Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.12 no.4 Ciudad de México ago. 2014
Dynamic Evaluation of Production Policies: Improving the Coordination of an Ethanol Supply Chain
M.A. Rendón-Sagardi1, C. Sánchez-Ramírez*1, G. Cortés-Robles1, G. Alor-Hernández1 and L.A. Moncayo-Martínez2
1 Division of Research and Postgraduate Studies, Instituto Tecnológico de Orizaba, Av. Oriente 9, 852. Col Emiliano Zapata, C.P. 94320. Orizaba, Veracruz, Mexico.
2 Department of Industrial and Operations Engineering, Instituto Tecnológico Autónomo de México (ITAM), Río Hondo No. 1, Col. Progreso Tizapán, C.P. 01080 Mexico City, Mexico. *csanchez@itorizaba.edu.mx
ABSTRACT
This paper uses System Dynamics modeling and process simulation to explore coordination in two logistic processes (procurement and production) of the supply chain of an ethanol plant. In that sense, three production scenarios are evaluated to identify: a) stock movement according to current inventory policies, and b) the critical variables affecting the coordination for these two processes. Since the main goal in the company is to meet customer demand, this research incorporates sales forecasting, and four performance indicators to evaluate the state of the processes: 1) average percentage of demand satisfaction, 2) maximum amount of ethanol in excess, 3) available ethanol at the end of the year, and 4) inventory costs. To model the case study, the change in production yield and specific constraints for the chain are considered. The simulation results show that System Dynamics modeling can be used to observe the effects of policies on inventory, and meeting the demand in a real system. It also can define the coordination for a supply chain and give information to improve it. The developed model uses STELLA® software to simulate the logistic processes and execute the evaluation employing the performance indicators.
Keywords: supply chain, system dynamics, procurement, production, ethanol plant.
RESUMEN
Haciendo uso del modelado en Dinámica de Sistemas y simulación, se explora la coordinación de dos procesos logísticos (aprovisionamiento y producción) de la cadena de suministro de una alcoholera. En este sentido, la evaluación de tres escenarios de producción permite identificar: a) el movimiento del inventario de acuerdo a las políticas actuales de inventario, y b) las variables críticas que afectan la coordinación de estos dos procesos. Dado que el objetivo principal de la empresa es satisfacer la demanda del cliente, se incorpora un pronóstico de ventas, y cuatro indicadores de desempeño para evaluar el estado de los procesos: 1) el porcentaje promedio de la satisfacción de la demanda, 2) la cantidad máxima de etanol en exceso, 3) el etanol a disponer al finalizar el año, y 4) los costos de inventario. Para modelar el caso de estudio, se considera el cambio en el rendimiento de producción y las restricciones particulares de la cadena. Los resultados de la simulación muestran que la Dinámica de Sistemas puede utilizarse para observar los efectos de las políticas sobre el inventario, y la satisfacción de la demanda en un sistema real, igualmente, permite definir la coordinación para una cadena de suministro y proporcionar información para mejorarla. El modelo creado utiliza el software STELLA® para simular los procesos logísticos y para realizar la evaluación utilizando los indicadores de desempeño.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgment
The authors wish to thank the National Council for Science and Technology in Mexico (CONACYT) and the Asociación Mexicana de Cultura, A.C, This work was additionally supported by the General Department of Technological Higher Education (DGEST) and the Secretariat of Public Education in Mexico (SEP) through PROMEP.
References
[1] K.B. Hendricks and V.R. Singhal, "Supply chain disruptions and corporate performance", in H. Gurnani, A. Mehrotra and S. Ray (Ed.), Supply chain disruptions: theory and practice of managing risk, London: Springer, pp., 2012. [ Links ]
[2] S. Chopra and P. Meindl, Supply chain management: strategy, planning and operation, 5th ed., New Jersey: Pearson, 2013. [ Links ]
[3] D.M. Lambert, J.R. Stock, and L.M. Ellram, Fundamentals of logistics management, 1st. ed., Boston: Irwin Mc-Graw Hill, 1998. [ Links ]
[4] D. Waters, Supply chain risk management: vulnerability and resilience in logistics, 2nd ed., Philadelphia: Kogan Page, 2011. [ Links ]
[5] M. Fathollah, F. Taham, and A. Ashouri. Developing a Conceptual Framework for Simulation Analysis in a Supply Chain Based Common Platform (SCBCP), Journal of Applied Research and Technology (JART), vol. 7, no. 2, pp. 163-184, 2009. [ Links ]
[6] J.W. Forrester, Industrial dynamics, 1st ed., Cambridge: MIT Press; 1961. [ Links ]
[7] J.D. Sterman, Business dynamics: systems thinking and modeling for a complex world, 1st ed., Boston: Irwin McGraw-Hill, 2000. [ Links ]
[8] M.G. Cedillo-Campos and C. Sánchez, "Dynamic Self-Assessment of Supply Chains Performance: An Emerging Markets Approach", Journal of Applied Research and Technology (JART), vol. 11, no. 3, pp. 338-347, 2013. [ Links ]
[9] A.A. Tako, A. Vitae, and S. Robinson, "The application of discrete event simulation and system dynamics in the logistics and supply chain context" in Decision Support Systems, vol. 52(4), pp. 802-815, 2012. [ Links ]
[10] Y. Nam-Hong, K. Soung-Hie, K. Hee-Woong, and K. Kee-Young, "Knowledge based decision making on higher level strategic concerns: system dynamics approach", in Expert Systems with Applications, vol. 27(1), pp. 143-158, 2004. [ Links ]
[11] A. Potter and C. Lalwani, "Investigating the impact of demand amplification on freight transport", in Transportation Research Part E: Logistics and Transportation Review, vol. 44(5), pp. 835-846, 2008. [ Links ]
[12] M. Springer and I. Kim, "Managing the order pipeline to reduce supply chain volatility", in European Journal of Operational Research, vol. 203(2), pp. 380-392, 2010. [ Links ]
[13] M. Huang, M. Yang, Y. Zhang, and B. Liu, "System dynamics modeling-based study of contingent sourcing under supply disruptions", in Systems Engineering Procedia, vol. 4, pp. 290-297, 2012. [ Links ]
[14] J. Maheutl, J. Mula, and F. Campuzano, "Evaluation of full truck load transport policie in a supply chain of the automotive sector", XV Congreso de Ingeniería de Organización Cartagena, Spain, pp. 689-701, Septiembre 2011 [5th International Conference on Industrial Engineering and Industrial Management] [ Links ].
[15] J. Shin, W.S. Shin, and C. Lee, "An energy security management model using quality function deployment and system dynamics", in Energy Policy, vol. 54, pp. 7286, 2013. [ Links ]
[16] C. Li, L. Zhou, N. Li, and M. Zeng, "Modelling and simulation of power grid engineering project based on system dynamics on the background of smart grid", in Systems Engineering Procedia, vol. 3, pp. 92-99, 2012. [ Links ]
[17] H. Bouloiza, E. Garbolinob, M. Tkiouata, and F. Guarnierib, "A system dynamics model for behavioral analysis of safety conditions in a chemical storage unit", in Safety Science, vol. 58, pp. 32-40, 2013. [ Links ]
[18] K.A. Stave, "A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada", in Journal of Environmental Management, vol. 67(4), pp. 303-313, 2003. [ Links ]
[19] E. Suryania, S.Y. Choua, R. Hartonob, and C.H. Chenca, "Demand scenario analysis and planned capacity expansion: a system dynamics framework", in Simulation Modelling Practice and Theory, vol. 18(6), pp. 732-751, 2010. [ Links ]
[20] C. Qia and N.B. Changa, "System dynamics modelling for municipal water demand estimation in an urban region under uncertain economic impacts", in Journal of Environmental Management, vol. 92(6), pp. 1628-1641, 2011. [ Links ]
[21] C.W. Hsu, "Using a system dynamics model to assess the effects of capital subdidies and feed-in tariffs on solar PV installations", in Applied Energy, vol. 100, pp. 205-217, 2012. [ Links ]
[22] R. Rehana, M.A. Knighta, C.T. Haasa, and A.J.A. Ungerb, "Application of system dynamics for developing financially self-sustaining management policies for water and wastewater systems", in Water Research, vol. 45(16), pp. 4737-4750, 2011. [ Links ]
[23] J. Wang, H. Lu, and H. Peng, "System Dynamics Model of Urban Transportation System and Its Application", in Journal of Transportation Systems Engineering and Information Technology, vol. 8(3), pp. 83-89, 2008. [ Links ]
[24] H. Kusea, A. Endoa, and E. Iwaob, "Logistics facility, road network and district planning: establishing comprehensive planning for city logistics", in Procedia -Social and Behavioral Sciences, vol. 2(3), pp. 6251-6263, 2010. [ Links ]
[25] A. García-Cantú, Enfoques prácticos para planeación y control de inventarios, 4th ed., Mexico: Trillas, 2000. [ Links ]
[26] N. R. Farnum and L. W. Stanton, Quantitative forecasting methods, 1st ed., Boston: PWS-KENT publishing company, 1989. [ Links ]
[27] J.E. Hanke and D.W. Wichern, Pronósticos en los negocios, 9th ed., Mexico: Prentice Hall Pearson, 2010. [ Links ]
[28] J.W. Forrester and P.M. Senge, "Tests for building confidence in system dynamics models", in A. A. Legato, J. W. Forrester, J. M. Lyneis (Ed.), System dynamics: TIMS sudies in the management sciencie, vol. 14, New York: North-Holland, pp. 209-228, 1980. [ Links ]
[29] J.P.C. Kleijnen, "Verification and validation of simulation models", in European Journal of Operational Research, vol. 82(1), pp. 145-162, 1995. [ Links ]
[30] A.M. Law and W.D. Kelton, Simulation Modelling and Analysis, 3th ed., Boston: McGraw-Hill, 2000. [ Links ]