboles [E. Bribiesca, A method for representing 3D tree objects using chain coding, J. Vis. Commun. Image R. 19 (2008) 184198]. De esta manera, se tiene solamente una representación unidimensional para cada árbol fractal por medio de una cadena de digitos de base cinco adecuadamente combinados por medio de paréntesis. La notación del descriptor único de árboles es invariante bajo rotación y traslación. Además, usando este descriptor es posible obtener la imagen especular de cualquier árbol fractal con facilidad. El contenido de este artículo se enfoca en el estudio de los árboles fractales que cubren el plano y el espacio.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] E. Bribiesca, A method for representing 3D tree objects using chain coding, Journal of Visual Communication and Image Representation, 19, 2008, pp. 184198. [ Links ]
[2] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1983. [ Links ]
[3] B. B. Mandelbrot and M. Frame, The canopy and shortest path in a selfcontacting fractal tree exactly what tangles the branches can get into, Math Intelligencer, 21,1999, pp. 18. [ Links ]
[4] J. A. Gonzalez Rodriguez, A tutorial and recipe for moving fractal trees, Comput. & Graphics, 22, 1998, pp. 301305. [ Links ]
[5] R. M. Frongillo, E. Lock, and D. A. Brown, Symmetric fractal trees in three dimensions, Chaos, Solitons & Fractals, 32, 2007, pp. 284295. [ Links ]
[6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan Press, London, 1976. [ Links ]
[7] A. Guzmán, Canonical shape description for 3d stick bodies, MCC Technical Report Number: ACA25487, Austin, TX. 78759, 1987. [ Links ]
[8] E. Bribiesca and C. Velarde, A formal language approach for a 3D curve representation,Computers & Mathematics with Applications, 42, 2001, pp. 15711584. [ Links ]
[9] A. Cayley, A theorem on trees, Quart. J. Math. 23, 1889, pp. 376378. [ Links ]