SciELO - Scientific Electronic Library Online

 
vol.13 número2Combined grey prediction fuzzy control law with application to road tunnel ventilation systemChaotic and dynamic analysis of a flexible rotor supported by ultra short aero-lubricated bearing system índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.13 no.2 Ciudad de México abr. 2015

 

Chaos embedded particle swarm optimization algorithm-based solar optimal Reflex™ frequency charge

 

Jui-Ho Chen, Her-Terng Yau*, Jin-Han Lu

 

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan. *Corresponding author. E-mail addresses: pan1012@ms52.hinet.net; htyau@ncut.edu.tw

 

Abstract

The battery temperature rise and charge efficiency during the long-term charge in the sun are a very important topic. The traditional common constant current and constant voltage result in quick temperature rise and influence the charge efficiency indirectly. Therefore, the Reflex™ charge is adopted, the chemical reaction of electrolyte is buffered during discharge, so that the battery temperature rises slightly during charge. However, there is no optimum frequency for switching loss and charge efficiency during Reflex™ charge. Therefore, this paper proposes using chaos embedded particle swarm optimization algorithm (CPOS) to minimize the switching loss of battery in charge and discharge conditions. The battery module in Matlab/Simulink environment is used for solar charge, multiple charge modes are compared with traditional common methods. The simulation results show that the Reflex™ method has improved the battery temperature in Matlab/Simulink, and the State of Charge (SOC) is equivalent to other charge modes. It is proved that the method proposed in this paper has significant effect on switching loss and oscillation, and its charge efficiency is equivalent to traditional quick charge.

Keywords: CPSO; Reflex™; Charge; SOC.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

Financial support for this research is provided by the National Science Council of Taiwan, under the Project No. NSC-100-2628-E-167-002 -MY3 is greatly appreciated.

 

References

Awwad, R., Das, R., Arabi, T., & Hajj, H. (2012). A fast charging Multi-C technique for mobile devices. 2012 International Conference on Energy Aware Computing, Guzelyurt (pp. 1-7).         [ Links ]

Boico, F., Lehman, B., & Shujaee, K. (2007). Solar Battery Chargers for NiMH Batteries. IEEE Trans. Power Electron., 22, 1600-1609.         [ Links ]

Chao, P., Chen, W.D., & Cheng, C.W. (2013). A fast battery charging algorithm for an intelligent PV system with capability of on-line temperature compensation. Microsystem Technologies, 19, 1289-1306.         [ Links ]

Chen, L.R. (2007). A design of an optimal battery pulse charge system by frequency-varied technique. IEEE Trans. Ind. Electron, 54, 398-405.         [ Links ]

Clack, G. (2008). Entropy and dynamics (Dissertation). York, UK: MSc in Mathematics with Modern Applications, Department of Mathematics, University of York.         [ Links ]

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya (pp. 39-43).         [ Links ]

Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron., 20, 963-973.         [ Links ]

García-Nieto, J., Olivera, A.C., & Alba, E. (2013). Optimal cycle program of traffic lights with particle swarm optimization. IEEE Trans. Evol. Comput, 17, 823-839.         [ Links ]

Hsieh, H.I., Shih, S.F., Hsieh, J.H., & Hsieh, G.C. (2012). A study of high-frequency photovoltaic pulse charger for lead-acid battery guided by PI-INC MPPT. International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki (pp. 1-6).         [ Links ]

Huang, C.H., Huang, C.H., Ou, T.C., Lu, K.H., & Hong, C.M. (2009). Intelligent fuzzy logic controller for a solar charging system. IEEE/ ASME International Conference on Advanced Intelligent Mechatronics, Singapore (pp. 1412-1417).         [ Links ]

Jamali, S., Rezaei, L., & Gudakahriz, S.J. (2013). An energy-efficient routing protocol for MANETs: a particle swarm optimization approach. Journal of Applied Research and Technology, 11, 803-812.         [ Links ]

Laguna-Sánchez, G.A., Olguín-Carbajal, M., Cruz-Cortés, N., Barrón-Fernández, R., & Álvarez-Cedillo, J.A. (2009). Comparative study of parallel variants for a particle swarm optimization algorithm implemented on a multithreading GPU. Journal of Applied Research and Technology, 7, 292-309.         [ Links ]

Lemaire-Potteau, E., Perrin, M., & Genies, S. (2009). Charging methods. Encyclopedia of Electrochemical Power Sources (pp. 413-423).         [ Links ]

Li, S., Zhang, C., & Xie, S. (2009). Research on fast charge method for lead- acid electric vehicle batteries. International Workshop on Intelligent Systems and Applications, Wuhan (pp. 1-5).         [ Links ]

Liu, F., Duan, S., Liu, F., Liu, B., & Kang, Y. (2008). A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron., 55, 2622-2628.         [ Links ]

Liu, Y.H., Teng, J.H., Lin, Y.C. (2005). Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm. IEEE Trans. Ind. Electron, 52, 1328-1336.         [ Links ]

Lloyd, A.L. (1995). The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol., 173, 217-230.         [ Links ]

Mei, Q., Shan, M., Liu, L., & Guerrero, J.M. (2011). A novel improved variable step-size a novel improved variable step-size method for PV systems. IEEE Trans. Ind. Electron, 58, 2427-2434.         [ Links ]

Park, J.B., Lee, K.S., Shin, J.R., & Lee, K.Y. (2005). A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst., 20, 34-42.         [ Links ]

Pavlov, D., Kirchev, A., & Monahov, B. (2005). Mechanism of the oxygen cycle reactions proceeding at the negative plates of VRLA batteries. Institute of Electrochemistry and Energy Systems, 144, 521-527.         [ Links ]

Altinoz, O.T., Yilmaz, A.E., & Weber, G.W. (2012). Application of chaos embedded PSO for PID parameter tuning. International Journal of Computers, Communications and Control, 7, 204-217.         [ Links ]

Wang, S., & Meng, B. (2007). Chaos particle swarm optimization for resource allocation problem. IEEE International Conference on Automation and Logistics, Jinan (pp. 464-467).         [ Links ]

Wang, T.W., Yang, M.J., Shyu, K.K., & Lai, C.M. (2007). Design fuzzy SOC estimation for sealed lead-acid batteries of electric vehicles in ReflexTM. IEEE International Symposium on Industrial Electronics, Vigo (pp. 95-99).         [ Links ]

Watrin, N., Bouquain, D., Blunie, B., & Miraoui, A. (2011). Multiphysical lithium-based battery pack modeling for simulation purposes. IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago (pp. 1-5).         [ Links ]

Yamamoto, Y., Kato, K., Lei, L., & Fukui, M. (2013). A thermal management system for lithium-ion battery in mobile systems. 2013 European Conference on Circuit Theory and Design (ECCTD), Dresden (pp. 1-4).         [ Links ]

Yau, H.T., Liang, Q.C., & Hsieh, C.T. (2012). Maximum power point tracking and optimal Li-ion battery charging control for photovoltaic charging system. Comput. Math. Appl., 64, 822-832.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons