Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.12 no.4 Ciudad de México ago. 2014
Synchronization of Irregular Complex Networks with Chaotic Oscillators: Hamiltonian Systems Approach
C. Posadas-Castillo*1, E. Garza-González1, D.A. Díaz-Romero1, E. Alcorta-García1 and C. Cruz-Hernández2
1 Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, México.
2 Centro de Investigación Científica y de Educación Superior de Ensenada, México. *cornelio.posadascs@uanl.edu.mx
ABSTRACT
Synchronization of multiple chaotic oscillators in Hamiltonian form is numerically studied and is achieved by appealing to complex systems theory [1-5]. The topology that we consider is the irregular coupled network. Two cases are considered: i) chaotic synchronization without master oscillator (where the final collective behaviour is a new chaotic state) and ii) chaotic synchronization with master oscillator (where the final collective behaviour is imposed by the dynamics of the master oscillator to multiple slave oscillators). The Hysteretic and Róssler chaotic oscillators in Hamiltonian form will be used as examples.
Keywords: Synchronization, Complex Networks, Hamiltonian Systems.
RESUMEN
La sincronización de múltiples osciladores caóticos en forma Hamiltoniana es numéricamente estudiada y se logra apelando a la teoría de sistemas complejos [1-5]. La topología que consideramos es la red compleja irregular. Dos casos se consideran: i) sincronización caótica sin oscilador maestro (donde el comportamiento colectivo final de la red compleja es un estado caótico nuevo y ii) sincronización caótica con oscilador maestro (donde el comportamiento colectivo final de la red caótica es impuesto por la dinámica del oscilador maestro a los osciladores esclavos). Los osciladores caóticos de Róssler e Histéresis en forma Hamiltoniana se utilizan como ejemplos.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgment
This work was supported by CONACYT, México under Research Grant No. 166654 and by FIME-UANL.
References
[1] Wu C.W. Synchronization in complex networks of nonlinear dynamical systems, World Scientific, Singapore, 2007. [ Links ]
[2] Wang, X.F., "Complex networks: Topology, dynamics and synchronization", International Journal of Bifurcations and Chaos 12(2002), 885-916. [ Links ]
[3] Sira-Ramírez H., Cruz-Hernández C. "Synchronization of chaotic systems: A generalized Hamiltonian systems approach", International Journal of Bifurcations and Chaos 11(2001), 1381-1395. [ Links ]
[4] Posadas-Castillo C., Cruz-Hernández C., López-Gutiérrez R.M., "Synchronization of chaotic neural networks with delay in irregular networks", Applied mathematics and computation, 205(2008), 487-496. [ Links ]
[5] Serrano-Guerrero H., Cruz-Hernández C., López-Gutiérrez R.M., Posadas-Castillo C., Inzunza-González E. "Chaotic synchronization in star coupled networks of three dimensional cellular neural networks and Its applications in communications", International Journal of Nonlinear Science & Numerical Simulations 11(8), 571-580, 2010. [ Links ]
[6] Pecora, L.M. y Carroll, T.L. "Synchronization in chaotic systems", Phys. Rev. Lett. 64, pp. 821-824, 1990. [ Links ]
[7] R. Núñez, "An Optimal chaotic bidirectional communicator for hidden information, based on synchronized Lorenz circuits", Journal of Applied Research and Technology Vol. 2 No 1, pp. 5-20, 2003. [ Links ]
[8] J.L. Mata-Machuca et al., "Chaotic Systems Synchronization Via High Order Observer Design", Journal of Applied Research and Technology, Vol. 9, pp. 57-68, 2011. [ Links ]
[9] Bennett M., Schatz M.F., Rockwood H., and Wiesenfeld K. "Huygen's clocks" Proc. R. soc.Lond. A (2002) 458, 563-579. [ Links ]
[10] Ch Huygens, "Evres completes" Volume 15, Swets & Zeitlinger B. V., Amsterdam, 1967. [ Links ]
[11] D Cabeza C., Rubido N., Kahan S., Marti A.C., "Synchronization of fireflies using model of light controlled oscillators" International Conference on Chaos and Nonlinear Dynamics Jul 2010. [ Links ]
[12] Kaempfer, E., "The History of Japan (with a description of the kingdom of Siam)", Sloan, London, 1727, reprint by McLehose, Glasgow, 1906. [ Links ]
[13] Keeley J.E., Bond W.J. "Mast flowering and Semelparity in Bamboos: The Bamboo Fire Cycle Hypothesis" Am. Nat. 1999, Vol. 152, pp. 383-391. [ Links ]
[14] J. Rayleigh, "The theory of sound", Dover Publishers, New York, 1945. [ Links ]
[15] Gladman B. et al., "Synchronous Locking of Tidally Evolving Satellites". Icarus, 122, Issue 1, pp. 166-192. 1996. [ Links ]
[16] Arkady Pikovsky, Michael Rosenblum and Jurgen Kurths, "Synchronization, A universal concept in nonlinear sciences" Cambridge University Press, 2001. [ Links ]
[17] Lorenz, Edward N. "Deterministic Nonperiodic Flow", Journal of the Atmospheric Sciences Vol. 20, pp. 130-141, 1963. [ Links ]
[18] Du-Sautoy M. "Nature's hidden prime number code". http://www.bbc.co.uk/news/magazine-14305667. [ Links ]
[19] Du-Sautoy M. book: "The Number Mysteries: A Mathematical Odyssey Throught Everyday Life" Fourth Estate 2010. [ Links ]
[20] Constantino R.F., Desharnais R.A., Cushing J.M. and Dennis B. "Chaotic Dynamics in an Insect Population" Science, 17 January 1997, Vol. 275, no. 5298, pp. 389-391. [ Links ]
[21] Day R.H. "The emergence of chaos from classical economy growth" Quarterly Journal of Economics vol. 98 (2) pp. 201-213. [ Links ]
[22] Kyrtsou C., Labys W. "Evidence for chaotic dependence between US inflation and commodity prices". Journal of Macroeconomics 28 (1) pp. 256-266, 2006. [ Links ]
[23] Fradkov A., Andrievsky B. and Guzenko P. "Energy speed-gradient control of satellite oscillations" IFAC Automatic Control in Aerospace, Saint-Petersburg, Russia, 2004, pp. 417-422. [ Links ]
[24] Wang, X.F., Chen G. "Synchronization in small-world dynamical networks", International Journal of Bifurcations and Chaos 12(1), 187-192. 2002. [ Links ]
[25] C. Posadas-Castillo, C. Cruz-Hernández , R. Núnez-Pérez, "Experimental realization of binary signals transmission based on synchronized Lorenz circuits" Journal of Applied Research and Technology, Vol. 2 No. 2, pp. 127-137, 2002. [ Links ]
[26] Muñoz-Pacheco, Jesús M., Ernesto Zambrano-Serrano, Olga Félix-Beltrán, Luz C. Gómez-Pavón, and Arnulfo Luis-Ramos. "Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems" Nonlinear Dynamics 70, no. 2 (2012): 1633-1643. [ Links ]
[27] Muñoz-Pacheco, J.M., and E. Tlelo-Cuautle. "Automatic synthesis of 2D-n-scrolls chaotic systems by behavioral modeling" Journal of applied research and technology 7, no. 1 (2009): 05-13. [ Links ]
[28] Serrano-Guerrero, H., C. Cruz-Hernández, R. M. López-Gutiérrez, L. Cardoza-Avendaño, and R.A. Chávez-Pérez. "Chaotic Synchronization in Nearest-Neighbor Coupled Networks of 3D CNNs." Journal of Applied Research and Technology 11, no. 1 (2013). [ Links ]