SciELO - Scientific Electronic Library Online

 
vol.6Influencia de los parámetros fisicoquímicos en la distribución de fitoplancton en el Sistema lagunar de Mandinga, MéxicoProducción de frutos y semillas en cruzas de variedades nochebuena (Euphorbia pulcherrima Willd. ex Klotzsch) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.6  Tepic ene. 2019  Epub 02-Oct-2020

https://doi.org/10.15741/revbio.06.e413 

Original Articles

Host and Vectors of Xylella fastidiosa in Parras, Coahuila Vineyards, Mexico

I. I. Camacho Aguilar1 

F. D. Hernández Castillo1  * 

E. González Gallegos1 

E. Blanco Rodríguez2 

A. Flores Olivas1 

O. García Martínez1 

1Dpto. de Parasitología Agrícola Universidad Autónoma Agraria Antonio Narro Calzada Antonio Narro #1923, Colonia Buenavista, C.P. 25315, Saltillo, Coahuila, México.

2Centro Nacional de Referencia Fitosanitaria-SENASICA, Km. 37.5, carretera Federal México-Pachuca, C.P. 557401, Tecámac, Edo. de México, México.


Abstract:

Xylella fastidiosa is a phytopathogenic bacterium that causes important diseases in different crops such as Pierce’s disease in grapevine (Vitis vinifera), citrus variegated chlorosis, among others. The bacterium spreads very fast through vector insects, mainly leafhoppers (Cicadellidae) and spittlebugs (Cercopidae). The objective of present investigation was to determine the vectors and hosts of Xylella fastidiosa in vineyards located in Parras valley, Coahuila. Samples of 22 species were collected, including ornamental plants, weeds, shrubs, fruit trees, evergreen and deciduous forest; At the same time, the insects found in the sampling areas were collected and identified. The detection of X. fastidiosa in plants and insects was performed by PCR using the primers RST31/RST33. In the same way, identification of X. fastidiosa subsp. Multiplex with primers ALM1/ALM2 and XF2542-L/XF2542-R in plant samples that were positive in first test was carried out. The presence of X. fastidiosa was detected in commercial vine and wild grape plants, while X. fastidiosa subsp. multiplex was identified in apricot and ash trees. Among the insects collected, six genera and four species of leafhoppers were identified, however, only X. fastidiosa was detected in Homalodisca vitripennis.

Key words: Xylella; Pierce disease; Homalodisca

Resumen:

Xylella fastidiosa es una bacteria fitopatógena que causa enfermedades de importancia en diferentes cultivos como la enfermedad de Pierce en vid (Vitis vinifera) y la clorosis variegada de los cítricos, entre otras. La bacteria se propaga de una manera muy rápida mediante insectos vectores, principalmente chicharritas (Cicadellidae) y salivazos (Cercopidae). La presente investigación tuvo como objetivo determinar los vectores y hospederos de Xylella fastidiosa en viñedos ubicados en el valle de Parras, Coahuila. Se colectaron muestras de 22 especies, entre ellas plantas de ornato, malezas, arbustos, árboles frutales, forestales perennes y caducifolios; al mismo tiempo, se colectaron e identificaron los insectos encontrados en las zonas de muestreo. La detección de X. fastidiosa en plantas e insectos se realizó mediante PCR utilizando los primers RST31/RST33. De igual forma, se llevó a cabo la identificación de X. fastidiosa subsp. multiplex con los primers ALM1/ALM2 y XF2542-L/XF2542-R en muestras vegetales que resultaron positivas en la primera prueba. Se detectó la presencia de X. fastidiosa en plantas de vid comercial y vid silvestre, mientras que en árboles de chabacano y fresno se identificó a X. fastidiosa subsp. multiplex. Entre los insectos colectados se identificaron seis géneros y cuatro especies de cicadélidos, sin embargo solo se detectó a X. fastidiosa en Homalodisca vitripennis.

Palabras clave: Xylella; Enfermedad de Pierce; Homalodisca

Introduction

Xylella fastidiosa is a phytopathogenic bacterium that causes important diseases in different crops such as Pierce´s disease of grapevine (Vitis vinifera), coffee leaf scorch in coffee (Coffea arabiga), quick decline syndrome of olive (Olea europea), almond leaf scorch (Prunus dulcis), the citrus variegated chlorosis, alfalfa dwarfism (Medicago sativa) and leaf scorch in urban trees (de Lima et al., 1998; Purcell et al., 1999; Li, et al., 2001; Almeida & Purcell, 2003; Sisterson et al., 2010; Costa et al., 2004). The bacterium has been found dormant in asymptomatic hosts such as california mugwort (Artemisia douglasiana) and barnyard grass (Echinochloa cruz-galli) that serve as inoculum reservoirs (Hopkins & Purcell, 2002). The symptoms presented by infected plants with X. fastidiosa usually appear first in some leaves and then in almost all the foliage. The affected area is delineated by a narrow chlorotic halo that becomes especially clear in autumn. It presents premature defoliation and malformation in new leaves, the fruits grow abnormally, the stems can show internal and external discoloration; in some cases, there is a regressive death and abnormal growth eventually ending in host death (Janse & Obradovic, 2010). X. fastidiosa spreads naturally by insect vectors mainly leafhoppers (Cicadellidae) and spittlebugs (Cercopidae) very fast because there is no latency period for transmission, some related species as X. fastidiosa vectors are: red head leafhopper (Xyphon fulgidum) (Catanach et al., 2013), green leafhopper (Draeculacephala minerva), blue-green leafhopper (Graphocephala atropunctata), alfalfa leafhopper (Phera lacerta) (Burks & Redak, 2003a), glassy winged leafhopper (Homalodisca vitripennis) and Oncometopia nigricans, among others (Hill and Purcell, 1997; Brlansky et al., 2002; Díaz, 2003; Hoddle, 2004; Blackmer, 2006; Daane et al., 2011). The bacterium is not trans-ovarial or trans-stag, it feeds and reproduces in salivary of adult insects which can remain infective throughout their lives (Almeida et al., 2005; Redak et al., 2004). The bacterium detection is mainly carried out by serological techniques such as ELISA and molecular techniques such as PCR in which specific primers are used, such as RST3/; RST33 (Minsavage et al., 1994) and XF1968-R/XF1968-L (Firrao & Bazzi, 1994). The objective of present investigation was to determine the vectors and hosts of Xylella fastidiosa in wine-growing zone of Parras, Coahuila, Mexico.

Material and Methods

Plant material collection

The plant material collection was carried out in area surrounding 4 vineyards in Parras, Coahuila, Mexico during 2016. Leaves and shoots of 22 plant species with symptoms like to those caused by X. fastidiosa were collected.

Insect collection

By using an entomological striking net through a series of 500 nets carried out in periphery of vineyards, insects were collected on the weeds and were also manually collected in bushes, fruit tres and forest. The insects were preserved in ethanol 70 %.

Insects identification

The insects were separated and grouped by morphological observations, the identification was made with help of taxonomic keys (DeLong & Davidson, 1935; Young, 1958; Blocker, 1967) and male genitalia extraction.

DNA extraction from plants and insects

For this investigation, the CTAB DNA extraction method (Doyle & Doyle, 1987) with modifications was used. 50 to 100 mg of tissue were taken from each plant and in the case of insects, the whole specimen was considered. From plants, the main veins and the petiole of each leaf were selected, these were macerated with 300 μL of CTAB buffer, placed in eppendorf tubes and 1 mL of CTAB buffer was added, 100 μL of 5M NaCl was added, they were incubated 95 °C for 90 min, centrifuged at 12,000 rpm for 1 min and the supernatant was recovered. 500 μL of chloroform isoamyl alcohol (24:1) were added, mixed by inversion and centrifuged at 12,000 rpm for 10 min; the supernatant was recovered and 500 μL of cold isopropanol was added. The samples were incubated overnight at -20 °C, then centrifuged at 12,000 rpm for 15 min, decanted and the pellet obtained was washed with 1 mL of ethanol 70 % by centrifuging at 12,000 rpm for 5 min. The pellet was resuspended in 100 μL of nuclease-free sterile water.

X. fastidiosa detection in plants and insects

The bacterium detection was carried out by PCR using the primers RST31 (5’-GCGTTAATTTTCGAAGTGATTCGATTGC-3’) and RST33 (5’-CACCATTCGTATCCCGGTG-3’) (Minsavage et al., 1994). The procedure for PCR reaction consisted of 1 cycle at 95 °C for 5 min, 35 cycles of amplification: 95 °C for 30 s, 60 ° C for 30 s, 72 ° C for 45 s and the final extension at 72 ºC for 7 minutes. The amplified products were analyzed by electrophoresis in a 1.5 % agarose gel, ethidium bromide was used for staining.

X. fastidiosa subsp. multiplex detection

The samples that were positive for X. fastidiosa were again analyzed by PCR for the subspecies identification using the specific primers for the subsp. multiplex XF1968-L (5’-GGAGGTTTACCGAAGACA GAT-3’) and XF1968-R (5’ATCCACAGTAAAACCACATGC-3’), ALM1 (5’CTGCAG AATTGGAAACTTCAG-3’) and ALM2 (5’-GCCACACGTGATCTATGAA-3’) (Hernández-Martínez et al., 2006). The amplification consisted of 1 cycle at 94 °C for 5 min, 40 cycles at 94 °C for 1 min, annealing temperature 55 °C for 1 min, 72 °C for 1 min and the final extension was one cycle at 72 °C for 10 min. The amplified products were analyzed by electrophoresis in a 1.5 % agarose gel.

Results

Insects identification and X. fastidiosa detection in insects

Six genera and four species of leafhoppers were identified through morphological observations and with the use taxonomic keys. One of the leafhoppers was identified as Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae: Cicadellinae) commonly known as glassy winged sharpshoot (Figure 1). Of the genera analyzed by PCR, only X. fastidiosa was detected in H. vitripennis (Table 1), which is reported as the main vector of the bacterium. In relation to the above, Almeida & Purcell (2003) showed that H. vitripennis is a X. fastidiosa vector through a greenhouse transmission experiment. Likewise, Hopkins & Purcell (2002) confirmed that H. vitripennis is the main vector transmitter of bacterium when relating the coincidence of patterns of high insects populations with the appearance of new outbreaks of Pierce’s disease in Napa Valley, Sonoma and Temecula in United States. The literature does not mention other genera of leafhoppers identified in this research as insects vectors of X. fastidiosa.

Figure 1 Images of Homalodisca vitripennis. A) Dorsal view; B) Side view. 

Table 1 PCR test results in insects for Xylella fastidiosa detection. 

Cicadellid PCR Result
Homalodisca vitripennis Positive
Empoasca dilitara Negative
Balclutha mexicana Negative
Balclutha abdominalis Negative
Aceratogallia spp. Negative
Erythroneura spp. Negative

X. fastidiosa detection in plants

Of the 22 plants species analyzed, X. fastidiosa was detected in vine plants (samples vine 1 and wild vine), in apricot (samples 1, 2 and 3) and in ash (samples 1 and 2) (Table 2). The identification was made by observing a band of 733 bp in electrophoresis gel. The results found in this study are similar to those described in the database of European Food Safety Authority (EFSA) in 2016, which indicate that X. fastidiosa subsp. fastidiosa was detected in vine plants, while X. fastidiosa subsp. multiplex is present in ash and apricot trees, as well as in olive trees.

Table 2 PCR test results in plants for X. fastidiosa detection. 

Plant Scientific name PCR Result
Wild vine Vitis sp. Positive
Eucalyptus Eucalyptus sp. Negative
Rose Rosa sp. Negative
Pear Pyrus communis Negative
Peach Prunus domestica Negative
Oriental persimmon Diospyrus kaki Negative
Carnation Dianthus caryophyllus Negative
Chinese palm Yucca filifera Negative
Pecan Carya illinoensis Negative
Vine 1 Vitis vinifera Positive
Vine 2 Vitis vinifera Negative
Jupiter tree Lagerstroemia indica Negative
Cedar Cedrela sp. Negative
Japanese privet Ligustrum japonicum Negative
Olive Olea europea Negative
Lily Lilium candidum Negative
Johnson grass Sorghum alepense Negative
Apricot 1 Prunus armeniaca Positive
Apricot 2 Prunus armeniaca Positive
Apricot 3 Prunus armeniaca Positive
Mandarin Citrus reticulata Negative
Bouganvilla Bougainvillea sp. Negative
Avocado Persea americana Negative
Fig Ficus carica Negative
Ash 1 Fraxynus sp. Positive
Ash 2 Fraxynus sp. Positive
Ash 3 Fraxynus sp. Negative
Ash 4 Fraxynus sp. Negative

X. fastidiosa subsp. multiplex detection

The identification of X. fastidiosa subsp. multiplex was carried out using the primers XF1968-L / XF1968-R and ALM1/ALM2. The bacterium was detected in apricot plants (samples 1, 2 and 3) and ash (samples 1 and 2) by observing an amplification of 638 and 521 bp corresponding to the aforementioned primers. The PCR multiprimers test with primers pairs: XF1968-L/ XF1968-R, XF2542-L/XF2542-R and ALM1/ALM2 used to differentiate X. fastidiosa in infected vine, almond and flower laurel plants was developed by Hernández-Martínez et al. (2006). In their assay, the subspecies were differentiated based on the set of primers they amplified; based on this, they reported that the samples they amplified with the three pairs of primers correspond to X. fastidiosa subsp. multiplex.

Conclusions

It was shown that X. fastidiosa is affecting different hosts in wine-growing area ​in Parras, Coahuila. In addition to detecting X. fastidiosa in commercial vine plants and wild grapevine, X. fastidiosa subsp. mutiplex in other hosts such as ash and apricot was identified. Likewise, X. fastidiosa was detected in H. vitripennis which is a potential vector of the bacterium in Parras Valley, Coahuila, Mexico.

References

Almeida, R. P. P., & Purcell, A. H. (2003). Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). Journal of Economic Entomology, 96(2): 264-271. https://doi.org/10.1093/jee/96.2.264 [ Links ]

Almeida, R. P. P., Blua, M. J., Lopes, J. O. R. S. and Purcell, A. H. (2005). Vector Transmission of Xylella fastidiosa: Applying Fundamental Knowledge to Generate Disease Management Strategies. Annual Entomology Society of America, 96(6): 775-786. [ Links ]

Blackmer, J. L., Hagler, J. R., Simmons, G. S. and Henneberry, T. J. (2006). (Homoptera: Cicacellidae) from a Point Release Site in Citrus. Environmental Entomology, 35(6): 1617-1625. https://doi.org/10.1093/ee/35.6.1617 [ Links ]

Blocker H.D. (1967). Classification of the western hemisphere Balclutha (Homoptera: Cicadellidae). Proceedings of the United States National Museum 122: 1-55. https://repository.si.edu/bitstream/handle/10088/16930/1/USNMP-122_3581_1967.pdfLinks ]

Brlansky, R. H., Damsteegt, V. D., and Hartung, J. S. (2002). Transmission of the citrus variegated chlorosis bacterium Xylella fastidiosa with the sharpshooter Oncometopia nigricans. Plant Disease, 86(11): 1237-1239. https://doi.org/10.1094/PDIS.2002.86.11.1237 [ Links ]

Burks, R. E. & Redak, R. A. (2003a). The identity and reinstatement of Homalodisca liturata Ball and Phera lacerta Fowler (Hemiptera: Cicadellidae). Proceedings of the Entomological Society of Washington 105: 674-678. https://www.researchgate.net/profile/Roger_Burks3/publication/268394971_The_identity_and_reinstatement_of_Homalodisca_liturata_Ball_and_Phera_lacerta_Fowler_Hemiptera_Cicadellidae/links/56af995a08ae9f0ff7b269db/The-identity-and-reinstatement-of-Homalodisca-liturata-Ball-and-Phera-lacerta-Fowler-Hemiptera-Cicadellidae.pdfLinks ]

Catanach, TA, Dietrich, CH, and Woolley, JB. (2013). A revision of the New World sharpshooter genus Xyphon Hamilton (Hemiptera: Cicadellidae: Cicadellinae). Zootaxa, 3741(4): 490-510. https://www.mapress.com/zootaxa/2013/f/z03741p510f.pdfLinks ]

Costa, H. S., Raetz, E., Pinckard, T. R., Gispert, C., Hernandez-Martinez, R., Dumenyo, C. K. and Cooksey, D. A. (2004). Plant hosts of Xylella fastidiosa in and near southern California vineyards. Plant Disease, 88(11), 1255-1261. https://doi.org/10.1094/PDIS.2004.88.11.1255 [ Links ]

de Lima, J. E. O., Miranda, V. S., Hartung, J. S., Brlansky, R. H., Coutinho, A., Roberto, S. R. and Carlos, E. F. (1998). Coffee leaf scorch bacterium: Axenic culture, pathogenicity, and comparison with Xylella fastidiosa of citrus. Plant Disease, 82(1): 94-97. https://doi.org/10.1094/PDIS.1998.82.1.94 [ Links ]

Daane, K. M., Wistrom, C. M., Shapland, E. B. and Sisterson, M. S. (2011). Seasonal Abundance of Draeculacephala minerva and Other Xylella fastidiosa Vectors in California Almond Orchards and Vineyards. Journal of Economic Entomology, 104(2): 367-374. https://doi.org/10.1603/EC10226 [ Links ]

Díaz O, BE. (2003). Vectores de la enfermedad de Pierce. INIFAP-CIRNO-Campo Experimental Costa de Ensenada, Ensenada, Baja California In. I Seminario Internacional de Vitivinicultura. http://www.isa.utl.pt/riav/Pdf/Memoria%20del%20Seminario%202003.2.pdfLinks ]

DeLong, D.M. & Davidson, R.H. (1935). Further studies of the genus Empoasca (Homoptera, Cicadellidae). Part III. Seventeen new species of Empoasca from the United States and Canada. Ohio Journal of Science. 35(1): 29-39. https://kb.osu.edu/bitstream/handle/1811/2732/1/V35N01_029.pdfLinks ]

Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15. https://worldveg.tind.io/record/33886/Links ]

Firrao G. & Bazzi C. (1994). Specific identification of Xylella fastidiosa using the polymerase chain reaction. Phytopathologia Mediterranea 33: 90-92. https://www.jstor.org/stable/42685924?seq=1#page_scan_tab_contentsLinks ]

EFSA (European Food Safety Authority). (2016). Update of a database of host plants of Xylella fastidiosa. EFSA Journal 14: 4378. https://doi.org/10.2903/j.efsa.2016.4378 [ Links ]

Hernández-Martínez, R., Costa, H. S., Dumenyo, C. K. & Cooksey, D. A. (2006). Infecting Grape, Almonds, and Oleander Using a Multiprimer PCR Assay. Plant Disease, 90(11): 1382-1388. https://doi.org/10.1094/PD-90-1382 [ Links ]

Hill, B. L. & Purcell, a H. (1997). Populations of Xylella fastidiosa in Plants Required for Transmission by an Efficient Vector. Phytopathology, 87(12): 1197-1201. https://doi.org/10.1094/PHYTO.1997.87.12.1197 [ Links ]

Hoddle, M. S. (2004). The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: Implications for California and other grape growing regions of the world. Crop Protection, 23(8): 691-699. https://doi.org/10.1016/j.cropro.2003.11.017 [ Links ]

Hopkins D.L. & Purcell A.H., (2002). Xylella fastidiosa: Cause of Pierce’s Disease of grapevine and other emergent diseases. Plant Disease 86(10): 1056-1066. https://doi.org/10.1094/PDIS.2002.86.10.1056 [ Links ]

Janse, J. D. & Obradovic, A. (2010). Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology. https://www.jstor.org/stable/41998754?seq=1#page_scan_tab_contentsLinks ]

Li, W. B., Pria, W. D., Teixeira, C., Miranda, V. S., Ayres, a J., Franco, C. F., Hartung, J. S. (2001). Coffee leaf scorch caused by a strain of Xylella fastidiosa from citrus. Plant Disease, 85(16): 501-505. https://doi.org/10.1094/PDIS.2001.85.5.501 [ Links ]

Minsavage, G. V., Thompson, C. M., Hopkins, D. L., Leiete, R. M. V. B. C. and Stall, R. E. (1994). Development of A Polymerase Chain-reaction Protocol For Detection of Xylella-fastidiosa In Plant-tissue. Phytopathology, 84(5): 456-461. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1994Articles/Phyto84n05_456.PDFLinks ]

Purcell, a H., Saunders, S. R., Hendson, M., Grebus, M. E. and Henry, M. J. (1999). Causal Role of Xylella fastidiosa in Oleander Leaf Scorch Disease. Phytopathology, 89(1): 53-8. https://doi.org/10.1094/PHYTO.1999.89.1.53 [ Links ]

Redak, R. A., Purcell, A. H., Lopes, J. R. S., Blua, M. J., Mizell III, R. F. and Andersen, P. C. (2004). The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology, 49(1): 243-270. https://doi.org/10.1146/annurev.ento.49.061802.123403 [ Links ]

Sisterson, M. S., Thammiraju, S. R., Lynn-Patterson, K., Groves, R. L. and Daane, K. M. (2010). Epidemiology of Diseases Caused by Xylella fastidiosa in California: Evaluation of Alfalfa as a Source of Vectors and Inocula. Plant Disease, 94(7): 827-834. https://doi.org/10.1094/PDIS-94-7-0827 [ Links ]

Young, D. A. (1958). A synopsis of the species of Homalodisca in the United States (Homoptera, Cicadellidae). Bulletin of the Brooklyn Entomological Society. 53: 7Ð13. Artículo físico. [ Links ]

1Cite this paper/Como citar este artículo: Camacho Aguilar, I. I., Hernández Castillo, F. D., González Gallegos, E., Blanco Rodríguez, E., Flores Olivas, A., García Martínez, O. (2019). Host and Vectors of Xylella fastidiosa in Parras, Coahuila Vineyards, Mexico. Revista Bio Ciencias 6, e413. doi: https://doi.org/10.15741/revbio.06.e413

Received: December 12, 2017; Accepted: June 15, 2018

* Corresponding Author: Hernández Castillo, F. D. Departamento. de Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro #1923, Colonia Buenavista, CP 25315, Saltillo, Coahuila, México. Phone: +52(844) 455 0996. E-mail: fdanielhc@hotmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License