Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of the Mexican Chemical Society
versión impresa ISSN 1870-249X
J. Mex. Chem. Soc vol.52 no.4 Ciudad de México oct./dic. 2008
Article
Theoretical Study of Reactivity Based on the HardSoft/Acidbase (HSAB) in Isatoic Anhydride and Some Derivatives
Fernando R. RamosMorales,1* Sergio DurandNiconoff,2 José CorreaBasurto,3 Francisco J. MeléndezBustamante,4 and J. Samuel CruzSánchez2
1 Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana. Luis Castelazo Ayala s/n Col. Industrial Animas 91190, phone +52 2288 418900 (13553) Xalapa, Ver., México. *Responsible author: framos@uv.mx.
2 Instituto de Ciencias Básicas, Universidad Veracruzana. Xalapa, Veracruz. México.
3 Departamento de Farmacología y SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico 11340, D.F.
4 Departamento de Fisicoquímica, Facultad de Ciencias Químicas, BUAP Edif. 139. Ciudad Universitaria, Puebla, Pue., 72570, México.
Received June 13, 2008
Accepted November 19, 2008
Abstract
In order to utilize the great chemical potential of isatoic anhidryde (ISA) as a precursor of several derived products, it was most important to determine its molecular reactivity. To this end, we have carried out theoretical calculations on ISA and some of its derivatives by using density functional theory (DFT), MP2, HF levels of theory with a correlated augmented basis set augccpvDZ. The B3LYP/augccpvDZ level yielded theoretical results that correlated very well with the experimental work. We used this method to get the global and local descriptors with Koopman's approximation, taking into account two main ISA structural components: the aromatic and heterocyclic systems. The Fukui functions were calculated on the formalism of the quantum theory of atoms in molecules (QTAIM) which is a method for condensation. These theoretical calculations allow to study the electronwithdrawing or donating substituent of the aromatic ring. The results showed that, globally, the most reactive compound is ISA with the OCH3 substituent. Locally, it is confirmed that C2 is the molecular region most susceptible to suffer a nucleophilic attack against ISA.
Key words: Isatoic anhydride (ISA), molecular reactivity, Fukui functions, nucleophilic attack, electrophilic attack.
Resumen
Con la finalidad de utilizar el gran potencial químico del anhídrido isatoico (ISA) como precursor de varios derivados, es importante determinar su reactividad molecular. En ese sentido, llevamos a cabo cálculos teóricos del ISA y algunos de sus derivados usando métodos de la Teoría de Funcionales de la Densidad (DFT), MP2, HF con bases de correlación aumentadas augccpvDZ. El método B3LYP/augccpvDZ proporcionó resultados teóricos que correlacionaron muy bien con el trabajo experimental. Utilizamos este método para obtener los descriptores globales y locales con la aproximación de Koopman, tomando en cuenta dos componentes estructurales del ISA: los sistemas aromático y heterocíclico. Las funciones de Fukui fueron calculadas con base al formalismo de la teoría cuántica de átomos en moléculas (TCAEM) que es un método para condensación. Estos cálculos teóricos permitieron estudiar sustituyentes electrodonadores y electroatractores en el anillo aromático. Los resultados mostraron que, globalmente, el compuesto más reactivo es ISA con el sustituyente OCH3. Localmente, se confirmó que C2 es la región molecular más susceptible de sufrir un ataque nucleofílico en relación al ISA.
Palabras clave: Anhidrido isatoico (ISA), reactividad molecular, funciones de Fukui, ataque nucleofílico, ataque electrofílico.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This work was supported by grants from PROMEP PTC249 to FRRM, CONACYTMexico (62488 to JCB; II52959 to FJMB). The authors thanks to Irene Marquina S. and Warren Haid for review this manuscript.
References
1. Erdmann, Ber. 1899, 32, 21592172. [ Links ]
2. Clark, R. H.; Wagner, E. C. J. Org. Chem. 1944, 9, 5567. [ Links ]
3. Ger. pat. 500, 916, Frdl. 1930, 17, 500. [ Links ]
4. Sherwin Williams, Technical Bulletin No. 152. Available from Sherwin Williams Co. [ Links ]
5. Coppola, G. M. Synthesis 1980, 7, 505536. [ Links ]
6. Shvekhgeimer, M. G. A. Chem. Heterocycl. Compd. 2001, 37, 385443. [ Links ]
7. Weissleder. R.; Kelly, K.; Sun, E.; Shtatland, T.; Josephson, L. Nature Biotechnology 2005, 23, 14181423. [ Links ]
8. Kozminykh, E. N.; Goncharov, V. I.; Aitken, R. A.; Kozminykh, V. O.; Lomidze, K. Sh. Chem. Heterocycl. Comp. 2006, 42, 11071108. [ Links ]
9. Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F. Org. Biomol. Chem. 2004, 2, 16471650. [ Links ]
10. Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F. Org. Biomol. Chem. 2003, 1, 25662571. [ Links ]
11. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989. [ Links ]
12. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 40494050. [ Links ]
13. Yang, W.; Parr, R.G. Proc. Natl. Acad. Sci. USA, 1985, 82, 67236726. [ Links ]
14. Ghosh, S. K.; Berowitz, M. J. Chem. Phys. 1985, 83, 29762983. [ Links ]
15. Roy, R. K.; Krishnamurty, S.; Geerlings, P.; Pal, S. J. Phys. Chem. 1998, 102, 37463755. [ Links ]
16. Berkowitz, M.; Parr, R. G. J. Phys. Chem. 1988, 88, 25542557. [ Links ]
17. Pearson, R. G. J. Am. Chem. Soc. 1963, 83, 35333539. [ Links ]
18. Pearson, R. G. Chemical Hardness: Aplications from Molecules to Solid, WileyVCH Verlag GMBH, Weinheim, 1997. [ Links ]
19. Pearson, R. G. Science, 1966, 151, 172177. [ Links ]
20. Sen, K. D.; Mingos, D. M. P. Chemical Hardness, Structure and Bonding, Ed., SpringerVerlag, Berlin, 1993. [ Links ]
21. Lee, C.; Yang, W.; Parr, R. G. J. Mol. Struct. (THEOCHEM), 1988, 163, 305313. [ Links ]
22. Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403425. [ Links ]
23. Pearson, R. G.; Dowden, H. R., Hard and Soft Acids and Bases, Ed. Stroudsburg, PA, 1973. [ Links ]
24. Chattaraj, P. K. J. Phys. Chem. A. 2001, 105, 511513. [ Links ]
25. Pearson, R. G. J. Chem. Educ. 1987, 64, 561567. [ Links ]
26. Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 18541855. [ Links ]
27. Chattaraj, P. K.; Liu, G. H.; Parr, R. G. Chem. Phys. Lett. 1995, 237, 171176. [ Links ]
28. Fukui, K. Science, 1982, 217, 747784. [ Links ]
29. Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722725. [ Links ]
30. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. J. Chem. Phys. 1954, 22,14331442. [ Links ]
31. Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 57085711. [ Links ]
32. Klopman, G. Chemical Reactivity and Reaction Paths, Wiley, New York, 1974. [ Links ]
33. Klopman, G. J. Am. Chem. Soc. 1968, 90, 223234. [ Links ]
34. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165195. [ Links ]
35. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136 B, 864871. [ Links ]
36. Parr, R. G.; Donelly, R. A.; Levy, M.; Place, W. E. J. Chem. Phys. 1978, 72, 3669 3673. [ Links ]
37. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 75127516. [ Links ]
38. Vela, A.; Gázquez, J. L. J. Am. Chem. Soc. 1990, 112, 14901492. [ Links ]
39. Kashino, S.; Nakashima, S.; Haisa, M. Acta, Cryst. 1978, B34, 21912195. [ Links ]
40. Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 6989. [ Links ]
41. HeadGordon, M.; Pople, J. A.; Frisch, M. J. J. Chem. Phys. Lett. 1988, 153, 503506. [ Links ]
42. Becke, A. D. J. Chem. Phys. 1993, 98, 56485652. [ Links ]
43. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 12001211. [ Links ]
44. Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Recent Progress and New directions, ed. by J. F. Dobson, M. Gvignale, M. P. Das, Plenium, 1998. [ Links ]
45. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 38653868. [ Links ]
46. Dunning, T. H. J. Chem. Phys. 1989, 90, 10071023. [ Links ]
47. Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003. [ Links ]
48. Bader, R. F. W. Atoms in Molecules. A Quantum Theory, Claredon, Oxford (1990). [ Links ]
49. MORPHY 98, a program written by P. L. A. Popelier with a contribution from R. G. A. Bone, UMIST, Manchester, England (1998). [ Links ]
50. Melin, J.; Ayers, P.W.; Ortiz, J. V. J. Phys. Chem. A. 2007, 111, 10017, and included references there. [ Links ]
51. Roy, R. K. Bunshi Kozo Sogo Toronkai Koen Yoshishu, 1999, 34. [ Links ]