SciELO - Scientific Electronic Library Online

 
vol.10 número3A ZigBee Wireless Sensor Network for Monitoring an Aquaculture Recirculating SystemAutomatic Building of an Ontology from a Corpus of Text Documents Using Data Mining Tools índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.3 Ciudad de México dic. 2012

 

Improved Golden-Section Algorithm for the Multi-Item Replenishment Problem

 

S. Hernández*1, I. Flores2, J.A. Vázquez1

 

1 Departamento de Ingeniería Industrial Instituto Tecnológico de Celaya Antonio García Cubas s/n, Celaya, México, C.P. 38010 *E-mail: salvador.hernandez@itcelaya.edu.mx

2 División de Estudios de Posgrado Facultad de Ingeniería Universidad Nacional Autónoma de México Circuito Universitario s/n, Distrito Federal, México, C.P. 04510.

 

ABSTRACT

This paper presents a procedure for solving instances of the joint replenishment problem using the golden-section method. The algorithm includes an iterative method for obtaining a narrowing search range for the continuous variable in order to carry out less iterations. We studied the behavior of the algorithm experimentally and made comparisons with the heuristic technique known as RAND, solving randomly-generated problems. The results showed that the golden-section algorithm with the proposed improvements obtains the optimum solution for up to 100% of the problems solved, it is very stable when faced with the increase in the number of products in the problem and the runtime is notably competitive. The procedure is easy to implement and useful for professionals working in planning.

Keywords: line search methods, golden section, inventory management, joint replenishment.

 

RESUMEN

Se muestra un método basado en sección dorada para resolver instancias del problema de reaprovisionamiento de productos múltiples. El algoritmo incluye un método iterativo para obtener un intervalo de búsqueda más pequeño. Se estudió el desempeño del algoritmo de manera experimental realizando las comparaciones con el algoritmo RAND, resolviendo instancias generadas aleatoriamente. Los resultados muestran que el algoritmo de sección dorada obtiene la solución óptima hasta en el 100% de las instancias resueltas, es estable frente al número de productos y el tiempo de ejecución es competitivo. El algoritmo es sencillo de implementar y muy útil para profesionistas dedicados a la planeación y control de inventarios.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Goyal S.K., Determination of optimum packaging frequency for items jointly replenished, Management Science, Vol. 21, No. 4, 1998, pp. 436-443.         [ Links ]

[2] Silver, E., A simple method of determining order quantities in joint replenishments under deterministic demand. Management Science, Vol. 22, No. 12, 1976, pp. 1351-1361.         [ Links ]

[3] Kaspi M., Rosenblatt M.J., An improvement of Silver's algorithm for the joint replenishment problem. IIE Transactions, Vol. 15, No. 3, 1983, pp.264-267.         [ Links ]

[4] Kaspi M., Rosenblatt M.J., The effectiveness of heuristic algorithms for multi-item inventory systems with joint replenishment costs. International Journal of Production Research, Vol. 23, No. 1, 1985, pp. 109-116.         [ Links ]

[5] Kaspi M., Rosenblatt M. J., On the economic ordering quantity for jointly replenished items. International Journal of Production Research, Vol. 29, No. 1, 1991, pp. 107-114.         [ Links ]

[6] Goyal S.K., Determination of economic packaging frequency of items jointly replenished. Management Science, Vol. 20, No. 2, 1973, pp. 232-235.         [ Links ]

[7] Goyal S.K. and Deshmukh S.G., A note on: the economic ordering quantity for jointly replenished items. International Journal of Production Research, Vol. 31, No. 12, 1993, pp.2959-2961.         [ Links ]

[8] Hariga M., Two new heuristic procedures for the joint replenishment problem. Journal of the Operational Research Society, Vol. 45, No. 4, 1994, pp. 463-471.         [ Links ]

[9] Nisson A., Segersted A., van der Sluis E., A new iterative heuristic to solve the joint replenishment problem using a spreadsheet technique. International Journal of Production Economics, No. 108, No. 1-2, 2007, pp. 399-405.         [ Links ]

[10] Nisson A., Silver E., A simple improvement on Silver's heuristic for the joint replenishment problem. Journal of the Operational Research Society, Vol. 59, No. 10, 2008, pp.1415-1421.         [ Links ]

[11] Khouja M., Michalewicz Z., Satoskar S., A comparison between genetic algorithms and the RAND method for solving the joint replenishment problem. Production Planning and Control, Vol.11, No. 6, 2000, pp.556-564.         [ Links ]

[12] Olsen A.L., An evolutionary algorithm to solve the joint replenishment problem using direct grouping. Computers & Industrial Engineering, Vol.48, No. 2, 2005, pp. 223-235.         [ Links ]

[13] Khouja M., Goyal S., A review of the joint replenishment problem literature: 1989-2005. European Journal of Operational Research, No. 186, No. 1, 2008, pp. 1-16.         [ Links ]

[14] Kabiriana A., Ólafssonb S., Continuous optimization via simulation using Golden Region search European Journal of Operational Research. Vol.208, No.1, 2011, pp. 19-27.         [ Links ]

[15] Cai J., Han D., Chen Ch., Chen S., Application of the golden section search algorithm in the nonlinear isoconversional calculations to the determination of the activation energy from nonisothermal kinetic conversion data. Solid State Sciences, Vol. 12, No. 5, 2010, pp. 829-833.         [ Links ]

[16] Benavolia A., Chiscib L., Farinac A., Fibonacci sequence, golden section, Kalman filter and optimal control. Signal Processing, Vol. 89, No. 8, 2009, pp. 1483-1488.         [ Links ]

[17] Tsai CH., Kolibal J., Li M., The golden section search algorithm for finding a good shape parameter for meshless collocation methods. Engineering Analysis with Boundary Elements, Vol. 34, No. 8, 2010, pp. 738-746.         [ Links ]

[18] Viswanathan S., A new optimal algorithm for the joint replenishment problem. Journal of the Operational Research Society, Vol. 47, No. 7, 1996, pp. 936 - 934.         [ Links ]

[19] Frenk J.B.G., Kleijn M.J., Dekker R., An efficient algorithm for a generalized joint replenishment problem. European Journal of Operational Research, No. 118, No. 2, 1999, pp. 413-428.         [ Links ]

[20] Bazaraa M., Sherali H, Shetty, C.M., Nonlinear programming. John Wiley and Sons, 2006, pp. 343 - 351.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons