Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of the Mexican Chemical Society
versión impresa ISSN 1870-249X
J. Mex. Chem. Soc vol.49 no.2 Ciudad de México 2005
Article
Experimental and Theoretical Study of the Products from the Spontaneous Dimerization of DL- and D-Glyceraldehyde
Federico García-Jiménez*,a, Ofelia Collera Zúñigaa, Yolanda Castells Garcíab, Julio Cárdenasc and Gabriel Cuevas*,a
a Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria 04510, Coyoacán, México D.F., México. * e-mail: fedgar@servidor.unam.mx, gecgb@servidor.unam.mx.
b Escuela Nacional Preparatoria, Universidad Nacional Autónoma de México, Plantel Antonio Caso, Coyoacán, 04500 México D.F., México
c Escuela de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 47, Hipódromo Condesa, 06140 México D.F., México
Received: November 23, 2004
Published on the web: May 10, 2005
Abstract
The predominant molecular structure of DL and D-glyceraldehyde has been studied with infrared and nuclear magnetic resonance spectroscopies. Both techniques show that these compounds at room temperature have a minor percentage of the aldehydic form. These studies showed that D-(+)-glyceraldehyde coexists in a minor proportion as a component of a complex mixture of diasteroisomers of the 2,5-dihydroxy-3,6-dihydroxymethyl-1,4-dioxane, while the racemic mixture is made of two main compounds. The stability of the isolated diasteroisomers is controlled by the formation of intramolecular hydrogen bonds that are formed under the control of the anomeric effect which defines the favored position for the hydroxyl group. The endo and exo-anomeric interactions have their origin in the stereoelectronic interaction nO→<α*C-O. Using theoretical calculations at B3LYP/ 6-31G(d,p) level, it was possible to establish the structure of the favored conformers.
Keywords: DL-glyceraldehyde, D-glyceraldehyde, 1,4-dioxanes, nuclear magnetic resonance, density functional calculations, stereoelectronic effects, anomeric effect, hydrogen bond, weak interactions
Resumo
A estrutura molecular predominante para o DL e para o D-gliceraldeído foi estudada utilizando espectroscopia de infravermelho e de ressonância magnética nuclear. As duas técnicas mostraram que, a temperatura ambiente, estes compostos apresentam apenas uma pequena porcentagem da forma aldeído. Estes estudos mostraram que a forma aldeído para o D-(+)-gliceraldeido coexiste, como componente em pequena proporção, com uma mistura complexa de diastereosômeros do 2,5-di-hidroxi-3,6-di-hidroximetil-1,4-dioxano, enquanto a mistura racêmica é constituída por dois compostos principais. A estabilidade dos diasteroisômeros é controlada pela formação de ligações de hidrogênio intramoleculares em decorrência do efeito anomérico, que define a posição favorável para o grupo hidroxila. As interações anoméricas endo e exo são originadas pela interação estereoeletrônica nO → α*C-O. Utilizando cálculos teóricos em nível B3LYP/6-31G(d,p) foi possível estabelecer a estrutura dos confôrmeros favorecidos.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
We aknowledge to Isabel Chavez, Hector Ríos and María de las Nieves Zavala for the nuclear magnetic resonance determination. We are grateful to the Dirección General de Servicios de Cómputo Académico, Universidad Nacional Autónoma de México DGSCA, UNAM, to Consejo Nacional de Ciencia y Tecnología (CONACYT) for financial support via grant 40390-Q, to Dirección General de Asuntos del Personal Académico (DGAPA) via Grant No. IN-7200 and to Rebeca López García who revised the English version of this manuscript.
References
1. Richard, M.; Krishna, N.I. In Biochemistry & Molecular Biology of Plants; Buchanan, B.; Gruissem, W.; Jones, R., eds., 2000 American Society of Plant Physiologists: Rockville, Maryland, USA, Ch. 12, p.610-611. [ Links ]
2. Timberlake, K.C.; General Organic and Biological Chemistry; The Benjamin Cummings Publishing: San Francisco, CA, USA, 2002, Ch. 16. [ Links ]
3. Juaristi, E.; Introduction to Stereochemistry and Conformational Analysis, Wiley: New York, 1994. [ Links ]
4. Wohl, A.; Ber. 1889, 31, 2394. [ Links ]
5. Wohl, A.; Neuberg, C.; Ber. 1900, 33, 3095. [ Links ]
6. Varonjan, Y. A.; Harty-Majors, S.; Ismail Ashraf, A.; Carboh. Res. 1999, 318, 20. [ Links ]
7. Swenson, C.A.; Barker, R.; Biochemistry 1971, 16, 3151. [ Links ]
8. Arreguin, B.; Taboada, J.; J. Crom. Sci. 1970, 8, 187. [ Links ]
9. Cram, D.J.; Abd Elhafez, F.A.; J. Am. Chem. Soc. 1952, 74, 5828. [ Links ]
10. Chapman, D.M.; Hester, R.E.; J. Phys. Chem. A. 1997, 101, 3382. [ Links ]
11. Martínez Mayorga, K.; Cortés, F.; Leal, I.; Reyna, V.; Quintana, D.; Antúnez, S.; Cuevas, G.; Arkivoc. 2003, XI, 132. [ Links ]
12. Juaristi, E.; Cuevas, G.; TheAnomericEffect, CRC press: Boca Raton, FL, 1994. [ Links ]
13. Juaristi, E.; Cuevas, G.; Tetrahedron, 1992, 48, 5019. [ Links ]
14. Cuevas, G.; Juaristi, E.; Vela, A.; J. Phys. Chem. A 1999, 103, 932; [ Links ] Cuevas, G.; Juaristi, E.; J. Am. Chem. Soc. 2002, 124, 13088; [ Links ] Martínez-Mayorga, K.; Juaristi, E.; Cuevas, G.; J. Org. Chem. 2004, 69 7266. [ Links ]
15. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F.; J. Am.Chem. Soc. 2003, 125, 5973. [ Links ]
16. Cortés, F.; Tenorio, J.; Collera, O.; Cuevas, G.; J. Org. Chem. 2001, 66, 2918. [ Links ]
17. Cuevas, G.; Tenorio, J.; Cortés, F.; Rev. Soc. Quim. Méx. 2000, 44, 42. [ Links ]
18. Bader, R.F.W.; Atoms in Molecules, a Quantum Theory, Clerendon Press: Oxford, 1990; [ Links ] Bader, R.F.W. In Encyclopedia of Computational Chemistry; Schleyer, P.v.R., ed., 1998, John Wiley & Sons: New York, p. 64. [ Links ]
19. Cuevas, G.; J. Am. Chem. Soc. 2000, 122, 692. [ Links ]
20. Madrid, G.; Rochín, A.; Juaristi, E.; Cuevas, G.; J. Org. Chem. 2001, 66, 2925. [ Links ]
21. Cortés-Guzmán, F.; Hernández-Trujillo, J.; Cuevas, G.; J. Phys. Chem. A. 2003, 44, 9253z. [ Links ]
22. Cuevas, G.; Juaristi, E.; Vela, A.; J. Mol. Struct. (Theochem) 1997, 418, 231. [ Links ]
23. Cortés, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L.; Rev. Soc. Quim. Méx. 2000, 44, 7. [ Links ]
24. Gaussian 94, Revision D.4, Frisch, M. J.; Trucks, G.W.; Schlegel, H.B.; Gill, P.M.W.; Johnson, B.G.; Robb, M.A.; Cheeseman, J.R.; Keith, T.; Petersson, G.A.; Montgomery, J.A.; Raghavachari, K.; Al-Laham, M.A.; Zakrzewski, V.G.; Ortiz, J. V.; Foresman, J.B.; Cioslowski, J.; Stefanov, B.B.; Nanayakkara, A.; Challacombe, M.; Peng, C.Y.; Ayala, P. Y.; Chen, W.; Wong, M.W.; Andres, J.L.; Replogle, E.S.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Binkley, J.S.; Defrees, D.J.; Baker, J.; Stewart, J.P.; Head-Gordon, M.; Gonzalez, C.; Pople, J.A., Gaussian, Inc.: Pittsburgh, PA, 1995. [ Links ]
25. NBO 3.1., Glendening, E. D.; Reed, A. D.; Carpenter, J. E.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 1993. [ Links ]
26. Biegler-Koing, F. W.; Bader, R. F. W.; Tang, T. H.; J. Comput. Chem. 1982, 3, 317. [ Links ]
27. Malkin, V.G.; Malkina, O.L.; Casida, M.E.; Salahub, D.R.; J. Am. Chem. Soc. 1994, 116, 5898; [ Links ] Malkin, V.G.; Malkina, O.L.; Eriksson, L.A.; Salahub, D.R. In Modern Density Functional Theory. A Tool for Chemistry; Seminario, J.M.; Politzer, P., eds., Elsevier: Amstardam, 1995. [ Links ]
28. St-Amant, A.; Salahub, D.R.; Chem. Phys. Lett. 1990, 169, 387; [ Links ] Salahub D.R.; Castro, M.E.; Proynov, E.I.; Relativistic and Electron Correlation Effects in Molecules and Solids, Vol. 318, of NATO ASI Series B: Physics, Plenum Press: New York, 1994, p. 411; [ Links ] Salahub, D.R.; Castro M.E.; Fournier, R.; Calaminici, P.; Godbout, N.; Goursot, A.; Jamorski, C.; Kobayashi, H.; Martinez, A.; Papai, I.; Proynov, E.; Russo, N.; Sirois, S.; Ushio, J.; Vela, A. In Theoretical and Computational Approaches to Interface Phenomena, Sellers, H.; Golab, J.T., eds., Plenum Press: New York, 1995, vol. 9, p. 187. [ Links ]
29. Perdew, J.P.; Wang, Y.; Phys. Rev. B 1986, 33, 8800. [ Links ]
30. Perdew, J.P.; Phys. Rev. B 1986, 33, 8822; ibid. 1986, 34, 7406. [ Links ]
31. Kultzelnigg, W.; Fleischer, U.; Schindler, M.; NMR-Basic Principles and Progress, Springer-Verlag: Heidelberg, vol. 33, 1990, p. 165. [ Links ]