Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física E
versión impresa ISSN 1870-3542
Rev. mex. fís. E vol.59 no.2 México jul./dic. 2013
Educación
Numerical evaluation of Bessel function integrals for functions with exponential dependence
J. L. Lunaa, H. H. Corzoa,b, and R. P. Sagara
a Departamento de Química, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No.186, Col. Vicentina, Iztapalapa 09340 México D.F., México.
b Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
Received 22 April 2013
Accepted 6 August 2013
Abstract
A numerical method for the calculation of Bessel function integrals is proposed for trial functions with exponential type behavior and evaluated for functions with and without explicit exponential dependence. This method utilizes the integral representation of the Bessel function to recast the problem as a double integral; one of which is calculated with Gauss-Chebyshev quadrature while the other uses a parameter-dependent Gauss-Laguerre quadrature in the complex plane. Accurate results can be obtained with relatively small orders of quadratures for the studied classes of functions.
Keywords: Bessel function integrals; Gaussian quadrature; Hankel transform; Gauss-Laguerre; Gauss-Chebyshev.
PACS: 02.30.Uu; 02.60.Jh
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. P. Linz, Math. Comput. 26 (1972) 509. [ Links ]
2. J.D. Talman, J. Comput. Phys. 29 (1978) 35. [ Links ]
3. S.M. Candel, Comput. Phys. Commun. 23 (1981) 343. [ Links ]
4. A.V. Oppenheim, G.V. Frisk, and D.R. Martinez, J. Acoust. Soc. Am. 68 (1980) 523. [ Links ]
5. R. Piessens, Comput. Phys. Commun. 25 (1982) 289. [ Links ]
6. R. Piessens and M. Branders, J. Comput. Appl. Math. 11 (1984) 119. [ Links ]
7. M. Puoskari, J. Comput. Phys. 75 (1988) 334. [ Links ]
8. J.D. Secada, Comput. Phys. Commun. 116 (1999) 278. [ Links ]
9. R. Piessens, The Transforms and Applications Handbook, 2nd ed. Ed. A.D. Poularikis, (CRC Press LLC, Boca Raton, 2000) Ch. 9. [ Links ]
10. L. Knockaert, IEEE Trans. SignalProc. 48 (2000) 1695. [ Links ]
11. M. Guizar-Sicairos, J.C. Gutierrez-Vega, J. Opt. Soc. Am. A 21 (2004) 53. [ Links ]
12. V.K. Singh, O.P. Singh, and R.K. Pandey, Comput. Phys. Commun. 179 (2008) 424. [ Links ]
13. V.K. Singh, O.P. Singh, and R.K. Pandey, Comput. Phys. Commun. 179 (2008) 812. [ Links ]
14. R.P. Sagar, H. Schmider, and V.H. Smith Jr., J. Phys. A: Math. Gen. 25 (1992) 189. [ Links ]
15. Wolfram Research, Inc., Mathematica, Version 8.0.4.0, (Champaign, IL, USA, 2011). [ Links ]