SciELO - Scientific Electronic Library Online

 
vol.10 número4A Simple Substrate Heater Device With Temperature Controller for Thin Film PreparationThermal Impact of Operating Conditions on the Performance of a Combined Cycle Gas Turbine índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.4 Ciudad de México ago. 2012

 

Considering Competition to Solve a Flight Schedule and Aircraft Routing Problem for Small Airlines

 

J. Díaz-Ramírez*1, Y. Garzón2, J. l. Huertas3

 

1 Tecnológico de Monterrey Campus Santa Fe, Distrito Federal, México, *jenny.diaz@itesm.mx.

2, 3 Tecnológico de Monterrey Campus Toluca, Toluca, Estado de México, México.

 

ABSTRACT

For the case of low-cost airlines, which are characterized by having a single fleet with a small number of airplanes, in a previous work, a heuristic algorithm (AFS-MRA) was developed to simultaneously find the flight schedule and the aircraft routes subject to maintenance constraints. This work advances this algorithm by incorporating competition in the planning process (MAFS-MRA).

Within a time frame with a given demand data, competition is seen as a game with two players (one airline and all its competitors), where the strategies are all the potential origin-destinations that could be included in the flight schedule, and the payment matrix contains the objective function coefficients that depend on the market share and the routes previously selected.

Numerical experimentation was undertaken using real data for the case of two airlines that operate at Toluca International Airport in Mexico. It was found that, by considering competition, the occupation improves to 3% and that the number of flights required to satisfy the demand was reduced to 21%. Besides, the updating process reduces the profit computation error in almost 80%, as compared to the real market behavior for the period under study.

Keywords: Aircraft maintenance routing, flight schedule design, competition, game.

 

RESUMEN

Para el caso de aerolíneas de bajo costo, caracterizadas por tener una flota de aviones, en un trabajo previo los autores desarrollaron un algoritmo heurístico (AFS-MRA) para encontrar el programa de vuelos y las rutas de aviones con restricciones de mantenimiento simultáneamente. Este trabajo mejora este algoritmo incorporando los efectos de la competencia en el proceso de planeación (MAFS-MRA).

En un horizonte de tiempo con información de demanda tomada de datos históricos, la competencia se maneja como un juego con dos jugadores (mi aerolínea y todos las demás aerolíneas competidoras), donde las estrategias son todos los potenciales vuelos (orígenes-destinos) que podrían incluirse en el programa de vuelos, y la matriz de pagos contiene los coeficientes de la función objetivo del problema de optimización, los cuales dependen de la participación en el mercado de la aerolínea y de las rutas previamente seleccionadas.

Se desarrolló una experimentación numérica usando datos reales de dos aerolíneas que operan en el Aeropuerto lnternacional de Toluca en México. Se encontró que, considerando la competencia, la ocupación mejora en 3%, el número de vuelos necesarios para satisfacer demanda disminuye en 21%. El proceso de actualización reduce los errores en casi 80% cuando se comparan con el comportamiento real del mercado en el período bajo estudio.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] International Air Transport Association. IATA Economic Briefing: The impact of recession on air traffic volumes. 2008.         [ Links ]

[2] D. Klabjan. "Large Scale Models in the Airline Industry". In G. Desaulniers et al. (eds), Column Generation. Springer US, 2005, pp 163-195.         [ Links ]

[3] D. Klabjan, et al. "Solving Large Airline Crew Scheduling problem: Random Pairing Generation and Strong Branching". Computatiional Optimization and Algorithms, vol. 20, pp. 73-91, 2001        [ Links ]

[4] C. Barnhart, and A. Cohn. "Airline Scheduling Problems: Accomplishments and opportunities", Manufacturing & Service Operations Management, vol. 6, no.1, 2004        [ Links ]

[5] C. Barnhart et al. "Flight Strings Models for Aircraft Fleeting and Routing", Transportation Science, vol. 32, no. 3, 1998.         [ Links ]

[6] J. Díaz. "An Integrated approach for the single-fleet aircraft and crew scheduling problems". Toluca : Ph.D. Thesis, Tecnologico de Monterrey Campus Toluca, Toluca, 2007.         [ Links ]

[7] flylowcostairlines. flylowcostairlines. [Online] 2011. [retrieved: February 8, 2011.] www.flylowcostairlines.org.         [ Links ]

[8] S. Monsalve. "John Nash and Game Theory". Original Language: Spanish, Bogota : Universidad Nacional de Colombia, Lecturas Matemáticas, vol. 24, pp. 137-149, 2003.         [ Links ]

[9] H. Kuhn. "Lectures on the Theory of Games", Princeton University Press IX. 2003        [ Links ]

[10] F. Vega-Redondo. "Economics and the Theory of Games". Cambridge: Cambridge University Press, 2003.         [ Links ]

[11] Secretaria de Comunicaciones y Transporte. [Online] Statistics. www.sct.gob.mx. Original Language: Spanish.         [ Links ]

[12] C. Sugar and G. M. James. "Finding the Number of Clusters in a Dataset: An Information-Theoritec Approach". Journal of the American Statistical Association, no. 463, pp. 750-763, 2003, DOI: 10.1198/016214503000000666.         [ Links ]

[13] D. Tasoulis and M. Vrahatis. "Generalizing the k-Windows Clustering Algorithm in Metric Spaces", Mathematical and Computer Modellling, 2007.         [ Links ]

[14] X-T. Zhang et al. "A model-based clustering for time series with irregular interval". Proceedings of the Third International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2883 - 2888. 2004. DOI: 10.1109/ICMLC.2004.1378524.         [ Links ]

[15] T. Calinski and J. Harabasz. "A dendrite method for cluster analysis". Communications in Statistics, vol. 3, no. 1, pp. 1-27, 1974.         [ Links ]

[16] Dirección Nacional de Aeronáutica. "Monthly Statistical Report by Origin-Destination 2008". Original Language: Spanish: http://dgac.sct.gob.mx/ Retrieved on March 19th, 2008.         [ Links ]

[17] International Air Transport Association. "IATA Annual Report". 2008.         [ Links ]

[18] International Air Transport Association IATA. "IATA Economic Briefing Airline Profitability 2006, 2007.         [ Links ]

[19] Secretaría de Desarrollo Económico. Gobierno del Estado de México. [Online] GDP Indicators in the State of Mexico,=Mexico.=,=2007. http://www1.edomexico.gob.mx/sedeco/. Original Language: Spanish.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons