SciELO - Scientific Electronic Library Online

 
vol.11 número5Cropping Resilient Watermarking Based on Histogram Modification índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.11 no.5 Ciudad de México oct. 2013

 

Using the Monte Carlo Simulation Methods in Gauge Repeatability and Reproducibility of Measurement System Analysis

 

Tsu-Ming Yeh*, Jia-Jeng Sun

 

Department of Industrial Engineering and Management, Dayeh University, Taiwan. *tmyeh@mail.dyu.edu.tw.

 

ABSTRACT

Measurements are required to maintain the consistent quality of all finished and semi-finished products in a production line. Many firms in the automobile and general precision industries apply the TS 16949:2009 Technical Specifications and Measurement System Analysis (MSA) manual to establish measurement systems. This work is undertaken to evaluate gauge repeatability and reproducibility (GR & R) to verify the measuring ability and quality of the measurement frame, as well as to continuously improve and maintain the verification process. Nevertheless, the implementation of GR & R requires considerable time and manpower, and is likely to affect production adversely. In addition, the evaluation value for GR & R is always different owing to the sum of man-made and machine-made variations. Using a Monte Carlo simulation and the prediction of the repeatability and reproducibility of the measurement system analysis, this study aims to determine the distribution of % GR & R and the related number of distinct categories (ndc). This study uses two case studies of an automobile parts manufacturer and the combination of a Monte Carlo simulation, statistical bases, and the prediction of the repeatability and reproducibility of the measurement system analysis to determine the probability density function, the distribution of % GR & R, and the related number of distinct categories (ndc). The method used in this study could evaluate effectively the possible range of the GR & R of the measurement capability, in order to establish a prediction model for the evaluation of the measurement capacity of a measurement system.

Keywords: measurement system analysis, monte carlo simulation, gauge repeatability and reproducibility.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Al-Refaie, A., Bata, N., Evaluating measurement and process capabilities by GR&R with four quality measures, Measurement, Vol.43, No.6, 2010, pp.842-851        [ Links ]

[2] Stevens, N. T., Browne, R., Steiner, S. H., Mackay, R. J., Augmented Measurement System Assessment, Journal of Quality Technology, Vol.42, No.4, 2010, pp.388-399        [ Links ]

[3] Pan, J. N., Determination of the Optimal Allocation of Parameters for Gauge Repeatability and Reproducibility, International Journal of Quality & Reliability Management, Vol.21, No.6, 2004, pp.672-682        [ Links ]

[4] Pan, J. N., Evaluating the Gauge Repeatability and Reproducibility for Different Industries, Quality & Quantity, Vol.40, No.4, 2006, pp.499-518        [ Links ]

[5] Wang, F.K., Chien, T.W., Process-oriented basis representation for a multivariate gauge study, Computers & Industrial Engineering, Vol.58, 2010, pp.143-150        [ Links ]

[6] Montgomery, D. C., Runger, G. C., Gauge Capability and Designed Experiments Part I: Basic Methods, Quality Engineering, Vol.6, No.1, 1993, pp.115-135.         [ Links ]

[7] ISO, "ISO/IEC17025 General requirements for the competence of testing and calibration laboratories", 2nd Edition, 2005.         [ Links ]

[8] Automotive Industry Action Group (AIAG), Statistical Process Control (SPC) Reference Manual, Second Edition, Southfield, MI, 2005.         [ Links ]

[9] Chen, K. S., Wu, C. H., Chen, S. C., Criteria of Determining the P/T Upper Limits of GR&R in MSA, Quality & Quantity, Vol.42, No.1, 2008, pp.23-33        [ Links ]

[10] Kappele, W. D., Raffaldi, J., Gage R&R for Destructive Measurement Systems, Quality Magazine, Vol.5, 2010, pp.32-34.         [ Links ]

[11] Fang, J. J., Wang, P. S., Lee, Y. L., The Study of Gauge Repeatability and Reproducibility, Proceeding of the 10th Conference on Interdisciplinary and Multifunctional Business Management, 2006, pp.288-297        [ Links ]

[12] Automotive Industry Action Group (AIAG), Measurement Systems Analysis (MSA) Reference Manual, 4th Edition, Chrysler, Ford, GM, 2010.         [ Links ]

[13] He, S. G., Wang, G. A., Cook, D. F., Multivariate measurement system analysis in multisite testing: An online technique using principal component analysis, Expert Systems with Applications, Vol.38, 2011, pp.14602-14608.         [ Links ]

[14] Burdick, R. K., Borror, C. M., Montgomery, D. C., A review of methods for measurement systems capability analysis, Journal of Quality Technology, Vol.35, No.4, 2003, pp.342-354.         [ Links ]

[15] Li, M. H., Al-Refaie, A., Improving wooden parts' quality by adopting DMAIC procedure, Quality and Reliability Engineering International, Vol.24, 2008, pp.351-360.         [ Links ]

[16] Barrentine, L. B., Concepts for R&R Studies, ASQC Quality Press, Milwaukee, WI, 1991.         [ Links ]

[17] Automotive Industry Action Group (AIAG), Measurement Systems Analysis, AIAG Reference Manual, Southfield, MI, 1997.         [ Links ]

[18] Mandel, J., Repeatability and Reproducibility, Journal of Quality Technology, Vol.4, No.2, 1972, pp.74-85.         [ Links ]

[19] Montgomery, D. C., Runger, G. C. Gauge Capability Analysis and Designed Experiments Part II: Experimental Design Models and Variance Component Estimation, Quality Engineering, Vol.6, No.2, 1993, pp.289-305        [ Links ]

[20] McNeese, W. H., Klein, R. A., Measurement System Sampling and Process Capability, Quality Engineering, Vol.4, No.1, 1991, pp.21-39.         [ Links ]

[21] Tsai, P., Variable Gauge Repeatability and Reproducibility Study Using The Analysis of Variance, Quality Engineer, Vol.1, No.1, 1998, pp.107-115.         [ Links ]

[22] James, P. D., Finderne, A., Graphical Display of Gauge R&R Data, ASQC Quality Congress Transactions, Milwaukee, 1991, pp.835-839.         [ Links ]

[23] Metropolis, N., Ulam, S., The Monte Carlo Method, Journal of the American Statistical Association, Vol.44, No.247, 1949, pp.335-341.         [ Links ]

[24] García-Alonso, C. R., Arenas-Arroyo, E., Pérez-Alcalá, G. M., macro-economic model to forecast remittances based on Monte-Carlo simulation and artificial intelligence, Expert Systems with Applications, Vol.39, 2012, pp.7929-7937.         [ Links ]

[25] Yeh, W. C., Lin, Y. C., Chung, Y. Y., Performance analysis of cellular automata Monte Carlo Simulation for estimating network reliability, Expert Systems with Applications, Vol.37, 2010, pp.3537-3544        [ Links ]

[26] Robert, C. P., Casella, G., Monte Carlo Statistical Methods, Springer-Verlag, 2nd Edition, 2004.         [ Links ]

[27] Wittwer, J. W., Monte Carlo Simulation Basics, From Vertex42.com, June 1, 2004, http://vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html, 2004.         [ Links ]

[28] Manno, I., Introduction to the Monte Carlo Method, Akademiai Kiado, 1999.         [ Links ]

[29] Chaitin, G. J., Exploring Randomness, Springer-Verlag, 2001.         [ Links ]

[30] Lehmer, D. H., Mathematical methods in large-scale computing units, Proceedings of the Second Symposium on Large Scale Digital Computing Machinery, Harvard University Press, 1951, pp.141-146.         [ Links ]

[31] Law, A. M., Kelton, W. D., Simulation Modeling & Analysis, Third Edition, McGraw-Hill, 2000.         [ Links ]

[32] Wichmann, B. A., Hill, I. D., An efficient and portable pseudo-random number generator, Applied Statistics, Vol.31, No.2, 1982, pp.188-190.         [ Links ]

[33] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.         [ Links ]

[34] Wheeler, D. J., Lyday, R. W., Evaluating the Measurement Process, SPC Press, Inc., Knoxville, Tennessee, 1989.         [ Links ]

[35] ISO, 2008, ISO/IEC Guide 98-3: Uncertainty of measurement - Part3: Guide to the expression of uncertainty in measurement (GUM: 1995).         [ Links ]

[36] ISO, 1994, ISO 5725-1, Accuracy (trueness and precision) of Measurement Methods and Results-Part 1: General Principles and Definitions. ISO: Geneva, Switzerland.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons