SciELO - Scientific Electronic Library Online

 
vol.59 número1Exact solution of the 1D riemann problem in Newtonian and relativistic hydrodynamicsVariational approximation for wave propagation in continuum and discrete media índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física E

versión impresa ISSN 1870-3542

Rev. mex. fís. E vol.59 no.1 México ene./jun. 2013

 

Education

 

A handy exact solution for flow due to a stretching boundary with partial slip

 

U. Filobello-Ninoa, H. Vazquez-Leala, Y. Khanb, A. Perez-Sesmaa, A. Diaz-Sanchezc, A. Herrera-Mayd, D. Pereyra-Diaza, R. Castaneda-Sheissab, V.M. Jimenez-Fernandeza, and J. Cervantes-Pereza

 

a University of Veracruz, Electronic Instrumentation and Atmospheric Sciences School, Cto. Gonzalo Aguirre Beltrán S/N, Zona Universitaria, Xalapa, Veracruz, México 91000, e-mail: hvazquez@uv.mx.

b Department of Mathematics, Zhejiang University, Hangzhou 310027, China.

c National Institute for Astrophysics, Optics and Electronics, Electronics Department, Luis Enrique Erro #1, Tonantzintla, Puebla, México.

d Micro and Nanotechnology Research Center, University of Veracruz, Calzada Ruiz Cortines 455, Boca del Río, Veracruz, México, 94292.

 

Received 27 November 2012;
Accepted 21 March 2013.

 

Abstract

In this article we provide an exact solution to the nonlinear differential equation that describes the behaviour of a flow due to a stretching flat boundary due to partial slip. For this, we take as a guide the search for an asymptotic solution of the aforementioned equation.

Keywords: Nonlinear differential equations; partial slip; stretching boundary; non-Newtonian fluids.

PACS: 47.50.-d;47.15.-x.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. W.F. Hughes and J.A. Brighton, Dinámica De Los Fluidos (McGraw Hill. 1967).         [ Links ]

2. V. Aliakbar, A. Alizadeh- Pahlavan and K. Sadaghy, Nonlinear Sciences and Numerical Simulation, Elsevier (2007) 779-794.         [ Links ]

3. M.M. Rashidi and D.D. Gangi, J. Homotopy perturbation method for solving flow in the extrusion processes.IJE Transactions A: Basics 23 (2010) 267-272.         [ Links ]

4. C.Y. Wang, Chemical Engineering Science 23 (2002) 267-272.         [ Links ]

5. L.J. Crane, Flow past a stretching plate. Zeitschrift fuer Angewandte Mathematik und Physik 21 (1970) 645-647.         [ Links ]

6. J. Vleggar, Chemical Engineering Science 32 (1977) 1517-1525.         [ Links ]

7. B.R. Munson, D.F. Young and T.H. Okiishi, Fundamentals of Fluid Mechanics (John Wiley and Sons, Inc. Copyright 2002).         [ Links ]

8. H.I. Anderson, Acta Mech. 158 (2002) 121-125.         [ Links ]

9. C.Y. Wang, Nonlinear Anal. Real World Appl. 10 (2009) 375-380.         [ Links ]

10. T. Fang, J. Zhang, and S. Yao, Commun Nonlinear Sci. Numer. Simul. 14 (2009) 3731-3737.         [ Links ]

11. F. Simmons, Ecuaciones Diferenciales con Aplicaciones y Notas Históricas (Mc Graw Hill. 1977).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons