SciELO - Scientific Electronic Library Online

 
vol.53 número3On the Origin of the Conformationally Non-Interconvertable Isomers of Bisphenyldirhodium(III) CaprolactamateThe Quest for Relationships between Conformation and Chiroptical Properties: From Solution to Solid State índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.53 no.3 Ciudad de México jul./sep. 2009

 

Article

 

Optimized Methodologies in Asymmetric Organic Synthesis Applying Microwaves*

 

Yamir Bandala, Roberto Melgar–Fernández, Ramón Guzmán–Mejía, José Luis Olivares–Romero, Blanca Rosa Díaz–Sánchez, Rodrigo González–Olvera, Jorge Vargas–Caporali, and Eusebio Juaristi*

 

Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14–740, C.P. 07000, México, D. F. *Responsible author: ejuarist@cinvestav.mx, juaristi@relaq.mx.

 

Received July 13, 2009
Accepted September 17, 2009

 

Abstract

The use of microwave heating is a valuable tool for synthetic chemists. Being able to reduce reaction times and to increase product yield, this methodology offers to organic chemists the potential to optimize reaction processes. Additionally, microwave–assisted reactions provide more environmentally friendly reaction conditions. In this report, we describe results in the optimization of several organic reactions employed in the synthesis of various chiral molecules such as heterocycles, β–amino acids, and β–peptides, among others.

Keywords: Microwaves, Reaction Optimization, Organocatalysts, β–amino Acids, β–peptides.

 

Resumen

El uso de calentamiento por microondas es una valiosa herramienta para los químicos sintéticos. Esta metodología permite reducir los tiempos de reacción e incrementar el rendimiento de los productos, lo que equivale a optimizar los procesos de interés. Aunado a esto, las reacciones asistidas por microondas son más amigables al medio ambiente. En este trabajo se describen algunos resultados obtenidos en la optimización de varias reacciones orgánicas utilizadas para la síntesis de diversas moléculas quirales tales como heterociclos, β–aminoácidos y β–péptidos, entre otros.

Palabras Clave: Microondas, optimización de reacción, organocatalizadores, β–aminoácidos, β–péptidos.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors are grateful to Consejo Nacional de Ciencia y Tecnología (CONACyT México) for financial support via grants 45157, and 60336. Y. Bandala, R. Melgar–Fernández, J.L. Olivares–Romero, B. Díaz–Sánchez, R. González–Olvera, and J. Vargas–Caporali are also indebted to CONACyT for their student fellowships.

 

References

1. Hayes, B. L. Microwave Synthesis, Chemistry at the Speed of Light. CEM Publishing. Matthews, NC: 2002.         [ Links ]

2. Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279–282.         [ Links ]

3. Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, 27, 4945–4948.         [ Links ]

4. Kappe, C. O.; Dallinger, D. Nature Reviews Drug Discovery 2006, 5, 51–63.         [ Links ]

5. a) Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R. J. Comb. Chem. 2002, 4, 95–105;         [ Links ] b) Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717–727;         [ Links ] c) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250–6284;         [ Links ] d) de la Hoz, A.; Díaz–Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164–178;         [ Links ] e) Collins, J. M.; Leadbeater, N. E. Org. Biomol. Chem. 2007, 5, 1141–1150;         [ Links ] f) Dallinger, D.; Kappe, O. Chem. Rev. 2007, 107, 2563–2591;         [ Links ] g) Appukkuttan, P.; Van der Eycken, E. Eur. J. Org. Chem. 2008, 1133–1155;         [ Links ] h) Polshettiwar, V.; Varma, R. S. Acc. Chem. Res. 2008, 41, 629–639;         [ Links ] i) Polshettiwar, V.; Varma, R. S. Chem. Soc. Rev. 2008, 37, 1546–1557.         [ Links ]

6. Jainta, M.; Niegre, M.; Bräse, S. Eur. J. Org. Chem. 2008, 5418–5424.         [ Links ]

7. Donets, P. A.; Goeman, J. L.; Van der Eycken, J.; Robeyns, K.; Van Meervelt, L.; Van der Eycken, E. V. Eur. J. Org. Chem. 2009, 793–796.         [ Links ]

8. Espinoza–Moraga, M.; Caceres, A. G.; Santos, L. S. Tetrahedron Lett. 2009, 50, 7059–7061.         [ Links ]

9. Genov, M.; Almorín, A.; Espinet, P. Tetrahedron: Asymmetry 2007, 18, 625–627.         [ Links ]

10. a) Westermann, B.; Neuhaus, C. Angew. Chem. Int. Ed. 2005, 44, 4077–4079;         [ Links ] b) Rodríguez, B.; Bolm, C. J. Org. Chem. 2006, 71, 2888–2891;         [ Links ] c) Hosseini, M.; Stiasni, N.; Barbieri, V.; Kappe, C. O. J. Org. Chem. 2007, 72, 1417–1424.         [ Links ]

11. Mossé, S.; Alexakis,A. Org. Lett. 2006, 8, 3577–3580.         [ Links ]

12. Baumann, T.; Bächle, M.; Hartmann, C.; Bráse, S. Eur. J. Org. Chem. 2008, 2207–2212.         [ Links ]

13. Genov, M.; Salas, G.; Espinet, P. J. Organomet. Chem. 2008, 693, 2017–2020.         [ Links ]

14. Melgar–Fernández, R.; González–Olvera, R.; Olivares–Romero, J. L.; González–López, V.; Romero–Ponce, L.; Ramírez–Zárate, M. R.; Demare, P.; Regla, I.; Juaristi, E. Eur. J. Org. Chem. 2008, 655–672.         [ Links ]

15. a) Portoghese, P. S.; Mikhail, A. A. J. Org. Chem. 1966, 31, 1059–1062;         [ Links ] b) Braish, T. F.; Fox, D. E. J. Org. Chem. 1990, 55, 1684–1687.         [ Links ]

16. a) Hoppe, D.; Hense, T. Angew. Chem. Int. Ed. Engl. 1997, 36, 2282–2316;         [ Links ] b) Schütz, T. Synlett 2003, 901–902.         [ Links ]

17. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360–416.         [ Links ]

18. González–Olvera, R.; Demare, P.; Regla, I.; Juaristi, E. ARKIVOC 2008, 6, 61–72.         [ Links ]

19. Stadler, A.; Kappe, C. O. J. Chem. Soc. Perkin Trans. 2 2000, 1363–1368.         [ Links ]

20. a) Asami, M.; Sato, S.; Watanabe, H. Chem. Lett. 2000, 990–991;         [ Links ] b) Sato, S.; Watanabe, H.; Asami, M. Tetrahedron: Asymmetry 2000, 11, 4329–4340;         [ Links ] c) Basavaiah, D.; Rao, K. V.; Reddy, B. S. Tetrahedron: Asymmetry 2006, 17, 1041–1044;         [ Links ] d) Basavaiah, D.; Rao, K. V.; Reddy, B. S. Tetrahedron: Asymmetry 2007, 18, 968–974.         [ Links ]

21. Olivares–Romero, J. L.; Juaristi, E. Tetrahedron 2008, 64, 9992–9998.         [ Links ]

22. See for example: Kappe, C. O. Microwaves in Organic and Medicinal Chemistry. Wiley–VCH, Weinheim: 2005.         [ Links ]

23. a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551–5553;         [ Links ] b) Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988, 53, 2861–2863.         [ Links ]

24. See for example: Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138–5175.         [ Links ]

25. Ficken, G. E. US Patent 3,153,654. 1964.         [ Links ]

26. Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman, Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418–7421.         [ Links ]

27. Kimura, S. Org. Biomol. Chem. 2008, 6, 1143–1148.         [ Links ]

28. Juaristi, E.; Aviña, J. Pure Appl. Chem. 2005, 77, 1235–1241.         [ Links ]

29. a) Klein, S.; Czekaj, M.; Molino, B.; Chu, V. Bioorg. Med. Chem. Lett. 1997, 7, 1773–1778;         [ Links ] b) Cardillo, G.; Gentilucci, L.; Melchiorre, P.; Spampinato, S. Bioorg. Med. Chem. Lett. 2000, 10, 2755–2758;         [ Links ] c) Sagan, S.; Milcent, T.; Ponsinet, R.; Convert, O.; Tasseau, O.; Chassaing, G.; Lavielle, S.; Lequin, O. Eur. J. Biochem. 2003, 270, 939–949;         [ Links ] d) Szeto, H. H.; Schiller, P. W.; Zhao, K.; Luo, G. FASEB Journal 2004, 19, 118–120;         [ Links ] e) Lind, R.; Greenhow, D.; Perry, S.; Kimmerlin, T.; Seebach, D. Chem. & Biodiversity 2004, 1, 1391–1400;         [ Links ] f) Seebach, D.; Rueping, M.; Ardvidsson, P. I.; Kimmerlin, T.; Micuch, P.; Noti, C.; Langenegger, D.; Hoyer, D. Helv. Chim. Acta 2001, 84, 35033510;         [ Links ] g) Epand, R. F.; Schmitt, M. A.; Gellman, S. H.; Sen, A.; Auger, M.; Hughes, D. W.; Epand, R. M. Mol. Membrane Biol. 2005, 22, 457–469;         [ Links ] h) Mollica, A.; Paradisi, M. P.; Torino, D.; Spisani, S.; Lucente, G. Amino Acids 2006, 30, 453–459.         [ Links ]

30. See for example: a) Reyes–Rangel, G.; Jiménez–González, E.; Olivares–Romero, J. L.; Juaristi, E. Tetrahedron: Asymmetry 2008, 19, 2839–2849;         [ Links ] b) Ávila–Ortiz, C. G.; Reyes–Rangel, G.; Juaristi, E. Tetrahedron 2005, 61, 8372–8381;         [ Links ] c) Castellanos, E.; Reyes–Rangel, G.; Juaristi, E. Helv. Chim. Acta 2004, 87, 10161024;         [ Links ] d) Gutiérrez–García, V. M.; Reyes–Rangel, G.; Muñoz–Muñiz, O.; Juaristi, E. Helv. Chim. Acta 2002, 85, 4189–4199;         [ Links ] e) Gutiérrez–García, V. M.; López–Ruiz, H.; Reyes–Rangel, G.; Juaristi, E. Tetrahedron 2001, 57, 6487–6496;         [ Links ] f) Juaristi, E.; Balderas, M.; López–Ruiz, H.; Jiménez–Pérez, V. M.; Kaiser–Carril, M. L.; Ramírez–Quiros, Y. Tetrahedron: Asymmetry 1999, 10, 3493–3505.         [ Links ]

31. Escalante, J.; González–Tototzin, M. A.; Aviña, J.; Muñoz–Muñiz, O.; Juaristi, E. Tetrahedron 2001, 57, 1883–1890.         [ Links ]

32. Crystal data for 19: C22H26N2O2, monoclinic, space group P 2(1), a = 10.9924(11)Å, b = 6.5469(19)Å, c = 13.2954(09)Å, α= γ= 90°, β= 96.4848(68)°, V = 950.6Å3, crystal size: 0.3 × 0.2 × 0.1 mm3, R1 = 0.0441 (wR2 = 0.1087). Crystal data for 21: C22H26N2S2, monoclinic, space group P 2(1), a = 12.56660(50)Å, b = 6.03300(20)Å, c = 13.00150(59)Å, α= γ= 90°, β= 92.3405(15)°, V = 984.8776(68)Å3, crystal size: 0.88 × 0.20 × 0.15 mm3, R1 = 0.0427 (wR2 = 0.1223). Crystal data for 29: C23H23NO2, monoclinic, space group P 2(1), a = 9.8525(20)Å, b = 6.0365(12)Å, c = 16.2635(33)Å, α= γ= 90°, β= 104.788(30)°, V = 935.225Å3, crystal size: 0.3 × 0.2 × 0.1 mm3, R1 = 0.0379 (wR2 = 0.0932). CCDC 740273 (19), CCDC 740274 (21), and CCDC 740275 (29) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.

33. Guzmán–Mejía, R.; Reyes–Rangel, G.; Juaristi, E. Nature Protocols 2007, 2, 2759–2766.         [ Links ]

34. Díaz–Sánchez, B.; Iglesias–Arteaga, M.; Melgar–Fernández, R.; Juaristi, E. J. Org. Chem. 2007, 72, 4822–4825.         [ Links ]

35. Wessjohann, L.; Mcgaffin, G.; de Meijere, A. Synthesis 1989, 359–363.         [ Links ]

36. Melgar–Fernández, R.; González–Olvera, R.; Juaristi, E. Tetrahedron 2005, 61, 4329–4333.         [ Links ]

37. Rovnyak, G. C. US Patent 4,220,791. 1980.         [ Links ]

38. López, R., H. PhD Thesis. CINVESTAV–IPN. México: 2000.         [ Links ]

39. Aviña, V., J. A. PhD Thesis. CINVESTAV–IPN. México: 2004.         [ Links ]

 

Note

*Dedicated to the memory of Ernest L. Eliel, caring mentor and friend.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons