SciELO - Scientific Electronic Library Online

 
vol.14 número8Valor del agua en la producción agrícola bajo riego en MéxicoEfecto antifúngico y estudio químico de Eysenhardtia polystachya (Fabaceae) sobre Phaneroquete crysosporum y Ganoderma lucidium índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.14 no.8 Texcoco nov./dic. 2023  Epub 09-Feb-2024

https://doi.org/10.29312/remexca.v14i8.3202 

Artículos

Déficit hídrico controlado y su efecto en el rendimiento y calidad de tres variedades de papa

Ernesto Sifuentes-Ibarra1 

Waldo Ojeda-Bustamante2  § 

Jaime Macías-Cervantes1 

Rosa Isabel Merino-Leyva3 

Pablo Preciado-Rangel4 

Jesús del Rosario Ruelas-Islas3 

1Campo Experimental Valle del Fuerte-INIFAP. Carretera internacional México-Nogales km 1 609, Juan José Ríos, Sinaloa, México. CP. 81110. (sifuentes.ernesto@inifap.gob.mx).

2Colegio Mexicano de Ingenieros en Irrigación. Vicente Garrido no. 106, Cuernavaca, Morelos, México. CP. 62230.

3Facultad de Agricultura del Valle del Fuerte-Universidad Autónoma de Sinaloa. Calle 16 y Av. Japaraqui, Juan José Ríos, Sinaloa, México. CP. 81110.

4Tecnológico Nacional de México-Instituto Tecnológico de Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México. CP. 27170. (ppreciador@yahoo.com.mx).


Resumen

La cantidad y calidad de tubérculos de papa están relacionados con el riego. Se estudió el efecto de tres niveles de déficit hídrico (B= bajo, M= medio y A= alto) en el rendimiento y calidad de tres variedades de papa (Fiana, Atlantic y Ágata), inducido al variar el parámetro α3 de la función máximo déficit permitido (MDP) de un modelo de programación integral del riego. El trabajo se realizó en el norte de Sinaloa, México (ciclo otoño-invierno 2015-2016), utilizando un diseño en parcelas divididas con dos factores y cuatro repeticiones, donde las parcelas grandes fueron los niveles de déficit hídrico y las sub-parcelas las variedades. Se tuvo efecto significativo (p= 95%) en rendimiento (Y) al reducirse 3.65 t ha-1 en A con respecto a B. En el factor variedades, Fiana y Ágata fueron las mejores en cantidad y calidad, destacando Fiana con menos tubérculos rezaga (REZ). En la interacción déficit hídrico-variedad, Fiana fue la mejor con más tubérculos de primera y segunda calidad (C1 y C2) en B. En M, Ágata fue la mejor en Y, pero la más baja en C1 y más alta en deformes (DEF) y REZ. En A, el comportamiento fue similar, Ágata fue la mejor, pero con menos C1 y C2 y presencia importante de DEF y REZ. Se estimó un requerimiento hídrico de 29.5, 28.8 y 28.4 cm en B, M y A respectivamente. El comportamiento de Fiana sugiere manejarla bajo goteo, mientras que Ágata en riego por gravedad y bajo condiciones limitadas de agua.

Palabras clave: Solanum tuberosum L.; eficiencia en el uso del agua; grados día-desarrollo (GDD); modelo integral.

Abstract

The quantity and quality of potato tubers are related to irrigation. We studied the effect of three levels of water deficit (L= low, M= medium, and H= high) on the yield and quality of three potato varieties (Fiana, Atlantic, and Ágata), induced by varying the parameter α3 of the maximum allowable deficit (MAD) function of a comprehensive irrigation programming model. The work was carried out in the north of Sinaloa, Mexico (autumn-winter cycle 2015-2016), using a design in divided plots with two factors and four repetitions, where the large plots were the levels of water deficit and the sub-plots were the varieties. There was a significant effect (p= 95%) on yield (Y) as it decreased by 3.65 t ha-1 in H compared to L. In the variety factor, Fiana and Ágata were the best in quantity and quality, with Fiana standing out with fewer noncommercial (NCO) tubers. In the water deficit-variety interaction, Fiana was the best, with more tubers of first and second quality (Q1 and Q2) in L. In M, Ágata was the best in Y but the lowest in Q1 and highest in deformed (DEF) and NCO. In H, the behavior was similar; Ágata was the best but with less Q1 and Q2 and a significant presence of DEF and NCO. A 29.5, 28.8, and 28.4 cm water requirement was estimated in L, M, and H, respectively. The behavior of Fiana suggests managing it under drip irrigation, while Ágata under gravity irrigation and limited water conditions.

Keywords: Solanum tuberosum L.; comprehensive model; growing degree-days (GDD); water use efficiency.

Introducción

En México se establecen anualmente 62 000 ha de papa (Solanum tuberosum L.) con una producción de 1.7 millones de toneladas y un rendimiento medio de 27 t ha-1 (Onamu et al., 2015; SIAP, 2021); además, participan directamente 8 700 productores, que benefician a 20 000 familias, generando más de 17 500 empleos directos y 51 600 indirectos (ASERCA, 2018). Sinaloa es el principal estado productor de papa en México, estableciendo anualmente en el ciclo otoño-invierno (OI), alrededor de 14 000 ha bajo riego por gravedad y aspersión que representó 22% de la superficie nacional con un rendimiento promedio de 30 t ha-1 (CONAGUA, 2018).

La calidad y cantidad de tubérculos están relacionados con una buena programación del riego debido a la alta sensibilidad del cultivo al estrés hídrico (Wagg et al., 2021). Steduto et al. (2012) reportaron que la demanda hídrica acumulada del cultivo fluctúa de 350 a 650 mm, en función de la fecha de siembra, clima, humedad del suelo y variedad, con una productividad del agua de 4 a 11 kg m-3. Los mismos autores, sugirieron que para no afectar el rendimiento se debe evitar déficit hídrico durante las etapas formación de estolones y desarrollo de tubérculos y no agotar la humedad aprovechable del suelo (HA) más de 30 a 50%.

Camargo et al. (2015) evaluaron durante dos ciclos agrícolas la respuesta del rendimiento y productividad del agua del cultivo de papa a cuatro tratamientos de riego (60, 80, 100 y 120% del requerimiento hídrico), encontrando diferencias estadísticas significativas en el tratamiento donde se le aplicó 60% en el primer año, mientras que en el segundo, los tratamientos con los niveles altos de suministro de agua (100 y 120%) también fueron diferentes respecto a los de suministro bajo (60 y 80%). La productividad del agua fluctuó de 8.6 a 11.6 kg m-3 en el primer año y de 7.1 a 8.4 kg m-3 en el segundo.

Respecto a la calidad Steduto et al. (2012); Da Silva et al. (2019) recomendaron que, para reducir la presencia de tubérculos deformes, no debe estresarse el cultivo durante la fase de desarrollo de tubérculos, un riego pesado después de un periodo de estrés en esta etapa genera también agrietamiento de tubérculos y corazones negros. Jha et al. (2017) evaluaron el efecto del estrés hídrico inducido por la concentración de sales en el agua de riego sobre el rendimiento y calidad bajo riego por goteo y gravedad, encontrando una reducción gradual de las variables altura de planta, número de tubérculos y rendimiento, a medida que se incrementaba el estrés, principalmente bajo riego por gravedad.

Este efecto también se observó en la calidad de tubérculos al reducirse la concentración de almidón y aumentar los tubérculos de menos peso y tamaño con el incremento de las concentraciones de sales. Una deficiente programación de riegos se relaciona también con la presencia de enfermedades que demeritan la calidad, principalmente causadas por bacterias y hongos (Rich, 1983).

El uso de indicadores del nivel de humedad del suelo (θ) es una de las técnicas más recomendadas para programar el riego, el momento se define cuando la humedad alcanza un valor mínimo permisible o crítico (θc), dependiente del factor conocido como máximo déficit permisible (MDP); de esta manera, la humedad del suelo fluctúa entre capacidad de campo (θcc) y θc (Mahima et al., 2018). Otro método de programación del riego muy usado es el balance hídrico, que se basa en realizar un balance riguroso de las entradas y salidas de agua en la zona radical, que inciden en la dinámica de la humedad del suelo.

En las primeras se encuentran el riego (R); precipitación efectiva (Pe); ascenso capilar (Ac); y escurrimientos (Es), mientras que en las segundas está la evapotranspiración del cultivo (ETc); percolación (P); y escurrimientos o desagües (Es). Debido a que la ETc depende de las condiciones ambientales, humedad del suelo, especie y etapa de desarrollo del cultivo, es difícil estimarla usando valores fijos para la duración de cada etapa, por lo que es pertinente incorporar el concepto grados día-desarrollo (GDD) en el seguimiento de los variables de programación (Ojeda et al., 2006; Ojeda et al., 2015).

Este enfoque tiene cada vez más importancia debido a la posible intensificación de la variabilidad y cambio climático en las diversas regiones agrícolas de México. La Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT), dependencia del gobierno mexicano, informó que de acuerdo a registros de 1971-2008 en el país, la media histórica de temperatura anual fue de 20.9 oC y desde 1990 la mayoría de las temperaturas medias anuales han sido mayores a este valor.

Tan solo en el periodo 1999-2008 el incremento fue de 0.7 oC (SEMARNAT, 2012). Lobato y Altamirano (2017) reportaron un incremento de la temperatura media anual mayor de 2 oC para el norte de Sinaloa, donde se llevó a cabo el presente estudio, tomando como referencia el periodo base 1961-1990. Para la programación y calendarización del riego bajo el concepto GDD se han desarrollado sistemas informáticos que son aplicados a gran escala para acoplar mejor las demandas hídricas de los cultivos a su desarrollo fenológico, como la plataforma Irrimodel (Sifuentes y Macías, 2015).

Sin embargo, la mayoría de los estudios que utilizan estas herramientas de programación del riego, se han enfocado a reportar el efecto del estrés hídrico en el rendimiento (Erdem et al., 2006), existiendo limitada información sobre estos efectos en la calidad de tubérculos para las variedades cultivadas actualmente.

Ante esta demanda de conocimiento, el objetivo del presente trabajo de investigación fue evaluar la respuesta del rendimiento y la calidad de tubérculos al déficit hídrico, de las tres variedades de papa con mayor superficie sembrada en el norte de Sinaloa (Fiana, Ágata y Atlantic), controlado a través del parámetro ∝3 de la función MDP de un modelo integral-dinámico de programación del riego basado en el concepto GDD, usando el programa informático Irrimodel.

Materiales y métodos

El estudio se realizó en la zona norte del estado de Sinaloa, México durante el ciclo otoño-invierno (OI) 2015-2016, en la parte central del DR-075 Río Fuerte a una altitud de 12 m. La región cuenta con una temperatura media anual de 24 a 26 °C y una precipitación anual acumulada promedio de 360 mm, concentrándose en los meses de julio a septiembre. Los suelos predominantes son de textura arcillosa (R) y franco-arcillosos (MR) pobres en materia orgánica (MO), pendiente plana y sin problemas de sales solubles (INIFAP, 2010).

Se estableció un lote experimental de 2 500 m2 en el Campo Experimental Valle del Fuerte (CEVAF) del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), ubicado en las coordenadas 25° 45’ 49’’ latitud norte y -108° 51’ 41’’ longitud oeste. El suelo del lote fue arcilloso, profundo y sin problemas de sales, típico de la región y no se presentaron lluvias significativas durante el periodo de crecimiento del cultivo.

El déficit hídrico del suelo se manejó a través del parámetro ∝3 incluido en la función MDP del modelo de programación integral del riego indicado en el Cuadro 1, propuesto específicamente para este cultivo por Ojeda et al. (2004) y ejecutado automáticamente a través del software Irrimodel (Sifuentes y Macías, 2015).

Cuadro 1 Componentes del modelo de programación integral del riego para el cultivo de papa en el norte de Sinaloa, México (Ojeda et al., 2004). 

Variable Función Parámetro
Coeficiente de cultivo (Kc)
Kc=Kmaxerfc( x-xmax)21
Kmáx= 1.3
Si Kc<Kco, entonces Kc= Kco
XKmáx= 0.6
α1 = 0.45
Kco= 0.2
Profundidad radical (Pr)
Pr= Pro+(Prmáx-Pro)1-exp(GDDn)222
Pro = 0.15 m
Prmáx= 0.7 m
α 2= 600
Máximo déficit de humedad permisible (MDP)
MDP= α34Kc
α 3 = 0.15-0.7
α 4 = 0.1

Kco= representó el coeficiente de cultivo para la primera etapa fenológica del cultivo la cual depende esencialmente de la evaporación del suelo; Kmáx= es el máximo valor de Kc durante su desarrollo; XKmáx= corresponde a una variable auxiliar definida por los grados día-desarrollo acumulados (GDDA) cuando el cultivo alcanzó su máximo; Kc, ∝1= es un parámetro de regresión obtenido mediante ajuste de datos experimentales de la zona de estudio; erfc= es la función complementaria del error; y x= es una variable auxiliar calculada con la ecuación (1):

x=GDDA0

Donde: GDDA= es el valor acumulado de GDD desde la siembra hasta la fecha de cálculo; y ∝0= son los GDDA requeridos hasta el final del ciclo fenológico. Pro y Prmáx representan la profundidad de siembra y profundidad máxima de la raíz respectivamente, el valor ∝2 fue ajustado empíricamente de un valor aproximado a 2/3 del valor de GDDA donde la papa alcanza la profundidad radical máxima.

Se generaron tres condiciones de déficit hídrico, usando tres valores para el parámetro ∝3, que varían de acuerdo con el sistema de riego, como lo reportado por Ojeda et al. (2004): 0.15 para déficit bajo (B), 0.3 déficit medio (M) y 0.45 déficit hídrico alto (A), en tres variedades comerciales cultivadas actualmente en la zona de estudio: Atlantic (V1); Ágata (V2); y Fiana (V3).

El valor ∝4 se asumió de 0.1, sugerido para el cultivo de papa (Ojeda et al., 2004). El diseño experimental utilizado fue en parcelas divididas (Soltero-Díaz et al., 2010; Badii et al., 2007), siendo la parcela grande el nivel de humedad o déficit hídrico aplicado y las sub-parcelas las tres variedades distribuidas al azar, generando 36 parcelas experimentales formadas de cuatro camas de 0.9 m de ancho por 15 m de largo (54 m2).

La siembra se realizó en seco el 24 de octubre de 2015 en forma manual, depositando de 4 a 5 tubérculos-semilla en el centro de cada cama a una profundidad de 0.2 m para tener una densidad de siembra de 45 000 semillas ha-1. Después de la siembra se aplicó el riego de germinación por gravedad para llevar la humedad del suelo a θcc en el metro superior del perfil. La fertilización, manejo del cultivo y control fitosanitario se realizó de acuerdo al paquete tecnológico recomendado para la zona (INIFAP, 2010).

La programación de riegos en cada tratamiento en términos de oportunidad (intervalo) y cantidad (lámina), se realizó con el método de balance hídrico del Software Irrimodel (Sifuentes y Macías, 2015) que utiliza el modelo integral descrito en el Cuadro 1.

Este Software se ejecuta a través de una plataforma computacional vía internet y requiere además la siguiente información: 1) humedad aprovechable por estrato de suelo (HA) calculada como la diferencia entre θcc y punto de marchitez permanente (θpmp); 2) fenología del cultivo; 3) variables climáticas: temperatura media (Tm) y evapotranspiración de referencia (ETo-FAO) (Allen et al., 1998; Mahima, 2018) y lluvia (PP), adquiridas en tiempo ‘quasi real’ de una estación agroclimática automatizada; y 4) aplicación del riego. Se asumió que la zona de raíces alcanza la humedad a capacidad de campo (θcc), al finalizar cada riego.

Para tener mayor control de la aplicación y evaluación de los riegos, se utilizó un sistema de goteo con cinta de 18 mm de diámetro y goteros separados a 0.3 m con gasto nominal de 1 L h-1, instalada en la parte superior al centro de cada cama de siembra. La evaluación de los riegos se hizo en términos de eficiencia de aplicación (EA) y productividad del agua (PA), expresadas en % y kg m-3 respectivamente.

La estimación de EA se realizó con la ecuación (2):

EA=LnLbx100

Donde: Ln= representa la lámina neta o requerimiento de riego neto (cm) determinado con el modelo; y Lb= la lámina aplicada (cm) medida con el sistema de riego (Rendón et al., 2012). El cálculo de PA se realizó con la ecuación (3):

PA=YVA

Donde: Y= representa el rendimiento (t ha-1) y VA= el volumen de agua aplicado por hectárea (m3 ha-1).

La fenología del cultivo se monitoreó semanalmente utilizando una adaptación de la metodología reportada por Jefferies y Lawson (1991) considerando las siguientes fases de desarrollo: 1) brotación; 2) emergencia; 3) inicio de estolonización; 4) elongación de estolones; 5) inicio de tuberización (diámetro >1 cm); 6) desarrollo de tubérculos (diámetro de 3 a 5 cm); 7) tubérculos desarrollados (diámetro >5 cm); 8) desvare (cáscara completa) (diámetro de 7 a 8 cm); y 9) cosecha.

Los GDD se acumularon para cada fase de desarrollo usando la temperatura media diaria del aire (Ta) de una estación meteorológica automatizada (EMA) ubicada a 100 m del lote experimental. Los GDD se calcularon con el método reportado por Ojeda et al. (2004) en estudios del cultivo de papa en Sinaloa, usando 2 y 29 °C como temperaturas umbrales de desarrollo mínima y máxima.

Se monitoreó también la humedad del suelo en forma quincenal en los dos estratos superiores (0-30 y 30-60 cm) con sensor de humedad portátil tipo time domain reflectometry (TDR) marca Spectrum 300, fabricado en Illinois, USA y calibrado para la zona de estudio.

El desvare o quema del follaje se realizó utilizando herbicida de contacto Velquat 25 (ia. Paraquat) el 10/02/2016 a los 1 754 GDDA, mientras que la cosecha se realizó el 11/03/2016 a los 2 282 GDDA una vez que la cáscara del tubérculo tuvo la consistencia adecuada. La extracción de tubérculos del suelo se realizó en forma mecánica con tractor, utilizando vertederas de 18 pulgadas montadas en una barra-soporte horizontal. Después del desvare, en cada parcela experimental se recolectaron y pesaron manualmente los tubérculos que quedaron dentro de un área de 9 m2 (parcela útil) formada de las dos camas centrales de 5 m de largo (2 x 0.9 x 5 m).

A las muestras obtenidas se le determinaron las variables Y, rendimiento relativo (YR) y calidad, la primera calculada con la ecuación (4):

Y=Pm x 109

Donde: Pm= representa el peso de la muestra expresado en kg, Y= en t ha-1 y las constantes 10 y 9 son constantes para conversión de unidades. YR de cada variedad se calculó respecto al rendimiento del tratamiento con el déficit hídrico bajo, expresado en porcentaje.

Para analizar la calidad de tubérculos, se separaron las diferentes calidades considerando el diámetro ecuatorial (mm), de acuerdo con los criterios de la zona (Cuadro 2) y expresarla en términos de porcentaje con respecto al rendimiento total. Camargo et al. (2015) utilizaron una metodología similar agrupando tres categorías, especificando que los tubérculos de 40 a 80 mm de diámetro son los mayormente comercializados, lo cual coincide con la clasificación de la zona de estudio. Además del diámetro ecuatorial, se separaron tubérculos deformes (DEF) y enfermos (REZ).

Cuadro 2 Clasificación de tubérculos de papa con base en el diámetro ecuatorial utilizado en el norte de Sinaloa, México. 

Calidad Clave Diámetro (mm)
Primera C1 71-80
Segunda C2 51-70
Tercera C3 41-50
Cuarta C4 31-40
Quinta C5 21-30
Gigantes GIG >80
Deformes DEF -
Rezagas REZ -

Para el análisis estadístico se utilizó el programa de cómputo SAS versión online (www.sas.com/es-mx/software/on-demand-for-academics.htm) con el cual se realizó un análisis de varianza de las variables rendimiento (Y) y calidad (C) considerando los efectos simples y la interacción de los factores estrés hídrico y variedades, además de una comparación de medias con la prueba de Tukey (p≤ 0.05). El modelo utilizado se muestra en la ecuación (6) (Fernández et al., 2010).

Yijr- μ = ρr+ αi+ εjr+ βj+αβij+ εijr

Donde: Yijr - μ= representa la desviación de una observación respecto a la media global (μ); ρr= son las desviaciones causadas por los bloques; αi= es el factor principal; βj= es el factor subordinado; (αβ)ij= es la interacción entre los factores; y εjr y εijr= son errores aleatorios. Para la variable calidad, se realizó un análisis de la distribución de cada clasificación por variedad para conocer el efecto del déficit hídrico sobre esta importante variable.

Resultados y discusión

Rendimiento y calidad

En el Cuadro 3 se muestra el análisis de varianza de las variables Y y C de los dos factores estudiados. El análisis muestra un efecto significativo (Tukey, p≤ 0.05) únicamente para la variable Y del factor déficit hídrico, los resultados mostraron una reducción hasta de 3.65 t ha-1 de la variable Y en el tratamiento con déficit hídrico alto con respecto al bajo, lo cual es congruente con lo reportado por Steduto et al. (2012); Mahima et al. (2018).

Cuadro 3 Análisis de significancia del rendimiento (Y) y calidad (C) de tres variedades de papa sometidas a tres niveles de déficit hídrico. 

Tratamientos Y C1 C2 C3 C4 C5 DEF REZ
(t ha-1)
Déficit hídrico
Bajo 26.45 2.61 4.56 5.21 6.19 5.08 1.03 1.76
Medio 24.99 2.04 4.06 5.27 5.92 4.64 1.88 1.17
Alto 22.8 1.96 3.5 4.96 4.01 5.48 1.66 1.24
Tukey (p ≤ 0.05) s ns ns ns ns ns ns ns
Variedades
Fiana 26.14 3.09 5.29 5.23 4.14 5.88 1.49 1.01
Ágata 26.45 0.57 3.13 4.93 7.4 6.74 1.94 1.75
Atlantic 21.22 2.99 3.62 5.29 4.44 2.36 1.15 1.38
Tukey (p ≤ 0.05) s s s ns s s ns ns
Interacción déficit hídrico x variedad
Bajo Fiana 30.29 3.5 6.64 5.96 4.65 6.77 1.2 1.58
Ágata 26.11 1.23 3.03 4.96 8.6 4.91 1.19 2.2
Atlantic 21.78 3.26 3.85 4.55 5.02 3.07 0.61 1.41
Medio Fiana 25.8 2.9 5.03 5.65 4.47 6.06 1.41 0.29
Ágata 27.83 0.38 3.93 5.23 7.88 5.58 3.1 1.73
Atlantic 21.34 2.85 3.21 4.94 5.42 2.3 1.13 1.5
Alto Fiana 22.33 2.86 4.22 4.08 3.29 4.83 1.87 1.18
Ágata 25.42 0.1 2.42 4.62 5.71 9.72 1.53 1.33
Atlantic 20.67 2.92 3.87 6.19 3.02 1.88 1.58 1.22
Tukey (p ≤ 0.05) ns ns ns ns ns s ns ns

Y= rendimiento; C= calidad; DEF= tubérculos deformes; REZ= rezagas; s= estadísticamente significante; ns= estadísticamente no significante (Tukey, p≤ 0.05).

Respecto al factor variedades, se observó también un efecto significativo en las variables Y, C1, C2, C4 y C5, Fiana y Ágata obtuvieron rendimientos similares con 26.14 y 26.45 t ha-1 respectivamente, mientras que Atlantic obtuvo 21.22 t ha-1, lo cual representa una diferencia de 4.92 t ha-1. En este factor, C1 y C2 fueron mayores con Fiana seguida de Atlantic y Ágata, Fiana también presentó menos tubérculos rezaga.

En la interacción déficit hídrico-variedad, se encontró significancia solo para para la variable C5; sin embargo, se observaron efectos importantes: en el nivel bajo de déficit hídrico, Fiana obtuvo el mayor rendimiento (30.29 t ha-1) con mayor cantidad de C1 y C2, seguido de Ágata y Atlantic, mostrando esta última menor cantidad de tubérculos DEF y REZ. En el nivel medio Ágata fue la mejor en rendimiento, pero la más baja en C1 y más alta en DEF y REZ. En el nivel alto el comportamiento fue similar, Ágata fue la mejor en Y pero con menos C1 y C2 y presencia importante de DEF y REZ.

Rendimiento relativo (YR)

La Figura 1 muestra el efecto de los tres niveles de déficit hídrico en YR de cada variedad (interacción nivel de estrés x variedad). Los resultados indican que con el nivel alto de estrés hídrico (∝3= 0.45), la variedad Fiana tuvo la caída más alta de YR con 26.3%, seguida de Atlantic con 5.1% y Ágata con solo 2.8%, con respecto al nivel bajo y tendencia a no afectar el rendimiento en el nivel medio. Lo anterior, indica que la variedad Fiana es la más sensible al déficit hídrico, mientras que Ágata es la más tolerante, Atlantic se puede considerar de sensibilidad intermedia.

Figura 1 Rendimiento relativo (YR) en tres variedades de papa sometidas a tres niveles de déficit hídrico. B= déficit bajo; M= déficit medio; A= déficit alto en el norte de Sinaloa, México. 

Investigaciones como las de Da Silva et al. (2019) reportaron un comportamiento similar con respecto a la variedad Ágata, al concluir que al aplicar láminas de riego intermedias (27 mm entre riegos) se obtuvieron las mejore condiciones de manejo.

Distribución de la calidad

Se encontró un efecto importante del déficit hídrico en esta variable en cada variedad (Figura 2), como lo reportado por Jha et al. (2017). La variedad Atlantic en el nivel bajo de déficit produjo la mayor cantidad de tubérculos C1 y C2 con 15 y 18% del total de la producción, respectivamente. Los déficit alto y medio generaron los valores más altos de tubérculos C3 con 30 y 23%, mientras que el valor mayor de tubérculos C4 se obtuvieron con el nivel medio de déficit hídrico.

Figura 2 Distribución de la calidad de la producción de tubérculos de papa variedades Atlantic. a) Ágata; b) Fiana y c) sometidas a tres niveles de déficit hídrico, en el norte de Sinaloa, México. 

Los tubérculos C5 se mantuvieron alrededor de 10% en los tres niveles de déficit hídrico, debido al poco desarrollo de estos por adelanto a cosecha inducida con el defoliante. De manera similar para la variedad Ágata, los porcentajes más altos de tubérculos C1 y C2 se generaron con el nivel bajo de déficit hídrico (5 y 12% respectivamente), manteniendo valores similares en los tubérculos C3 en los tres niveles de déficit (18 a 19%).

Se analizó un incremento importante en los tubérculos C4 y C5 en los tres niveles de déficit, principalmente con el valor alto que indujo la producción de 38% de tubérculos C5. Los valores altos de tubérculos C4 y C5 también pudieron ser debido a un desarrollo más lento de esta variedad, con respecto a las otras. Lo anterior confirma que los valores del parámetro ∝3 están asociados al sistema de riego, para goteo los valores varían de 0.15 a 0.30, para aspersión de 0.4 a 0.55 y para riego por gravedad mayor a 0.6 (Ojeda et al., 2004).

Respecto a la variedad Fiana, los valores más altos de tubérculos C1 fueron similares en los tres niveles de déficit hídrico con porcentajes de 11 a 13%, mientras que los más altos valores de tubérculos C2 se presentaron con el nivel bajo de déficit, con el 22%. Los tubérculos C3, C4 y C5, presentaron incrementos de manera similar en los tres niveles de estrés; aunque el porcentaje mayor fue más frecuente con el nivel medio de déficit hídrico en las tres calidades, comportamiento similar a las otras variedades.

Con relación a los tubérculos DEF, en las tres variedades se examinó una relación directa con el déficit hídrico; es decir, al aumentar este, se incrementa la proporción de esta clase de tubérculos, como lo menciona Steduto et al. (2012), alcanzó valores cercanos a 10% de la producción con el nivel alto y medio de déficit.

En las REZ se encontró tendencia hacia un incremento con el nivel bajo de déficit hídrico en las tres variedades, lo cual puede estar asociado a un ambiente más húmedo generado por la baja permeabilidad del suelo; Wagg et al. (2021) sugieren niveles altos de humedad en suelos bien drenados, ya que riegos pesados y frecuentes en suelos con baja permeabilidad favorece el desarrollo de patógenos principalmente hongos y bacterias (Rich, 1983). Con los niveles de déficit medio y alto la tendencia fue hacia disminuir REZ, por lo que en la práctica se deben analizar los diferentes escenarios de manejo de estrés, de acuerdo con los objetivos de cada productor.

Eficiencia en el uso del agua

En el Cuadro 4 se presenta un resumen de riegos de auxilio aplicados, generados con los tres niveles de déficit hídrico. Se percibió que para el nivel bajo se generaron 14 riegos de auxilio con un intervalo máximo de 22 días y un mínimo de cinco días, con el nivel medio de déficit se aplicaron ocho riegos de auxilio con un intervalo máximo de 30 días y un mínimo de ocho días.

Cuadro 4 Resumen de riegos de auxilio aplicados en tres niveles de déficit hídrico (MDP) en el cultivo de papa, generados con la plataforma Irrimodel (Sifuentes y Macías, 2015). 

Déficit hídrico (MDP) Riegos de auxilio aplicados Intervalo máximo (días) Intervalo mínimo (días) Lámina neta (cm) Lámina bruta (cm) Eficiencia de aplicación (%)
B (0.15) 14 22 5 29.5 32.5 90.6
M (0.3) 8 30 8 28.8 32 90
A (0.45) 5 36 13 28.4 34.8 81.5

B= déficit bajo; M= déficit medio; A= déficit alto.

Por su parte, con el nivel alto los intervalos máximo y mínimo fueron de 36 y 13 días respectivamente. Respecto a los requerimientos de riego o Ln, el nivel bajo tuvo un valor de 29.5 cm, mayor a los niveles medio y alto, debido al menor nivel de estrés sometido del cultivo, el cual afecta la evapotranspiración.

Se observó también mayor valor de EA en los niveles bajo y medio con valores de 90.6 y 90% respectivamente, mientras que en el nivel alto de estrés fue de 81.5%, debido a la reducción de Ln por estrés alto considerado en los cálculos de ETc y a la mayor Lb derivada de un mayor tiempo de riego usado en la formación del bulbo de mojado.

Respecto a PA, se encontró que las variedades Atlantic y Fiana con el nivel bajo de déficit hídrico obtuvieron los valores más altos, con 6.7 y 9.32 kg m-3 respectivamente, mientras que para Ágata los valores más altos fueron similares en los niveles bajo y medio con 8.03 y 8.7, lo cual indica cierta resistencia al estrés hídrico. En todos los casos los valores se encuentran en el rango reportado por Erdem et al. (2006); Steduto et al. (2012; Mahima et al. (2018).

Conclusiones

La variedad Fiana fue la más sensible al déficit hídrico desde el punto de vista de rendimiento, seguida de Atlantic y Ágata. En todos los casos, aplicar intervalos de riego, láminas y EA recomendadas por el Software Irrimodel fue muy conveniente. El efecto del déficit hídrico en el tamaño de tubérculos fue diferente para cada variedad debido al patrón de desarrollo específico y tolerancia al estrés hídrico de cada una de ellas.

Al aumentar el déficit hídrico (∝3 alto), asociado a un mayor intervalo de riego, se incrementó la proporción de tubérculos deformes mientras que los tubérculos enfermos y rezagas aumentaron con el déficit bajo (∝3 bajo), por lo que se deben evitar condiciones de exceso de humedad principalmente en suelos pesados y condiciones climáticas frías.

La aplicación del software Irrimodel representa una excelente herramienta automatizada para el manejo controlado del déficit hídrico de acuerdo con el sistema de riego, que se traduce en la mejora del rendimiento y calidad de papa para las zonas productoras de México. Para un mayor efecto del déficit hídrico sobre el rendimiento, se sugiere usar valores ∝3 de 0.15, 0.45, y 0.6, para déficits bajo, medio y alto, los cuales están asociados a sistemas de riego por goteo, por aspersión y por gravedad, respectivamente.

Bibliografía

Allen, R. G.; Pereira, L. S.; Raes, D. and Smith, M. 1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56. ISSN: 0254-5293. Roma, Italia. 298 p. [ Links ]

ASERCA. 2018. Agencia de Servicios a la Comercialización y Desarrollo de Mercados Agropecuarios. http://www.infoaserca.gob.mx/claridades/revistas/057/ca057.pdfwww.infoaserca.gob.mx/claridades/revistas/057/ca057.pdf. [ Links ]

Badii, M. H.; Castillo, J.; Rodríguez, M.; Wong, A. and Villalpando, P. 2007. Experimental designs and scientific research. UANL, San Nicolás, NL, 66450,. México. InnOvaciOnes de NegOciOs. 4(2):283-330. [ Links ]

Camargo, D. C.; Montoya, F.; Ortega, J. F. and Córcoles, J. I. 2015. Potato yield and water use efficiency responses to irrigation in semiarid conditions. Agronomy Journal. 107(6):2120-2131. Doi:10.2134/agronj14.0572. American Society of Agronomy, Madison, WI 53711 USA. [ Links ]

CONAGUA. 2018. Comisión Nacional del Agua. Estadísticas hidroagrícolas de los distritos de riego. https://www.gob.mx/conagua/documentos/estadisticas-agricolas-de-los-distritos-de-riego. [ Links ]

Da Silva, E. F.; Jadoski, S. O. and Martinkoski, L. 2019. Water depletion depth for irrigation of potato cultivar Ágata. Engenharia agrícola, Jaboticabal. 39(4):434-443. Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n4p434-443/2019Links ]

Erdem, T.; Erdem, Y.; Orta, H. and Okursoy, H. 2006. Water yield relationships of potato under different irrigation methods and regimens. Sci. Agric. Piracicaba, Braz. 63(3):226-231. [ Links ]

Fernández-Escobar, R.; Trapero, A. y Domínguez, J. 2010. Experimentación en agricultura. Junta de Andalucía Consejería de Agricultura y Pesca-Secretaría General Técnica, Servicio de Publicaciones y Divulgación. ISBN: 978-84-8474-281-4. Madrid, España. 350 p. [ Links ]

INIFAP. 2010. Instituto Nacional de Investigaciones Forestales. Agrícolas y Pecuarias. Informe final del proyecto: evaluación del cambio climático en la productividad de la agricultura de riego y temporal del estado de Sinaloa’. Reporte técnico del proyecto. Instituto Mexicano de Tecnología del Agua (IMTA). 15-35 pp. [ Links ]

Jefferies, R. A. and Lawson, H. M. 1991. A key for the stages of development of potato (Solanum tuberosum). Annals of Applied of Biology. 119(2):387-389. [ Links ]

Jha, G.; Choudhary, O. P. and Sharda, R. 2017. Comparative effects of saline water on yield and quality of potato under drip and furrow irrigation. Cogent Food & Agriculture 3(1) https://doi.org/10.1080/23311932.2017.1369345. [ Links ]

Lobato, S. R. y Altamirano, M. A. 2017. Detección de la tendencia local del cambio de la temperatura en México. Tecnología y Ciencias del Agua (IMTA). 8(6):101-116. Jiutepec, Morelos, México. [ Links ]

Mahima, B.; Mrinal, S.; Abhijit, S.; Nayan, J. O.; Pompy, D.; Poran, K. D. and Ipsita, O. 2018. Water management for higher potato production: a review. Int. J. Curr. Microbiol. App. Sci. 7(5):24-33. [ Links ]

Ojeda, B. W.; Flores, V. J.; Íñiguez, C. M.; Unland, W. H.; Carrillo, G. M.; Rojano, A. A.; Flores, G. H.; Macías, C. J.; Flores, M. H.; López, L. R.; Sifuentes, I. E. y Ruiz, G. A. 2015. Calendarización del riego: teoría y práctica. Libro, 2da. Ed. Jiutepec, Morelos, México. Instituto Mexicano de Tecnología del Agua. 3-307 pp. [ Links ]

Ojeda, B. W.; Sifuentes, I. E. y Unland, W. H. 2006. Programación integral del riego en maíz en el norte de Sinaloa. Agrociencia. 40(1):13-25. Montecillos, Estado de México. [ Links ]

Ojeda, B. W.; Sifuentes, I. E.; Slack, D. C. and Carrillo, M. 2004. Generalization of irrigation scheduling parameters using the growing degree days concept: application to a potato crop. Irrigation and Drainage. 53(1):521-261. [ Links ]

Onamu, R.; Legaria, S. J. P.; Castellanos, S. J.; Rodríguez, O J. L. y Pérez, N. J. 2015. Diversidad genética entre variedades de papa (Solanum tuberosum L.) cultivadas en México. Revista Fitotecnia Mexicana. 38(1):7-15. Chapingo, Texcoco, Estado de México. [ Links ]

Rendón, P. L.; Saucedo, R. H. E. y Fuentes, R. C. 2012. Diseño de riego por gravedad. Ed. Universidad Autónoma de Querétaro ISBN: 978-607-513-031-6. Querétaro. 358 p. [ Links ]

Rich, A. E. 1983. Potato diseases. Department of botany and plant pathology. University of New Hampshire, Durhan, New Hampshire. Published by academic press Inc. London. ISBN 0-12-587420-0. 10-238 pp. [ Links ]

SEMARNAT. 2012. Secretaría del Medio Ambiente y Recursos Naturales. Informe de la Situación del Medio Ambiente en México. Compendio de estadísticas ambientales. indicadores clave y de desempeño ambiental. 361 p. [ Links ]

SIAP. 2021. Servicio de Información Agroalimentaria y Pesquera. Avance de siembras y cosechas resumen por estado; producción anual agrícola. https://www.gob. mx/siap/acciones-y-programas/produccion-agricola-33119. [ Links ]

Sifuentes, I. E. y Macías C. J.2015. Programación integral y gestión del riego a través de Internet. Manual de usuario v. 2.0. INIFAP-CIRNO-Campo Experimental Valle del Fuerte. Folleto técnico núm. 42. 39 p. [ Links ]

Soltero-Díaz, L.; Garay-López, C. y Ruiz-Corral, J. A. 2010. Respuesta en rendimiento de híbridos de maíz a diferentes distancias entre surcos y densidades de plantas. Revista Mexicana de Ciencias Agrícolas. 1(2):149-158. [ Links ]

Steduto, P.; Hsiao, T. C. Fereres, E. y Raes, D. 2012. Respuesta del rendimiento de los cultivos al agua. Estudio FAO. (Organización de las Naciones Unidas para la Alimentación y la Agricultura). Riego y drenaje 66. ISSN 0254-5284, E-ISBN 978-92-5-308564-4 (PDF). Roma, Italia. 510 p. [ Links ]

Wagg, C.; Hann, S.; Kupriyanovich, Y. and Li, S. 2021. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agricultural Water Management. 247: https://doi.org/10.1016/j.agwat.2020.106731Links ]

Recibido: 01 de Agosto de 2023; Aprobado: 01 de Octubre de 2023

§Autor para correspondencia: w.ojeda@riego.mx.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons