SciELO - Scientific Electronic Library Online

 
vol.13 número2Reconstruction of three-dimensional breast-tumor model using multispectral gradient vector flow snake methodReal time non-rigid surface detection based on binary robust independent elementary features índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.13 no.2 Ciudad de México abr. 2015

 

Transistor characteristics of zinc oxide active layers at various zinc acetate dihydrate solution concentrations of zinc oxide thin-film

 

H.C. You

 

Department of Electronic Engineering, National Chin-Yi University of Technology, Taiwan. E-mail address: hcyou@ncut.edu.tw

 

Abstract

This paper presents a technique involving a sol-gel deposition method applied to the deposition of zinc oxide thin film for a transistor as a semiconductor layer. This method was used for manufacturing the essential thin films of II-VI semiconductors. Zinc oxide (ZnO) bottom-gate (BG) thin-film transistors (TFTs) have been successfully fabricated at low temperatures. We investigated the electrical characteristics of ZnO thin-film transistors at various concentrations of ZnO solution: 0.02 M, 0.03 M, 0.04 M, and 0.05 M. All of the ZnO films exhibited a hexagonal wurtzite polycrystalline structure with (002) preferred orientation. Atomic force microscopy (AFM) revealed the formation of grains or clusters as a result of the accumulation of nanoparticles, and the grain size increased with increasing solution concentration. The coated ZnO films were employed as the active channel layer in thin-film transistors, and the impact of the solution concentration on the device performance was examined. As the solution concentration was increased, the field-effect mobility increased from 1 x 10-4 cm2/V-s to 1.2 x 10-1 cm2/V-s, the threshold voltage increased from 4.8 V to 11.1 V, and the Ion/Ioff ratio increased from 104 to 106. The on-off ratio (Ion/off) was found to be 106. The 0.05 M ZnO solution performed optimally.

Keywords: ZnO; Zinc acetate dihydrate solution; Thin-film transistor; Concentration.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was supported by the National Science Council, Taiwan, under Contract Nos. MOST 103-2221-E-167-035.

 

Reference

Ameer, M.A., Ghoneim, A.A., & Fekry, A.M. (2012). Electrochemical corrosion inhibition of Al-Si alloy in phosphoric acid. International Journal of Electrochemical Science, 7, 4418-4431.         [ Links ]

Anand, V.K., Sood, S.C., & Sharma, A. (2010). Characterization of ZnO Thin Film Deposited by Sol-Gel Process. In International Conference on Methods and Models in Science and Technology (ICM2ST-10) (Vol. 1324, pp. 399-401). AIP Publishing.         [ Links ]

Bahadur, H., Srivastava, A.K., Haranath, D., Chander, H., Basu, A., Samanta, S.B., ... & Chandra, S. (2007). Nano-structured ZnO films by sol-gel process. Indian Journal of Pure & Applied Physics, 45, 395-399.         [ Links ]

Bari, A.R., Shinde, M.D., Deo, V., & Patil, L.A. (2009). Effect of solvents on the particle morphology of nanostructured ZnO. Indian Journal of Pure & Applied Physics, 47, 24-27.         [ Links ]

Bermúdez-Reyes, B., Puente-Ornelas, R., García-Pérez, U.M., Zambrano-Robledo, P., Contreras-García, M.E., Morales-Hernández, J., & Espinoza-Beltrán, F.J. (2012). Cyclic polarization and immersion corrosion test on HA/ZrO2/316LSS for application on orthopedics prosthesis. International Journal of Electrochemical Science 7, 2028-2035.         [ Links ]

Chang, Y.J., Lee, D.H., Herman, G.S., & Chang, C.H. (2007). High-performance, spin-coated zinc tin oxide thin-film transistors. Electrochemical and solid-state letters, 10, H135-H138.         [ Links ]

Cheng, H.C., Chen, C.F., & Tsay, C.Y. (2007). Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method. Applied physics letters, 90, 012-113.         [ Links ]

Cheng, H.C., Yang, P.Y., Wang, J.L., Agarwal, S., Tsai, W.C., Wang, S.J., & Lee, I.C. (2011). Zinc oxide thin-film transistors with location-controlled crystal grains fabricated by low-temperature hydrothermal method. IEEE Electron Device Letters, IEEE, 32, 497-499.         [ Links ]

Cho, K.H., Kang, M.G., Oh, S.M., Kang, C.Y., Lee, Y., & Yoon, S.J. (2010). Low voltage ZnO thin-film transistors with Ti-substituted BZN gate insulator for flexible electronics. Thin Solid Films, 518, 6277-6279.         [ Links ]

Chu, M.C., You, H.C., Meena, J.S., Shieh, S.H., Shao, C.Y., Chang, F.C., & Ko, F.H. (2012). Facile electroless deposition of zinc oxide ultrathin film for zinc acetate solution-processed transistors. International Journal of Electro chemical Science, 7, 5977-5989.         [ Links ]

Gayen, R.N., Sarkar, K., Hussain, S., Bhar, R., & Pal, A.K. (2011). ZnO films prepared by modified sol-gel technique. Indian Journal of Pure & Applied Physics, 49, 470-477.         [ Links ]

Grundmann, M., Frenzel, H., Lajn, A., Lorenz, M., Schein, F., & von Wenckstern, H. (2010). Transparent semiconducting oxides: materials and devices. Physica status solidi (a), 207, 1437-1449.         [ Links ]

Hirao, T., Furuta, M., Hiramatsu, T., Matsuda, T., Li, C., Furuta, H., ..., & Kakegawa, M. (2008). Bottom-gate zinc oxide thin-film transistors (ZnO TFTs) for AM-LCDs. IEEE Transactions on Electron Devices, 55, 3136-3142.         [ Links ]

Hoffman, R.L., Norris, B.J., & Wager, J.F. (2003). ZnO-based transparent thin-film transistors. Applied Physics Letters, 82, 733-735.         [ Links ]

Kim, D., Jeong, Y., Song, K., Park, S.K., Cao, G., & Moon, J. (2009). Inkjet- printed zinc tin oxide thin-film transistor. Langmuir, 25, 11149-11154.         [ Links ]

Lee, C., Lim, K., & Song, J. (1996). Highly textured ZnO thin films doped with indium prepared by the pyrosol method. Solar energy materials and solar cells, 43, 37-45.         [ Links ]

Lee, J.H., Ko, K.H., & Park, B.O. (2003). Electrical and optical properties of ZnO transparent conducting films by the sol-gel method. Journal of Crystal Growth, 247, 119-125.         [ Links ]

Lee, C.Y., Lin, M.Y., Wu, W.H., Wang, J.Y., Chou, Y., Su, W.F., & Lin, C.F. (2010). Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semiconductor Science and Technology, 25, 105008.         [ Links ]

Lim, S.J., Kwon, S., & Kim, H. (2008). ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor. Thin Solid Films, 516, 1523-1528.         [ Links ]

Muthukumar, S., Gorla, C.R., Emanetoglu, N.W., Liang, S., & Lu, Y. (2001). Control of morphology and orientation of ZnO thin films grown on SiO2/ Si substrates. Journal of Crystal Growth, 225, 197-201.         [ Links ]

Park, S.Y., Kim, B.J., Kim, K., Kang, M.S., Lim, K.H., Lee, T.I., & Kim, Y.S (2012). Low-temperature, solution-processed and alkali metal doped ZnO for highperformance thin-film transistors. Advanced Materials, 24, 834-838.         [ Links ]

Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., & Steiner, T. (2005). Recent progress in processing and properties of ZnO. Progress in materials science, 50, 293-340.         [ Links ]

Rendón, G., Poot, P., Oliva, A.I., & Espinosa-Faller, F.J. (2012). A simple substrate heater device with temperature controller for thin film preparation. Journal of Applied Research and Technology, 10, 549-556.         [ Links ]

Spear, W.E., & Le Comber, P.G. (1993). Substitutional doping of amorphous silicon. Solid State Communications, 88, 1015-1018.         [ Links ]

Srinivasan, G., Gopalakrishnan, N., Yu, Y.S., Kesavamoorthy, R., & Kumar, J. (2008). Influence of post-deposition annealing on the structural and optical properties of ZnO thin films prepared by sol-gel and spin-coating method. Superlattices and Microstructures, 43, 112-119.         [ Links ]

Tsay, C.Y., Fan, K.S., Chen, S.H., & Tsai, C.H. (2010). Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. Journal of Alloys and Compounds, 495, 126-130.         [ Links ]

Vázquez-Cerón, E.R., Barrales-Guadarrama, V.R., Rodríguez-Rodríguez, E.M., & Barrales-Guadarrama, R. (2007). Principal factors determination in the growth of thin films using Taguchi's technique. Journal of Applied Research and Technology, 5, 113-120.         [ Links ]

Wu, M.S., Shih, W.C., & Tsai, W.H. (1998). Growth of ZnO thin films on interdigital transducer/Corning 7059 glass substrates by two-step fabrication methods for surface acoustic wave applications. Journal of Physics D: Applied Physics, 31, 943.         [ Links ]

You, H.C., & Lin, Y.H. (2012). Investigation of the sol-gel method on the flexible ZnO device. International Journal of Electrochemical Science , 9085-9094.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons