SciELO - Scientific Electronic Library Online

 
vol.9 número2Transmission Electron Microscopy (TEM) Through Focused ION Beam (FIB) from Vitrified Chromium Wastes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.9 no.2 Ciudad de México ago. 2011

 

A Fast Simulation Method for Wave Transformation Processes In Coastal Zones

 

I.E Herrera–Díaz*1, C. Couder–Castañeda2, H. Ramírez León2

 

1 Centro de Investigación en Matemáticas, AC. Jalisco S/N, Col. Valenciana, CP 36240 Guanajuato, Gto, Mexico. *E–mail: enriquehd@cimat.mx

2 Mexican Petroleum Institute, Eje Central Lázaro Cárdenas 152, CP 07730, Mexico City, Mexico.

 

ABSTRACT

We develop a numerical model based on the mild–slope equation of water wave propagation over complex bathymetrys, taking into account the combined effects of refraction, diffraction and reflection due to protection structures. The numerical method was developed using a split proposed version of the mild–slope equation in elliptical form and solved by an implicit method in a finite volume mesh, this technique easily allows the modeling of the wave transformations caused by the protection structures in coastal waters, where industrial and other economic activities take place. Study cases controlled have been made and the results match very well with the reference solution. The capability and utility of the model for coastal areas are illustrated by its application to the breakwater of the Laguna Verde Nuclear Power Plant (LVNPP) and the protection structure of the Nautical Marine named "Los Ayala".

Keywords: near–shore, wave transformation, protection structures, implicit method.

 

RESUMEN

Se desarrolla un método numérico para resolver la ecuación de la pendiente suave, para el estudio de la propagación del oleaje en batimetrías complejas, tomando en cuenta los efectos combinados de la refracción, difracción y reflexión causados por estructuras de protección. El método numérico se basa en la descomposición de la ecuación de la pendiente suave en su forma elíptica para resolverla por un método implícito en volúmenes finitos. Esta técnica permite la modelación de las transformaciones del oleaje causadas por las estructuras de protección en aguas costeras, donde actividades industriales y recreativas tienen lugar. Casos de estudio controlados fueron hechos y los resultados coinciden con la solución de referencia. La capacidad y utilidad del modelo para aguas costeras es ilustrado con la aplicación al rompeolas de la Planta Nuclear de Laguna Verde y la estructura de protección en la Marina Náutica "Los Ayala".

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] J.C.W. Berkhoff. Computation of combined refraction–diffraction. Proc. 13th Coastal Eng. Conf., pages 471490, 1972.         [ Links ]

[2] Couder C., Ramírez H., and Herrera E. Numerical Modeling of Coupled Phenomena in Science and Engineering: Practical Use and Examples, volume 1 of Multiphysics modeling, chapter 34. Numeric optimization of the hydrodynamic model YAXUM/3D. Taylor & Francis, 2008.         [ Links ]

[3] Rodríguez C., Serre E., Rey C., and Ramírez H. Numerical investigation of wake formation around a conical island in shallow–water flows. In Proceedings of the WSEAS International Conference on Environment, Ecosystems and Development, pages 2–4, Venice, Nov 2005.         [ Links ]

[4] Rodríguez C., Serre E., Rey C., and Ramírez H. A numerical model for shallow–water flows: dynamics of the eddy shedding. Wseas Transactions on Environment and Development, 1(2), 2005.         [ Links ]

[5] J.M.G. Copeland. A practical alternative to the mild–slope wave equation. Coastal Engineering, 9:125–149, 1985.         [ Links ]

[6] Zeki Demirbilek and Vijay Panchang. Cgwave: A coastal surface water wave model of the mild slope equation. Technical Report Technical Report CHL–98–xx, Prepared for Headquarters, U.S. Army Corps of Engineers, 1998.         [ Links ]

[7] Herrera E., Ramírez H., and Couder C. Numerical Modeling of Coupled Phenomena in Science and Engineering: Practical Use and Examples, volume 1 of Multiphysics modeling, chapter 12. Numerical modeling of wave phenomena (refraction–diffraction) applied to breakwaters of the cooling water intake of Laguna Verde nuclear power plant in Veracruz, Mexico. Taylor & Francis, 2008.         [ Links ]

[8] J.R. Houston. Combined refraction and diffraction using finite element methods. Appl Ocean Res, 3(4):163–170, 1981.         [ Links ]

[9] A. Inan and L. Balas. Numerical modeling of mild slope equation with finite volume method. WSEAS Transactions on Mathematics, 7(5):234–243, 2008. Cited By (since 1996): 2.         [ Links ]

[10] A. Inan and L. Balas. Numerical modeling of extended mild slope equation with modified maccormack method. WSEAS Transactions on Fluid Mechanics, 4(1):14–23, 2009.         [ Links ]

[11] J.J. Lee. Wave–induced oscillations in harbors of arbitrary geometry. Fluid Mech, 45:375–394, 1971.         [ Links ]

[12] B. Li and K. Anastasiou. Efficient elliptic solvers for the mild–slope equation using the multigrid technique. Coastal Engineering, 16:245–266, 1985.         [ Links ]

[13] B. Li and C. A. Fleming. Solving mild–slope equation by explicit scheme. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 157(4):175–182, 2004.         [ Links ]

[14] P. Lin. A compact numerical algorithm for solving the time–dependent mild slope equation. International Journal for Numerical Methods in Fluids, 45(6):625–642, 2004. Cited By (since 1996): 6.         [ Links ]

[15] J. Maa, M.H. Maa, C. Li, and Q. He. Using the gaussian elimination method for large banded matrix equations. Technical Report 135, Virgina Institute of Marine Science, 1997.         [ Links ]

[16] Roland Martin; and Carlos Couder–Castañeda. An improved unsplit and convolutional perfectly matched layer absorbing technique for the navier–stokes equations using cut–off frequency shift. CMES: Computer Modeling in Engineering & Sciences, 63(1), 2010.         [ Links ]

[17] F. S. B. F. Oliveira and K. Anastasiou. An efficient computational model for water wave propagation in coastal regions. Applied Ocean Research, 20(5):263–271, 1998. Cited By (since 1996): 19.         [ Links ]

[18] V. Panchang and Pearce B. Solution of mildslope wave problem by iteration. Journal of Applied Ocean Research, 13:187–200, 1991.         [ Links ]

[19] Hermilo Ramírez–León, Hector. Barrios–Piña, Clemente Rodriguez–Cuevas, and Carlos Couder–Castañeda. Baroclinic mathematical modeling of fresh water plumes in the interaction river–sea. International Journal of Numerical Analysis & Modeling, 2:1–14, 2005.         [ Links ]

[20] Hermilo Ramírez–León, Clemente Rodriguez–Cuevas, and Herrera–Díaz Enrique. Multilayer hydrodinamic model and their application to sediment transport in estuaries. Special Issue 12 Shangai Conference, Current Trends in High Performance Computing and Its Applications, Springer–Verlag, pages 59–70, 2005.         [ Links ]

[21] X. Shu, S. Jiang, and R. Li. Numerical simulation of engineering wave for zhongzui bay. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, volume 4, pages 661–668, 2007.         [ Links ]

[22] Z. Song, H. Zhang, J. Kong, R. Li, andW. Zhang. An efficient numerical model of hyperbolic mild–slope equation. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, volume 5, pages 253–258, 2007.         [ Links ]

[23] T–K. Tisay and PL–F Liu. Combined refraction and diffraction using finite element methods. Appl Ocean Res, 5(1):5925–5938, 1983.         [ Links ]

[24] F. Tong, Y. Shen, J. Tang, and L. Cui. Numerical modeling of the hyperbolic mild–slope equation in curvilinear coordinates. China Ocean Engineering, 24(4):585–596, 2010. Cited By (since 1996): 1.         [ Links ]

[25] U. Unluate and C.C. Mei. Long wave excitation in harbors an analytical study. Technical Report 171, Parsons Lab MIT, 1973.         [ Links ]

[26] H. Zhang, H. Zhao, and Z. Shi. Finite difference approach to the time–dependent mild–slope equation. China Ocean Engineering, 21(1):65–76, 2007. Cited By (since 1996): 4.         [ Links ]

[27] Y. Zhang, R. Li, J. Liu, and X. . Pan. Numerical simulation of the nonlinear parabolic mild–slope equation. Shuidonglixue Yanjiu yu Jinzhan/Chinese Journal of Hydrodynamics Ser.A, 25(1):44–49, 2010.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons