SciELO - Scientific Electronic Library Online

 
vol.13 número2A constructive algorithm for unsupervised learning with incremental neural networkFeature-based fast coding unit partition algorithm for high efficiency video coding índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.13 no.2 Ciudad de México abr. 2015

 

An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization

 

P. Wanga*, J.S. Linb, M. Wanga

 

a School of Electric and Control of Xi'an University of Science and Technology, Xi'an, China. *Correponding author. E-mail address: wangpai2013@xust.edu.cn.

b Department of Computer Science and Information Engineering at National Chin-Yi University of Technology, Taichung, Taiwan.

 

Abstract

In this paper, we introduce a novel image reconstruction algorithm with Least Squares Support Vector Machines (LS-SVM) and Simulated Annealing Particle Swarm Optimization (APSO), named SAP. This algorithm introduces simulated annealing ideas into Particle Swarm Optimization (PSO), which adopts cooling process functions to replace the inertia weight function and constructs the time variant inertia weight function featured in annealing mechanism. Meanwhile, it employs the APSO procedure to search for the optimized resolution of Electrical Capacitance Tomography (ECT) for image reconstruction. In order to overcome the soft field characteristics of ECT sensitivity field, some image samples with typical flow patterns are chosen for training with LS-SVM. Under the training procedure, the capacitance error caused by the soft field characteristics is predicted, and then is used to construct the fitness function of the particle swarm optimization on basis of the capacitance error. Experimental results demonstrated that the proposed SAP algorithm has a quick convergence rate. Moreover, the proposed SAP outperforms the classic Landweber algorithm and Newton-Raphson algorithm on image reconstruction.

Keywords: Electrical capacitance tomography; Simulated annealing algorithm; Least squares support vector machines; Particle swarm optimization.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work is financially supported by Projects 51405381 and 51475013 from the National Natural Science Foundation of China, Project 201314 supported by Engagement Foundation of Xi'an University of Science and Technology, and a Project supported by Scientific Research Foundation for Returned Scholars, Ministry of Education of China 2011508.

 

References

Arce, A., Covarrubias, D.H., Panduro, M.A., & Garza, L.A. (2012). Design of beam-forming networks for multibeam antenna arrays using coherently radiating periodic structures. In Proceedings of International Congress on 1st Instrumentation and Human Applied Science, 10, 48-56.         [ Links ]

Alatas, B., Akin, E., & Ozer, A.B. (2009). Chaos embedded particle swarm Optimization algorithms. Chaos Solutions & Fractals, 40, 1715-1734.         [ Links ]

Chen, C., & Zhao, C.X. (2009). Path test data generation based on chaos anneal particle swarm optimization. Journal of Nanjing University of Science and Technology, 3, 376-381.         [ Links ]

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particles swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 7, 39-43.         [ Links ]

Eberhart, R., & Shi, Y. (1998). Parameter selection in particle swarm optimization. Proceedings of Evolutionary Programming, 1447, 591-600.         [ Links ]

Eberhart, R., & Shi, Y. (2000). Comparing inertia weights and constriction factors in Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computation, 1, 84-88.         [ Links ]

Griffiths, H. (1988). A phantom for electrical impedance tomography. Clinicalphysics and Physiological Measurement, 9, 15-20.         [ Links ]

Gerardo, A., Mauricio, O.C., Nareli, C.C, Ricardo, B.F., & Jessus, A.A.C. (2009). Comparative study of parallel variants for a particle swarm optimization algorithm implemented on a multithreading GPU. Journal of Applied Research and Technology, 7, 292-309.         [ Links ]

Gu, Y.P., Zhao, W.J., & Wu Z.S. (2010). Least squares vector machine algorithm. Journal of Tsinghua University (Science & Technology), 50, 1063-1066.         [ Links ]

Kirkpatrick, S. (1983). Optimization by simulated annealing: quantitative studies. Journal of Statistical Physics. 34, 975-986.         [ Links ]

Krilc, T., Vesterstrom, J.S., & Riget, J. (2002). Particle swarm optimization with spatial particle extension. Proceedings of the World on Congress on Computational Intelligence, 1474-1479.         [ Links ]

Lv, Z.X., & Hou, Z.R. (2004). Particle swarm optimization with adaptive mutation. Acta Electronic Sinica, 32, 416-420.         [ Links ]

Lin, J.S. (2001). Annealed chaotic neural network with nonlinear self-feedbackand its application to clustering problem. Pattern Recognition, 34, 1093-1104.         [ Links ]

Liu, H.B., Wang, X.H., & Tan, G. (2006). Convergence analysis of particle swarm optimization and its improved algorithm based on chaos. Control and Decision, 21, 636-645.         [ Links ]

Ma, M., Wang, H.X., & Tian, L.M. (2006). Electrical capacitance tomography system based on DSP. Chinese Journal of Sensors and Actuators, 19, 705-708.         [ Links ]

Ott, E., Grebogi, C., & Yoke, J.A. (1990). Controlling chaos. Physical Review Letters. 64, 1196-1199.         [ Links ]

Peng, L.H., Lu, D., & Yang, W.Q. (2004). Image reconstruction algorithms for electrical capacitance tomography: state of the art. Journal of Tsinghua University (Science & Technology), 44, 478-484.         [ Links ]

Peng, L.H., Jiang, P., Lu, G., & Xiao, D. (2007). Window function-based regularization for electrical capacitance tomography image reconstruction. Flow Meas Instrum, 18, 277-284.         [ Links ]

Rezazadeh, H., Ghazanfri, M., & Sadjadi, S.J. (2009). Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems. Journal of Applied Research and Technology. 7, 83-108.         [ Links ]

Sait, S.M., Sheikh, A.T., & ElMaleh, A.H. (2013). Cell assignment in hybrid CMOS/Nanodevices architecture using a PSO/SA hybrid algorithm. Applied Research and Technology, 11, 653-664.         [ Links ]

Tikhonov, A.N., & Arsenin, V.Y. (1977). Solutions of ill-posed problems (1st ed.). Washington, DC: Winston.         [ Links ]

Wang, H.X., Zhu, X.M., & Zhang, L.F. (2005). Conjugate gradient algorithm for electrical capacitance tomography. Tianjin University, 38, 1-4.         [ Links ]

York, T. (2001). Status of electrical tomography in industrial applications. Electronic Imaging, 10, 600-619.         [ Links ]

Yang, W.Q. (1997). Modeling of capacitance tomography sensors. IEE Proceedings: Science, Measurement and Technology. 114, 203-208.         [ Links ]

Yang, W.Q., Spink, D.M., York, T.A., & McCann, H. (1999). An image-reconstruction algorithm based on Landweber's iteration method for electrical capacitance tomography. Measurement Science and Technology, 10, 1065-1069.         [ Links ]

Yang, W.Q., & Peng, L.H. (2003). Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology, 14, R1-R13.         [ Links ]

Yang, W.Q. (1996). Hardware design of electrical capacitance tomography systems. Measurement Science and Technology, 7, 225-232.         [ Links ]

Yang, W.Q. (2001). Further developments in an ac-based capacitance tomography system. Review of Scientific Instruments, 72, 3902-3907.         [ Links ]

Yang. D.Y., Xu, C.L., & Zhou, B. (2010). Electrical capacitance tomography system based on single measurement channel. Chinese Journal of Scientific Instrument, 31, 132-136.         [ Links ]

Yeung, H., & Ibrahim, A. (2003). Multiphase flows sensor response database. Flow Measurement and Instrumentation, 14, 219-223.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons