Introducción
La energía solar no solo es necesaria para la vida de los seres vivos, sino también para los animales; pero debido al cambio climático, el calentamiento global, emisión de gases y el efecto invernadero, sobre todo este último, ha generado alteraciones en la capa de ozono1,2, provocando la entrada directa de la radiación UV a la superficie terrestre, ocasionando en los últimos años alteraciones al medio ambiente y a las especies animales que están en contacto directo con la radiación solar, como animales de granja, provocándoles lesiones cutáneas, tumoraciones ópticas, estrés calórico o incluso la muerte, dando como resultado grandes pérdidas económicas en el ramo agropecuario3.
Tipos de radiación
La radiación puede definirse como la energía que transita de un lugar a otro4. También se le llama radiación a toda energía que se propaga en forma de onda o de partícula a través del espacio4. El sol es una fuente natural de radiaciones electromagnéticas que se caracterizan por su frecuencia y longitud de onda, y suelen clasificarse en base a dos criterios:
1) Según su naturaleza:
La radiación propagada en forma de ondas (rayos gamma, rayos X), radiaciones ultravioletas tipos A, B y C (UVA, UVB, UVC), radiación visible (violeta, azul, verde, amarilla, naranja, roja), radiaciones infrarrojas, radiofrecuencias (radar, microondas), se les llama radiaciones electromagnéticas5,6, mientras que la llamada en forma de partículas subatómicas (partículas α, partículas β, neutrones, radiaciones cósmicas) se les llama radiaciones corpusculares, que se mueven a gran velocidad, con apreciable transporte de energía4,5,6.
2) Según su efecto biológico:
Si la radiación transporta energía suficiente como para provocar ionización en el medio que atraviesa, se dice que es una radiación ionizante. En caso contrario se habla de radiación no ionizante, la cual no puede separar electrones de los átomos o alterar las estructuras moleculares7, aunque la energía fotónica es débil para romper enlaces químicos, tiene efectos biológicos como son el calentamiento y la inducción de corrientes eléctricas en los tejidos y células8. El carácter ionizante o no ionizante es independiente de su naturaleza corpuscular u ondulatoria9. Son radiaciones ionizantes: radiaciones alfa, beta, rayos cósmicos, rayos gamma, rayos X, y parte del espectro de la radiación UV entre otros. Por otro lado, radiaciones como los rayos UV, visible e infrarrojo y las ondas de radio, TV o de telefonía móvil, son algunos ejemplos de radiaciones no ionizantes como se muestra en la Figura 1 7,8,9.
Luz ultravioleta (UV)
De todo el espectro solar sólo la luz visible, los infrarrojos y una parte de la radiación ultravioleta alcanzan la superficie terrestre, en las siguientes proporciones: 50, 40 y 10 % respectivamente. El resto, son detenidas por el ozono estratosférico. La radiación solar ultravioleta, se define como la potencia de la energía solar UV por unidad de superficie (UV) y se mide en (w/m2)11, posee tres diferentes longitudes de onda: la UVA (315- 400 nm), la UVB (280-315 nm) y la UVC (100-280 nm)4,12,13,14. La UVC posee la más alta energía, pero es absorbida por la capa de ozono en la atmósfera y no tiene efectos adversos en la piel, mientras dicha capa permanezca intacta. Sin embargo, el daño creciente a la capa de ozono pudiera generar efectos nocivos de la UVC.
Las UVA y UVB se consideran un factor de riesgo en el desarrollo de cáncer de piel y llegan a la superficie de la tierra 95 y 5 %, respectivamente. Las UVB están implicadas en la formación de foto-productos y demás complejos, que deterioran los ácidos nucleicos con consecuencias a largo plazo, directamente relacionadas con diversas neoplasias de piel, provocadas por las quemaduras repetidas o frecuentes sobre la epidermis15. Por su parte, la citotoxicidad de las UVA es principalmente mediada por moléculas endógenas foto-sensibilizadoras, que absorben fotones y generan especies reactivas del oxígeno, generando daño directo sobre la dermis y el envejecimiento prematuro13,15.
La atmósfera
La atmósfera está compuesta en mayor cantidad por nitrógeno (78 %) y en segundo lugar por oxígeno (26 %)16,17. El porcentaje restante corresponde a numerosos gases traza, entre los cuales se encuentra el ozono, en cantidades ínfimas de pocas moléculas por millón de partículas de aire (0.01 %). Sin embargo, cumple un rol esencial en la conservación de la vida en el planeta tal como la conocemos, ya que nos protege de la UV que es el carcinógeno físico más importante para el hombre, animales terrestres y marinos16,17.
El ozono es una molécula formada por tres átomos de oxígeno y se crea en dos lugares de la atmósfera, el 90 % o más del ozono se produce en la parte alta de la estratósfera, a 50 km de la superficie terrestre y corresponde al ozono benéfico, protector de la radiación ultravioleta16. Cabe mencionar que 10 % del ozono se produce en las grandes ciudades, a nivel de la superficie terrestre o tropósfera, y es un componente del smog16,18.
En las últimas décadas, el hombre ha alterado el equilibrio ecológico de la capa de ozono con la producción y emisión a la atmósfera de las llamadas “sustancias depletoras de ozono” (SDO)1,19. Las más conocidas son los clorofluorocarbonos (CFC), que se usaron en la fabricación de aerosoles, refrigeradores y equipos de aire acondicionado, estos CFC son muy reactivos, una molécula de cloro puede destruir mil moléculas de ozono1,19. Al aumentar en la atmósfera los compuestos que degradan el ozono, como su velocidad de formación es lenta, su concentración disminuye hasta que se alcance un nuevo equilibrio entre la velocidad de formación y la degradación16,17,19.
La radiación solar es uno de los principales factores ambientales que afectan la vida en nuestro planeta. Esta radiación controla el funcionamiento de los ecosistemas terrestres y acuáticos a través del control de procesos fotobiológicos (fotosíntesis, fotoperiodo, fototropismos) así como de su acción sobre otros factores ambientales como la temperatura, humedad y ciclos naturales (ciclos diarios, anuales, hídricos), que finalmente inciden en la distribución de los organismos19,20.
La radiación que llega a la Tierra abarca una amplia gama del espectro electromagnético y aproximadamente el 40 % de ella es la que conocemos como luz o radiación visible. Esta comprende longitudes de onda que van de los 400 a los 700 nm, y que es usado por los vegetales en el proceso de la fotosíntesis. Otro rango de esta radiación electromagnética es el que va de 280 a 1,000 nm, conocido como rango fotobiológico21.
La cantidad y calidad de las radiaciones que llegan a la Tierra depende tanto de la energía solar emitida como de las características de la atmósfera en un sitio dado.
La luz UVA y UVB penetran en la biósfera, pero solo la UVB es absorbida por el ozono atmosférico, por lo que la cantidad que alcanza la superficie terrestre aumenta como resultado de la disminución de este gas. Sólo el 1.3 % de la luz ultravioleta emitida por el sol alcanza la superficie de la tierra, de ese porcentaje, el 98 % corresponde a la UVA y el 2 % a la UVB, mientras el resto de la luz ultravioleta es fuertemente absorbida en la atmósfera.
Esta misma radiación solar, la cual ha hecho posible la vida sobre nuestro planeta, puede ser perjudicial en altas intensidades o cuando la proporción de ondas cortas aumenta sobre determinados límites. La radiación de alta intensidad y los cambios en la composición espectral pueden afectar importantes procesos en los organismos19,21.
Fisiología de la piel en animales
La piel, conforma la superficie del cuerpo que establece relación directa con el medio ambiente, está constituida por tres estratos o capas que presentan a la vez un conjunto de estructuras anexas como glándulas sudoríparas y sebáceas22. Existen diferentes formas de protección corporal según la especie animal (pelos, lana, plumas) y partes queratinizadas (uñas, cascos y pezuñas). La piel desempeña diferentes funciones como son: órgano protector contra estímulos mecánicos, físicos y químicos del medio ambiente que agreden la integridad del cuerpo animal22,23. Aumenta su espesor en aquellos puntos que se encuentran sometidos regularmente a compresiones mecánicas (pezuñas, cascos, almohadillas plantares y pulpejos)22. La piel proporciona también protección contra radiaciones24, principalmente radiaciones solares, de diferentes longitudes de ondas, de ahí que en su estrato superficial o epidermis, en muchas especies de animales, se formen pigmentos (gránulos de melanina) que impiden la penetración de las radiaciones a los tejidos profundos tal como se observa en la piel del oso polar que, como adaptación a la fuerte intensidad luminosa por acción directa de los rayos solares e indirecta por ser reflejados por el hielo o la nieve, presenta pelaje blanco (refractario) con piel negra (protectora)24. La piel es relativamente impermeable a microorganismos y a muchas sustancias venenosas y nocivas al cuerpo animal.
La presencia en la piel de glándulas sudoríparas y sebáceas, cuyas secreciones son vertidas por los conductos glandulares al exterior, le confiere a este tejido un papel excretor24. La pérdida de agua por la piel constituye una vía de termorregulación no asociada al mantenimiento del equilibrio hídrico, pero sí, asociada a las condiciones térmicas de la relación entre el animal y el medio ambiente. El sebo cutáneo, producto de naturaleza grasosa secretado por las glándulas sebáceas, protege a la piel contra la humedad y le confiere suavidad y textura24.
La piel desarrolla un importante papel en el sistema de crecimiento o desarrollo corporal somático en el cuerpo de los animales, al constituirse en el área de almacenamiento y activación primaria de la vitamina D23. La vitamina D que ingresa al organismo en forma de D2 (ergocalciferol) o D3 (colecalciferol) según la fuente de ingreso, por circulación sanguínea alcanza la piel, donde se almacena en forma de calciferol o precursor, y por acción de los rayos ultravioleta del sol se transforma en colecalciferol, que al alcanzar de nuevo la circulación sistémica pasa primero al hígado y finalmente a los riñones, en donde por efecto de la parathormona (PTH) se convertirá en la vitamina D hormona (1,25,dihidroxicolecalciferol), que desarrolla su función a nivel de la mucosa intestinal evitando el raquitismo del animal al estimular la absorción facultativa del calcio22.
Histología de la piel
El área cutánea total depende de la especie animal, calculándose, por ejemplo, que en personas adultas puede alcanzar hasta los 2 m2; en ciertos territorios cutáneos, dependiendo de la especie animal, se desarrollan formaciones apendiculares especiales como pelos o plumas, uñas, cuernos, cascos o pezuñas, así como numerosas, escasas o ausencia de glándulas sudoríparas y sebáceas25.
El grosor de la piel es variable, en general es más gruesa en la superficie dorsal del cuerpo y en las caras laterales de las extremidades, más delgada en la cara ventral del cuerpo y caras mediales de las extremidades, existiendo diferencias en las zonas relacionadas con el sexo, la raza y la especie22. La media de las zonas más delgadas oscila entre los 0.4 mm en el murino hasta los 2.4 mm en el bovino Holstein (Bos taurus), raza productora de leche, mientras que en las zonas gruesas este valor comprende desde los 1.9 mm en el gato hasta los 10.7 mm en el garañón o caballo semental24.
En la piel se distinguen tres estratos: epidermis, parte epitelial o estrato de superficie, dermis, parte conjuntiva o estrato intermedio profundo, e hipodermis o tejido celular subcutáneo (Figura 2)25,26.
Epidermis, conformada de un epitelio plano estratificado queratinizado, la dermis, formada de tejido conectivo, y la hipodermis, compuesta de tejido graso. Técnica: parafina, hematoxilina-eosina24.
Epidermis. Está constituida por un epitelio plano estratificado queratinizado, y se divide en estratos: estrato germinativo, estrato espinoso, estrato granuloso, estrato lúcido y estrato córneo25,26,27.
Dermis. Se pueden distinguir dos capas: capa papilar, en posición más superficial y capa reticular, en posición más profunda. La capa papilar o superficial de la dermis situada inmediatamente por debajo de la epidermis, consta de una trama densa de tejido conjuntivo irregular fibroso laxo, que cumple una función trófica y recibe su nombre por las numerosas papilas que se proyectan sobre la epidermis; es más ancha en la piel del caballo y vacunos que en los carnívoros25-28.
Hipodermis. Es una capa de tejido conjuntivo que fija la piel a los huesos y a los músculos. La función primaria de esta capa es la amortiguación a las presiones externas y permitir el movimiento libre sobre las estructuras subyacentes. En este estrato también se halla presente una capa de tejido adiposo que puede adoptar la forma de pequeños grupos de células, o de grandes masas que dan lugar a la formación de las almohadillas o cojines de grasa, cuya función es termorreguladora para los animales que viven en climas templados al aumentar su grosor en el invierno, y servir como un aislante térmico retenedor del calor24,25. Por otra parte, los cascos, las pezuñas, las uñas, los cuernos, los espolones y las espuelas son estructuras que tienen su origen en procesos de queratinización del estrato córneo con espesor y consistencia diferente24,25.
Pelos. Los pelos son formaciones epidérmicas extendidas en la mayoría de los mamíferos por toda la piel excepto en las almohadillas plantares, los cascos, las uñas, parte de los labios, el glande, la parte interna del prepucio, los labios vulvares, los pezones y la cara plantar de las extremidades. El pelo consta de raíz, tallo y la punta que es la parte que sobresale de la piel. Las raíces de los pelos están rodeadas por una invaginación de los estratos espinoso y germinativo de la epidermis, que se introducen en la dermis, de manera que al situarse en el estrato papilar de ésta se relacionan con los vasos sanguíneos25.
La proporción existente entre la capa cortical y medular del pelo depende de la especie animal, y así vemos que el pelo que constituye el revestimiento piloso en el caballo, la vaca, el perro y el cerdo, posee una capa cortical más gruesa que el pelo de revestimiento en la cabra y el gato. Los pelos finamente rizados de las ovejas y cerdos, en los erizos o el puercoespín, se manifiestan como pelos afilados conocidos como espinas o púas, en los animales jóvenes poseen vello y prácticamente carecen de médula24,25,28,29,30.
Adaptaciones de la piel en respuesta a las condiciones ambientales
La adaptación morfo-fisiológica de la piel animal a las condiciones del medio ambiente de carácter evolutivo, involucra las particularidades morfológicas de la piel y su capacidad para permitir ajustes térmicos a las variables ambientales, para facilitar el incremento o disminución de las pérdidas de calor28. Estudios histológicos comparados entre ganado bovino Cebú (Bos indicus), con giba y el Holstein (Bos taurus), muestran que el grosor de la piel no es homogéneo en toda la superficie corporal al compararse las mismas zonas entre animales de la misma especie, pero de razas diferentes, e inclusive, la edad también determina cambios de grosor en áreas cutáneas; el estudio comparativo de 21 regiones del cuerpo en donde se midió el pliegue cutáneo en la raza Holstein-Friesian (Bos taurus) demostró cambios de grosor en una misma área, e incrementó el grosor general de la piel a medida que aumenta la edad del animal. El análisis comparativo entre diferentes estructuras macro y microscópicas de la piel en hembras bovinas de las razas Holstein y Cebú explica la mejor adaptación del Bos indicus (Cebú) a las altas temperaturas28,31, donde presenta un pelo más corto y grueso, un mayor grosor de la piel con epidermis más delgada y una dermis reticular más profunda, un mayor volumen de glándulas sudoríparas con implantación dérmica, por lo que posee una mayor superficie excretora y una densidad glandular incrementada por área28.
La raza bovina Holstein-Friesian, una raza en la producción de leche, se caracteriza por tener una piel de menor grosor, epidermis más gruesa y dermis reticular más fina. Es interesante señalar que mientras en la raza Holstein las glándulas sudoríparas tienen forma tubular con diferentes grados de torsión, en el Cebú las mismas se presentan de forma sacular, con un alto grado de concentración por área, lo que asegura un sistema disipador de calor capaz de permitir la respuesta de adaptación a las altas temperaturas ambientales del trópico28,32.
Afectación de la radiación solar a los animales
Se ha observado que los animales que están expuestos por largos periodos de radiación solar, que viven a grandes altitudes sobre el nivel del mar y en lugares tropicales, carecen de pigmento en la epidermis, tienen poco pelo o pérdida del mismo, y son más propensos a enfermedades de la piel33-36, debido a que la luz ultravioleta daña el ácido desoxirribonucleico (ADN) de la célula32, induce los dímeros de pirimidina ciclobutano (CPD), pirimidina (6,4) y pirimidonina (6,4 PP) que causan efectos deletéreos como la inhibición de la replicación y de la transcripción, el aumento en la aparición de mutaciones, la detención del ciclo celular y la muerte celular37. Uno de los padecimientos que se relaciona con estos factores es el carcinoma de células escamosas (CCE), también conocido como carcinoma de células espinosas o espinocelular o carcinoma epidermoide34, el cual es un tumor maligno que afecta a los queratinocitos de la epidermis de la piel35,36, es localmente invasivo, no necesariamente metastásico33, pero puede comprometer la dermis38.
Estos tumores se encuentran principalmente en bovinos, afectando principalmente a las razas Hereford, Simmental, y Holstein, las cuales poseen piel blanca y sin pigmentación, especialmente, en los ojos34,35, por lo que se tienen pérdidas millonarias al año, debido a cáncer de ojo39, enfermedad conocida como ojo rosado o “pink eye”, el cual es común en este tipo de animales. Afecta a los más viejos pero no excluye a jóvenes, principalmente de cara blanca y poco pigmentada; es de origen genético, pero también se relaciona con la exposición a la radiación ultravioleta38. Sin embargo, también afecta a felinos y canideos40,41, poco común en ovinos y raro en caprinos y porcinos33,35,36. En caballos, las razas más sensibles son Belga, Clydesdale, Shire y Appaloosa34. La aparición de las lesiones en estos animales es principalmente en regiones muco-cutáneas (conjuntiva, vulva, perineo)34. En canideos, su frecuencia es de un 20 a 30 % y en felinos es de 70 %42; no hay una diferencia entre sexo, aparece en razas grandes y animales mayores a 10 años42. En canideos las lesiones están localizadas principalmente en tronco, extremidades, escroto, labios, y el lecho ungular38, en felinos, en cara, orejas y principalmente en gatos de pelo blanco42.
Otra patología relacionada con la exposición a la luz ultravioleta, son los melanocitomas, los cuales se forman a partir de las células encargadas de dar pigmentación a la piel, pestañas y pelo llamadas melanocitos, ubicados en la epidermis de la piel43. El 80 al 90 % de estos tumores son benignos en bovinos, localizándose principalmente en piel43; este padecimiento afecta en todas las edades, no hay predisposición por el sexo, aqueja a ganado de color obscuro (gris, rojo y negro)43; dichos tumores aparecen en cualquier parte principalmente en las extremidades43. En el resto de los animales estos tumores suelen ser malignos y son llamados melanomas, siendo comunes en caninos y equinos, poco comunes en gatos y raros en otras especies41,43,44.
Los melanomas suponen el 4.7 % del total de neoplasias y más del 7 % de los tumores malignos en el perro44,45. Las localizaciones más habituales incluyen la boca (56 %), labios (23 %), piel (11 %), dedos (8 %) y otras localizaciones (2 %) incluyendo el ojo46. Los melanomas cutáneos son también relativamente frecuentes. Sin embargo, del conjunto de melanomas malignos, sólo un 10 % son cutáneos, con cierta predilección por la región de la cabeza y el escroto.
La incidencia de melanoma en caninos no sólo varía con la localización, sino también con la raza. Es más frecuente en razas con marcada pigmentación cutánea, como el Schnauzer o el Scottish Terrier45,46. El Setter Irlandés y el Golden Retriever presentan mayor incidencia de melanomas subungueales. El Setter Irlandés, el Chihuahua, Golden Retriever y el Cocker Spaniel presentan mayor riesgo para la localización labial45,46. Finalmente, el Pastor Alemán y el Bóxer muestran mayor riesgo de desarrollo de melanomas orales47,48. La edad en la que se presenta oscila entre 1 y 17 años, la media está en 10. Al igual que en personas, se establece una mayor incidencia en machos que en hembras47.
El melanoma en el gato es infrecuente (menos del 1 % de las neoplasias orales y cerca del 0.5 % de las neoplasias cutáneas)49,50,51. La localización ocular y cutánea es más frecuente que la intraoral52,53. La localización cutánea más habitual es la cabeza, la cola, la zona distal de las extremidades y la zona lumbar46,53,54. El pronóstico es con frecuencia pobre, dado que la mitad de los casos muestran recurrencia y metástasis regional46,54,55. El rango de edad de los animales afectados es de 2 a 18 años, con un pico entre los 8 y 12 años54,55. No parece haber predilección de sexo o raza54,55.
Otros padecimientos provocado por este factor son los hemangiosarcomas, tumores malignos los cuales afectan más comúnmente a perros de mediana edad y tercera edad, en especial a perros de raza grande, como el galgo; afecta sobre todo el bazo, el atrio derecho, el tejido subcutáneo/dérmico y el hígado56. También los hemangiomas se relacionan con la luz UV, es una neoplasia relativamente benigna de los capilares caninos en la piel en el tronco y las extremidades y los tejidos blandos y, con frecuencia, precursores de los hemangiosarcomas57.
De tal forma que la radiación ultravioleta afecta a algunas especies de manera importante tanto en aspectos de salud, como en aspectos de trascendencia económica.
Efectos patológicos de la radiación ultravioleta
Las radiaciones UVA son capaces de inducir eritema, pigmentación inmediata o retardada, alteraciones del tejido conectivo dérmico, liberación de mediadores vasoactivos, y que favorecen el estrés fotooxidativo. Incluso, pueden incrementar el eritema por UVB, así como la carcinogénesis y la elastosis por UVB, causando alteraciones en el ADN58 y otras estructuras, como las fibras elásticas; son responsables de muchas reacciones de fotosensibilidad a drogas, y juegan un papel significativo en enfermedades tales como erupción polimórfica a la luz, dermatitis actínica crónica, reticuloidosis actínica, lupus eritematoso, urticaria solar, reacción persistente a la luz y xero-dermapigmentosum (XP)59,60. La fotosensibilidad en animales se clasifica en tres tipos principales: 1) Tipo I ó primaria; este tipo de fotosensibilización es causada por compuestos fluorescentes que son depositados inalterados sobre la piel luego de la ingestión, siendo el hígado normal, incapaz de excretar el compuesto fluorescente original; ejemplos de dichas sustancias fotosensibilizantes incluyen a la hipericina, la fagopirina y productos químicos como la fenotiacina (sulfóxido de fenotiacina). 2) Tipo II o síntesis anormal de pigmento endógeno o porfiria congénita; este tipo de fotosensibilización se debe a la acumulación de pigmentos endógenos del metabolismo anormal de la porfirina. Los agentes fotodinámicos incluyen a la uroporfirina I, coproporfirina I y protoprorfirina III. Estos se acumulan en la sangre y los tejidos cuando existe una disfunción en la biosíntesis del grupo hemo, debido a una deficiencia enzimática. Por ejemplo, la porfirina eritropoyética congénita de los bovinos es causada por la deficiencia de uroporfirinógeno III cosintetasa, una enzima clave en la biosíntesis del grupo hemo. y 3) Tipo III ó fotosensibilidad hepatotóxica, la cual es más común y de relevancia económica, debido a que los animales son sensibilizados por la acumulación de filoeritrina, un producto de la digestión de la clorofila en la circulación periférica. La filoeritrina normalmente es excretada en la bilis por el hígado, pero en ciertos tipos de lesiones difusas, el hígado se asocia con una variedad de hepatotoxinas vegetales, fungales y químicas que se absorben gradualmente por el sistema circulatorio hasta que se alcanzan niveles que generan la fotosensibilidad. La materia tóxica actúa directamente sobre las células del hígado y las células de los pequeños conductos biliares, haciendo que se estenosen y eviten el paso de la bilis, lo que origina la ictericia o color amarillento60.
Existen suficientes evidencias experimentales y clínicas que establecen una relación causal estrecha entre el cáncer de piel y la exposición prolongada a la luz ultravioleta, fundamentalmente el melanoma maligno (MM), el carcinoma de células escamosas (CCE) y el carcinoma de células basales (CCB)59,60.
Efectos benéficos de la radiación UV en animales
La radiación solar ofrece la posibilidad a los organismos homeotermos de obtener una temperatura apropiada para que puedan llevar a cabo su metabolismo61. La deficiencia de vitamina D mejor documentada es la exposición inadecuada a la luz solar, debido a que existe una fuerte asociación entre las UVB y el metabolismo de la misma62. La deficiencia de dicha vitamina genera efectos inmediatos sobre el sistema esquelético, incrementando el riesgo de fracturas, la vitamina D3, se produce diariamente para controlar la absorción, transporte y depósito de calcio y, en menor proporción, de fósforo, interviniendo directamente en el mantenimiento óseo y la regulación del crecimiento. Asimismo, es necesaria para el funcionamiento hormonal, el desarrollo de órganos y la embriogénesis62.
También es importante para mantener a los animales en estado saludable, proveerles la radiación UVB es necesaria para los procesos fotoquímicos involucrados en la síntesis de vitamina D62. De la misma manera, aun cuando los animales se encuentren recibiendo una dieta adecuada y una temperatura óptima, si no se les provee el tipo de radiación necesaria para la producción de vitamina D, no podrán incorporar dichos minerales de manera apropiada62.
La irradiación proporciona importantes beneficios para la salud. Este método ayuda a mantener los alimentos de manera más segura, hace posible conservar los mismos durante más tiempo en mejores condiciones, evita que se deterioren y echen a perder o que se produzcan condiciones no deseadas como sería la aparición de tubérculos. Destruyen algunos insectos, hongos y bacterias63.
Conclusiones
Los animales domésticos están expuestos a la radiación ultravioleta la mayor parte del tiempo, pero debido al cambio climático, la radiación UVB afecta la piel de estos animales; algunas razas de animales son más sensibles, las cuales pueden presentar algunas patologías cutáneas, como cáncer de piel entre otras, pudiendo causar pérdidas económicas cuantiosas en el sector agropecuario, generar alteraciones en la salud y en el bienestar de los animales, así como comprometer la calidad e inocuidad de los productos de origen animal destinados al consumo humano.