SciELO - Scientific Electronic Library Online

 
 número50Fast Intra Mode Decision in High Efficiency Video CodingDesign of High Accuracy Tracking Systems with H∞ Preview Control índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Polibits

versión On-line ISSN 1870-9044

Polibits  no.50 México jul./dic. 2014

 

A Dynamic Gesture Recognition System based on CIPBR Algorithm

 

Diego G.S. Santos*, Rodrigo C. Neto, Bruno J.T. Fernandes, and Byron L.D. Bezerra

 

The authors are with Universidade de Pernambuco, Brazil. *Corresponding author (e-mail: dgs2@ecomp.poli.br).

 

Manuscript received on July 28, 2014
Accepted for publication on September 22, 2014
Published on November 15, 2014.

 

Abstract

Dynamic gesture recognition has been studied actually for it big application in several areas such as virtual reality, games and sign language. But some problems have to be solved in computer applications, such as response time and classification rate, which directly affect the real-time usage. This paper proposes a novel algorithm called Convex Invariant Position Based on Ransac which improved the good results in dynamic gesture recognition problem. The proposed method is combined with a adapted PSO variation to reduce features and a HMM and three DTW variations as classifiers.

Key words: Gesture recognition, computer vision, CIPBR, dynamic time wrapping, hidden Markov model.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and I. Yang, "A framework for hand gesture recognition based on accelerometer and EMG sensors," IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 41, no. 6, pp. 1064-1076, 2011.         [ Links ]

[2] G. Lu, L.-K. Shark, G. Hall, and U. Zeshan, "Immersive manipulation of virtual objects through glove-based hand gesture interaction," Virtual Reality, vol. 16, no. 3, pp. 243-252, 2012.         [ Links ]

[3] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, "Vision-based hand-gesture applications," Communications of the ACM, vol. 54, no. 2, pp. 60-71, 2011.         [ Links ]

[4] G. Dewaele, f. Devernay, and r. Horaud, "Hand motion from 3d point trajectories and a smooth surface model," in Computer Vision-ECCV 2004. Springer, 2004, pp. 495-507.         [ Links ]

[5] J. Schlecht, B. Carqué, and B. Ommer, "Detecting gestures in medieval images," in 2011 18th IEEE International Conference on Image Processing (ICIP). IEEE, 2011, pp. 1285-1288.         [ Links ]

[6] P. V. A. Barros, N. T. M. Mnior, I. M. M. Bisneto, B. I. T. Fernandes, B. L. D. Bezerra, and S. M. M. Fernandes, "An effective dynamic gesture recognition system based on the feature vector reduction for SURF and LCS," in Artificial Neural Networks and Machine learning—ICANN 2013. Springer, 2013, pp. 412-419.         [ Links ]

[7] Z. Ren, I. Yuan, I. Meng, and Z. Zhang, "Robust part-based hand gesture recognition using kinect sensor," IEEE Trans. Multimedia, vol. 15, no. 5, pp. 1110-1120, 2013.         [ Links ]

[8] Ft. Sakoe, S. Chiba, A. Waibel, and K. F. Lee, "Dynamic programming algorithm optimization for spoken word recognition," Readings in speech recognition, vol. 159, 1990.         [ Links ]

[9] L. R. Rabiner, "A tutorial on hidden markov models and selected applications in speech recognition," in Readings in speech recognition, A. Waibel and K.-F. Lee, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, pp. 267-296. [Online]. Available: http://dl.acm.org/citation.cfm?id=108235.108253         [ Links ]

[10] S. Meena, "A study on hand gesture recognition technique," Master's thesis, National Institute of Technology, Rourkela, 2011.         [ Links ]

[11] A. El-Sawah, C. Joslin, N. D. Georganas, and E. M. Petriu, "A framework for 3D hand tracking and gesture recognition using elements of genetic programming," in Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV'07. IEEE, 2007, pp. 495-502.         [ Links ]

[12] S. Calinon and A. Billard, "Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM," in Proceedings of the 22nd international conference on Machine learning. ACM, 2005, pp. 105-112.         [ Links ]

[13] I. Bao, A. Song, Y. Guo, and H. Tang, "Dynamic hand gesture recognition based on SURF tracking," in 2011 International Conference on Electric Information and Control Engineering (ICEICE). IEEE, 2011, pp. 338-341.         [ Links ]

[14] P. I. Burt and E. H. Adelson, "The laplacian pyramid as a compact image code," IEEE Transactions on Communications, vol. 31, no. 4, pp. 532-540, 1983.         [ Links ]

[15] S. G. Wysoski, M. V. Lamar, S. Kuroyanagi, and A. Iwata, "A rotation invariant approach on static-gesture recognition using boundary histograms and neural networks," in Proceedings of the 9th International Conference on Neural Information Processing, ICONIP'02, vol. 4. IEEE, 2002, pp. 2137-2141.         [ Links ]

[16] R. Grzeszcuk, G. Bradski, M. Chu, and I.-Y. Bouguet, "Stereo based gesture recognition invariant to 3D pose and lighting," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 826-833 vol.1.         [ Links ]

[17] E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos, "LBJieogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures," in Proceedings of the 32nd international conference on Very large data bases. VLDB Endowment, 2006, pp. 882-893.         [ Links ]

[18] P. V. A. Barros, N. lunior, I. M. M. Bisneto, B. I. T. Fernandes, B. L. D. Bezerra, and S. M. M. Fernandes, "Convexity local contour sequences for gesture recognition," in Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, 2013, pp. 34—39.         [ Links ]

[19] L. Medsker and L. C. Iain, Recurrent neural networks: design and applications. CRC press, 1999.         [ Links ]

[20] S. Salvador and P. Chan, "Toward accurate dynamic time warping in linear time and space," Intelligent Data Analysis, vol. 11, no. 5, pp. 561-580, 2007.         [ Links ]

[21] N. Otsu, "A threshold selection method from gray-level histograms," Automática, vol. 11, no. 285-296, pp. 23-27, 1975.         [ Links ] [22] A. M. Day, "Planar convex hull algorithms in theory and practice," in Computer graphics forum, vol. 7, no. 3. Wiley Online Library, 1988, pp. 177-193.         [ Links ]

[23] I. Kennedy, R. Eberhart et al, "Particle swarm optimization," in Proceedings of IEEE international conference on neural networks, vol. 4, no. 2. Perth, Australia, 1995, pp. 1942-1948.         [ Links ]

[24] X. Zhang, W. Wang, Y. Li, and L. Jiao, "PSO-based automatic relevance determination and feature selection system for hyperspectral image classification," Electronics letters, vol. 48, no. 20, pp. 1263-1265, September 2012.         [ Links ]

[25] I. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering algorithm," Applied statistics, pp. 100-108, 1979.         [ Links ]

[26] T. L. Baum, G. Peterie, and N. W. Souled, "A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains," in Proceedings of Annals of Mathematical Statistics, vol. 41, 1995, pp. 164 -171.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons