SciELO - Scientific Electronic Library Online

 
vol.9 número3Electronic Implementation of a Fuzzy Neuron Model With a Gupta IntegratorRanking risks in ambient intelligence projects índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.9 no.3 Ciudad de México dic. 2011

 

Design of a Teleoperated Aquatic Vehicle for the Gauging of Water Bodies

 

C.E. Díaz–Gutiérrez*1, M.P. Garduño–Gaffare2, J.A. Segovia–De los Ríos3, J.S. Benítez–Read4

 

1,2 Instituto Tecnológico de Toluca Av. Tecnológico S/N, C.P. 52140 Toluca, Mexico. *E–mail: carlos_eduardo_dg@yahoo.com.mx

1,3,4 Instituto Nacional de Investigaciones Nucleares, Carretera México–Toluca S/N, C.P. 52750, La Marquesa, Ocoyoacac, Estado de México, México.

 

ABSTRACT

The sampling and flow measurement of rivers is a very complex task, not only because of the amount of equipment to be carried and the parameters to be measured, but also because of the health risk involved for people who have to perform this activity frequently. For this reason, a flow measurement system named as SA–1 (Gauging System SA–1) has been designed, and built and, proposed as an innovative alternative, which is a teleoperated watercraft. This article describes this system and its mathematical models.

Keywords: water–flow–measurement, watercraft–design, teleoperated–system, unmanned–surface–vehicle, mathematical models.

 

RESUMEN

El muestreo y aforado de ríos es una tarea compleja, no solo por la cantidad de equipo que hay que transportar y los parámetros que hay que medir, sino por el alto riesgo que existe para las personas que tienen que realizar esta tarea de manera frecuente. Por esta razón se propuso el diseño y la construcción de un novedoso sistema automático de medición de caudales denominado SA–1, el cual es una plataforma acuática teleoperada. Este artículo describe este sistema y sus modelos matemáticos.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Gómez C. Manufacturer quotation. Geonica, Madrid, Spain, 2008.         [ Links ]

[2] López Z. E. Manufacturer quotation. Aprotec Mexicana, S.A de C.V. Tijuana, Baja California, 2008.         [ Links ]

[3] Gonzalez T. C., Cuellar R. D., Trujillo A. V., González L. System of automatization for measurement of volumen using windlass. Ingeniería Hoy. No. 25. Universidad del Cauca. Cauca, Colombia, 2006. pp. 43–46.         [ Links ]

[4] Díaz G. C., Segovia J. A., Garduño G. M., Tejeda V. S. Medición de caudales mediante la implementación de un vehículo acuático teleoperado. Accepted for publication in International Journal of Environmental Pollution. Centro de Ciencias Atmosféricas de la UNAM., No. 1., 2012.         [ Links ]

[5] Velasco J. F.,. Rueda R. M. T, Lopez G. E., Moyano P. E. Mathematical model for govern control of ships. XXV Jornadas de Automática, 2004,.pp. 1–7.         [ Links ]

[6] Menezes P. A. Navigation and guidance of an autonomous surface vehicle. Master of Science Thesis. University of Southern California, 2007.         [ Links ]

[7] VanZwieten T. S.Dynamic simulation and control of an autonomous surface vehicle. Master of Science Thesis.. Atlanta University, 2003.         [ Links ]

[8] C.Yaw Tzeng, J. Fen Chen Fundamental properties of linear ship steering dynamic models. Journal of Marine Science and Technology, 1999. pp. 79–88.         [ Links ]

[9] J. V. Amerongen "Adaptive Steering of ships. A model reference approach to improved maneuvering and economical course keeping". PhD thesis. Delft University of Technology, (2005).         [ Links ]

[10] Caccia M., Bono R., Bruzzone Gabrielle, Bruzzone Giorgio, Spirandelli E., Veruggio G., Stortini M., Capodaglio G. Sampling sea surface with SESAMO. An autonomous craft for the study of sea–air interactions. IEEE, Robotics and Automation Magazine, 2005. 10709932/05. pp. 2–10.         [ Links ]

[11] Alves P., Oliveira R., Pascoal A., Rufino L., Silvestre C. Vehicle and mission control of the DELFIM. Autonomous Surface Craft. IEEE Mediterranean Conference on Control and Automation, 2006. 09786720–1–1. pp. 1–6.         [ Links ]

[12] Steanley J. M., Singh A., Batalin M., Jordan B., Kaiser W. NIMS–AQ: A novel system for autonomous sensing of aquatics environments. IEEE International Conference on Robotics and Automation, 2008. ISNN 1050– 4729. pp. 621– 628.         [ Links ]

[13] Ferreira H., Martins A., Dias A., Almeida C., Almeida J. M., Silva E. P. Roaz autonomous surface Vehicle design and implementation. IEEE Robotics. ISBN 1424406021, 2006.         [ Links ]

[14] PCM–9375. Users Manual. 2nd Edition. 2007.         [ Links ]

[15] Velasco F. J., Revestido E., Moyano E., López E., Remote Laboratory for marine vehicles experimentation. Journal of Computer Applied Engineer Education, 2010. pp. 1–13.         [ Links ]

[16] Tupper E., Introduction to naval architecture. London, England ,2002.         [ Links ]

[17] Zill G. D., Calculus with analytical geometry, México, D. F,.1994.         [ Links ]

[18] Seabotix. BTD 150 Data Sheet, 2005        [ Links ]

[19] Ollero B. A., Robotics, manipulators and movile robot, México, D.F., 2007.         [ Links ]

[20] Domínguez D.VRML and Simulink interface for the development of 3–D simulator for mobile robots. 31 World Academy of Science, Engineering and Technology. (2007). 12–16 pp.         [ Links ]

[21] Albagul A., Wahyudi. Dynamic Modelling and adaptive traction control for mobile robots. International Journal of advanced Robotics Systems (2004). 149–154.         [ Links ]

[22] Worral K. J., McGookin W. E. A mathematical model of a lego differential drive robot. USTRATH. 2002. pp. 1–6.         [ Links ]

[23] Asencio J. R., Montano L. A kinematic and dynamic model–based motion controller for mobile robots. 15th Triennial World Congress, 2002.         [ Links ]

[24] Ayza J., López J., Quevedo J. Modelización de la dinámica de un buque. Qüestió. (1980). 137–146.         [ Links ]

[25] Velasco J. F., Rueda R. M. T., Lopez G. E., Moyano P. E. Mathematical model for govern control of ships. XXV Jornadas de Automática, 2004. pp. 1–7.         [ Links ]

[26] Fossen T. I. Guidance and control of ocean vehicles, London, England 1994.         [ Links ]

[27] Comstock J. P., Principles of naval architecture (New York, USA 1967).         [ Links ]

[28] Velasco J. F. Simulations of an autonomous in–scale fast–ferry model. International Journal of of systems applications, engineering a development. Issue 3. Volume 2.         [ Links ]

[29] Tomera M.. Nonlinear controller design of a ship autopilot. International journal of applied mathematics computer science. (2010). pp. 271–280.         [ Links ]

[30] Mathworks , Mathlab. The language of technical computing". www.mathworks.com. 10/03/2011, 2011.         [ Links ]

[31] Bañó. A. A. Analysis and design control of a position for a mobile robot with differential traction. Memoria. Universitat Rovira I Virgili. Escola Técnica Superior Enginyeria. Catalunya, España, 2003.         [ Links ]

[32] Segovia A. Zapata R., Lepinay P., Control PWM: Algunas Consideraciones de Diseño, ELECTRO 2003, Chihuahua, Chih. ISSN 1405–2172, Octubre 2003, pp. 17–22.         [ Links ]

[33] Chanop S. A.. Autonomous Underwater Robot: Visión and Control. Master of Endineering Thesis. The Australian National University, 2001.         [ Links ]

[34] Microsoft, Sidewider wheel. www.Microsoft.com, 10/03/2011, 2011.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons