SciELO - Scientific Electronic Library Online

 
vol.7Follaje de Albizia lebbeck (L.) Benth para alimentar cerdos. 1. Índices de patrón de consumo y de comportamiento productivoVariabilidad morfológica y agronómica de germoplasma de frijol cultivado en Oaxaca, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.7  Tepic  2020  Epub 28-Abr-2021

https://doi.org/10.15741/revbio.07.e900 

Original Articles

Analysis of vulnerability of the Río Misantla basin to extreme hydrometeorological phenomena

L.D. Rodríguez-Hernández1 
http://orcid.org/0000-0001-9214-3225

O.A. Valdés-Rodríguez2  * 
http://orcid.org/0000-0002-3702-6920

E.A. Ellis3 
http://orcid.org/0000-0001-8972-4846

S. Armenta-Montero4 
http://orcid.org/0000-0001-6316-9573

1Estudiante del Doctorado en Desarrollo Regional Sustentable, El Colegio de Veracruz, México.

2Colegio de Veracruz, México.

3Universidad Veracruzana, Centro de Investigaciones Tropicales. México

4Universidad Veracruzana, Centro de Investigaciones Tropicales México.


ABSTRACT

The Río Misantla basin in Veracruz, Mexico is a region with high vulnerability to the impact of extreme hydrometeorological phenomena, with disastrous effects on both natural and human systems. Recently, these effects have been augmented by poor management within the basin, changes in land use and the lack of landscape recovery practices. This study analyzed the impact of changing land use on the hydric balance of the Río Misantla basin and its relationship to increased vulnerability to meteorological phenomena. We used the Soil and Water Assessment Tool integrated with Arcgis 10.1, obtaining a model efficiency of 0.61 and a coefficient of determination of 0.89. The results reflect the fact that forests have a direct effect on the hydrological cycle and the behavior of the basin. In the absence of forests, the basin becomes more vulnerable to the impact of heavy rains, storms or hurricanes while, in contrast, the presence of this vegetation protects the basin from these events and decreases the potential for flooding and sediment dragging. We conclude that appropriate management of the basin will reduce its vulnerability to climate change. Therefore, it is necessary to recover and restore deforested lands and to adequately regulate areas of agriculture and livestock production.

KEY WORDS: Vulnerability; deforestation; water balance; SWAT; environmental services

RESUMEN

La cuenca del río Misantla, Veracruz, es propensa a recibir el embate de fenómenos hidrometeorológicos extremos, con efectos desastrosos tanto para los sistemas naturales como para los humanos. Recientemente estos efectos se han incrementado por el mal manejo de la cuenca, el cambio de uso de suelo y la ausencia de prácticas de recuperación del paisaje. En esta investigación se analizó el impacto del cambio de uso de suelo en el balance hídrico de la cuenca del río Misantla y su relación con el incremento de la vulnerabilidad ante fenómenos meteorológicos. Se utilizó la Herramienta de Evaluación del Suelo y Agua integrada a la plataforma de Arcgis 10.1, con la cual se obtuvo una eficiencia del modelo de 0.61 y un coeficiente de determinación de 0.89. Los resultados reflejan que los bosques tienen un efecto directo sobre el ciclo hidrológico y el comportamiento de la cuenca; ya que en su ausencia, la cuenca se vuelve más vulnerable ante la llegada de fuertes lluvias, tormentas o huracanes; mientras que su presencia protege a la cuenca de estos eventos y disminuye el potencial de inundaciones y arrastre de sedimentos. Se concluye que para reducir la vulnerabilidad ante el cambio climático debe existir un manejo adecuado de la cuenca, por lo que se requiere recuperar y restaurar las áreas desprovistas de vegetación, así como regular el crecimiento de la mancha agrícola y pecuaria.

PALABRAS CLAVE: Vulnerabilidad; deforestación; balance hídrico; SWAT; servicios ambientales

Introduction

The climate of the Earth has varied continuously for more than 4,500 million years (Sánchez-Cohen et al., 2011). However, since the industrial revolution, humanity has generated pressures on the environment and climate, causing destabilization of different life support systems and drastically modifying their state of equilibrium as a consequence (IPCC, 2014; Olabe-Egaña, 2016). This disequilibrium, in addition to the exposure to extreme climatic phenomena, such as tropical cyclones and hurricanes, among others, has generated conditions of high vulnerability to climate change in Mexico (Conde-Álvarez & Palma-Grayeb, 2006; Monterroso & Conde, 2015). This situation has been observed throughout history, manifested in the loss of human lives and the economic impacts generated. If the trend continues, estimations point out that the problems will become more acute with the increase in the global temperature of the planet (IPCC, 2014; SEDATU, 2016; SEMARNAT, 2013). In Mexico, just during the period 2000 to 2016, 22,279 emergencies were declared at the national level, for different phenomena related to climatic change (CENAPRED, 2019).

At the basin level, vulnerability to climatic change is presented by a lack of preventative measures, irregular location of human settlements over the banks of rivers, and the poor management of these settlements (Bitrán, 2001; Olabe-Egaña, 2016). This vulnerability could even be increased by the direct effect of land-use change (Ruiz-Barradas, 2012), which translates into the loss of environmental services, such as protection provided by the hydrographic basin, biodiversity richness and carbon capture (Pagiola et al., 2003).

In particular, the Río Misantla basin, located in the mountainous central zone of Veracruz State, in Mexico, is characterized by the presentation of rugged geomorphology and areas that are devoid of vegetation. This basin has seen various climatic events, such as hurricane Roxana in 1995, hurricane Stan in 2005, hurricanes Karl and Matthew in 2010, and the tropical storms Barry and Fernand in 2013. These events have generated impacts due to underwater sediment dragging, causing flooding that has led to the loss of crops, livelihoods, infrastructure, and human lives (Tejeda-Martínez, 2006; Tejeda-Martínez et al., 2012).

In this context, one form of evaluating the vulnerability of a hydrographic basin exposed to extreme climatic phenomena and observing the effect of bad management practices and their impact on the landscape characteristics is through the use of an indirect model, which consists of determining the hydric balance using informatic modeling tools (Benavides-Solorio et al., 2008; Logreira Rentería, 2009). These models use temporal and spatial variables to simulate water flows into and out of a given area, considering all stages of the hydrological cycle (Abad, 2006; Isabel et al., 2004).

The objective of this study was to analyze the impact of land-use change on the hydric balance of the Río Misantla basin during the period 2000 to 2014 and determine its relationship to increased vulnerability to extreme climatic phenomena.

Material and Methods

Study area

The study was conducted in the Río Misantla basin, located in the mountainous central zone of Veracruz State, in Mexico, in hydrological region number 27 Tuxpan - Nautla. This basin covers an area of 585.76 km2 and occupies 12 municipalities, all within Veracruz State (Figure 1).

Source: INEGI (1990). State political division scale 1:4 000 000

INEGI (2010). Hydrographic Network. Scale 1:50 000 edition 2.0

Figure 1 Location of the Misantla river basin. 

The basin is located in the physiographic sub-provinces known as “Sierra de Chiconquiaco” and “Llanuras y Lomerios” (INEGI, 2001). This mountain chain presents abrupt and distinct units until reaching a zone of rounded low hills, associated with gullies and plateaus (Medina-Chena et al., 2010). The topography of the basin is very varied; it presents elevations ranging from sea-level to 2,680 masl within a range of 55.5 km. Twelve different edaphic units are presented along the basin (INEGI, 2013a).

The basin comprises multiple streams and runoffs, among which are Río Palmas, known previously as the Río Grande, and Río Palchán, which combine to form the Río Misantla that gives its name to the basin, finally discharging into the Gulf of Mexico at Barra de Palmas. The maximum mean temperature in the basin is 33 °C while the minimum is 22.8 °C, with an annual mean accumulated precipitation of 1,662 mm (CONAGUA, 2015a).

The basin presents diverse ecosystems, being the most important tropical montane cloud forest (INEGI, 2013b). According to the latest statistics of the National Institute of Statistic and Geography (INEGI, 2010), the total human population of the basin is 59,956 inhabitants, of whom 27,051 are men and 28,585 are women, distributed among 202 localities that mainly present medium and high indices of marginalization (CONAPO, 2010).

Determination and modeling of the hydric balance

The hydrological balance was determined using SWAT (soil and water assessment tool). Topographic (elevation model), edaphological (soil types and their physicochemical properties), land use and vegetation, hydrological and climatic (Figure 2) data were required by the model (Arnold et al., 2012; Winchell et al., 2008).

Source: (Arnold et al., 2012; Winchell et al., 2008).

Figure 2 Flow char to process information in SWAT.  

Once all of the layers of information were categorized and entered, the input databases were generated and a period of 15 years (2000 - 2014) simulated, from which the output data were created. At the end of the simulation, the efficiency of the model was validated to verify the certainty of the data obtained through calculation of the coefficient of determination (R2) and the coefficient of efficiency (E) of Nash & Sutcliffe (1970) (Equation 1).

E=1-t=1TQ0t-Qmt2t=1TQOt-QO_2 (1)

Where Qo represents the observed or true cost, Qm the simulated cost, T the sum of the times analyzed, and t the time of analysis.

To evaluate the effect of the land use and vegetation on the behavior of the hydrological variables in the Río Misantla basin, two scenarios were created: one deforested and the other forested.

For the deforested scenario, areas with tropical montane cloud forests from the upper and mid parts of the basin (FRSD) and slopes of less than 40 % were selected and reclassified as agricultural zones (AGRL). The area of the land-use change corresponded to 3,101.66 ha, equivalent to a reduction of 25.75 % of the initial forested area (Figure 3).

Source: ArcSwat.

Figure 3 Land use change scenario in SWAT. 

In contrast, to analyze the effect of forestation over the upper part of the basin, agricultural (AGRL) and livestock production (PAST) areas with slopes greater than 40 %, which could recover their forested coverage, were selected. These areas were reclassified as forested zones (FRSD), contributing to an increase in the forest coverage of 3,362.38 ha, which was equivalent to 27.91 % of the initial area (Figure 4).

Source: ArcSwat.

Figure 4 Forested scenario in SWAT. 

To determine whether there were differences in the hydrological behavior of the basin between these two simulated scenarios, a one-way analysis of variance (ANOVA) was conducted for seven hydrological variables, with a level of significance of α = 0.05.

Results and Discussion

According to the results of the hydric balance modeled by SWAT (Table 1), the Río Misantla basin exceeds by 16.51 % the annual mean precipitation of the State of Veracruz (INEGI, 2015), and 57.81 % and 51.46 % more than the national mean, according to the World Bank (2015) and the National Water Commission (2015b), respectively. From the data obtained, 9.38 % of the precipitation runs off over the surface, 1.13 % flows to the ocean through subterranean currents (deep percolation), 84.31 % is evapotranspirated, while 63.10 % the water produced in the system runs off over the surface. Percolation is 0.34 % greater than the total recharge of the soil, thus, all of the water that percolates recharges the aquifers of the basin.

Table 1 Hydrology modeled by SWAT. 

YEAR PREC
(mm)
SURQ (mm) LATQ
(mm)
PERC
(mm)
SW
(mm)
ET (mm) PET
(mm)
WY
(mm)
SY
(ton-1ha-1
año-1)
2000 2,037.13 99.10 100.57 15.35 44.26 1,862.19 21,366.26 199.88 22.22
2001 1,902.66 132.50 110.95 22.51 11.44 1,671.38 21,717.89 244.85 8.77
2002 1,381.97 93.22 82.41 12.43 17.52 1,188.54 22,544.96 176.22 8.44
2003 1,469.64 117.53 89.17 11.71 18.50 1,249.41 22,576.97 207.31 12.32
2004 1,822.25 235.50 99.85 22.42 22.45 1,460.94 21,920.42 336.25 16.22
2005 2,198.82 294.16 118.43 31.12 31.44 1,744.97 20,908.04 413.81 27.45
2006 1,572.02 215.58 82.80 23.55 34.30 1,247.14 21,870.84 299.68 18.86
2007 1,938.66 144.88 98.21 23.71 29.44 1,675.99 21,602.77 244.45 13.52
2008 1,665.33 116.24 96.87 15.90 8.16 1,459.24 22,109.80 214.06 10.82
2009 1,946.54 193.27 100.83 26.00 55.79 1,576.77 21,486.01 294.85 17.04
2010 1,904.61 258.60 111.94 31.80 33.67 1,525.05 21,861.06 372.26 29.79
2011 1,871.64 236.16 105.84 22.93 43.89 1,495.76 21,706.99 343.27 32.21
2012 2,001.66 177.45 99.14 20.93 35.77 1,712.32 21,286.04 277.84 14.70
2013 1,703.84 156.83 88.46 14.51 26.31 1,454.58 21,607.43 246.10 15.02
2014 1,534.70 57.73 78.00 11.30 15.04 1,399.02 21,322.15 136.38 5.25
Mean
1,796.76 168.58 97.56 20.41 28.53 1,514.89 21,725.84 267.15 16.84

PREC = precipitation; SURQ = surface runoff; LATQ = lateral flow; PERC = amount of percolating water; SW = soil water content; ET = actual evapotranspiration; PET = potential evapotranspiration; WY = water yield; SY = sediment yield.

Source: SWAT output database.

On comparison of a year with low precipitation with another of high precipitation, as a result of the incidence of climatic combined phenomena, such as hurricane Stan and tropical storm Bret in 2005, differences are observed in the variables predicted by the model for this basin (Table 2), showing that the arrival of hydrometeorological phenomena from the coast of the Gulf of Mexico puts the population at risk due to the increase in surface runoff and the dragging and transport of sediments in the water towards the lower parts of the basin (Tejeda-Martínez, 2006), which increases the risk of flooding (IPCC, 2001; SEDATU, 2016).

Table 2 Hydrology modeled by SWAT in years with different rainfall. 

Parameter 2002 (Low rainfall) 2005 (High rainfall) Variation % of change
PREC (mm) 1,381.97 2,198.82 816.85 59.11
SURQ (mm) 93.22 294.16 200.94 215.55
LATQ (mm) 82.41 118.43 36.02 43.71
PERC(mm) 12.43 31.12 18.69 150.36
SW (mm) 17.52 31.44 13.92 79.45
ET (mm) 1,188.54 1744.97 556.43 46.82
PET (mm) 22,544.96 20,908.04 -1,636.92 -7.26
WY (mm) 176.22 413.81 237.59 134.83
SY (ton/ ha-1/año-1) 8.44 27.45 19.01 225.24

PREC = precipitation; SURQ = surface runoff; LATQ = lateral flow; PERC = amount of percolating water; SW = soil water content; ET = actual evapotranspiration; PET = potential evapotranspiration; WY = water yield; SY = sediment yield.

Source: SWAT output database.

The modeled scenarios (Table 3) demonstrate that the vegetation in the upper part of the Río Misantla basin is important to maintain the processes and equilibrium of the water cycle through the imposition of a direct effect on its functioning (Paré & Gerez, 2012), showing that the forests act to significantly reduce soil erosion, dragging of sediments to deposits and the risk of landslides and flooding (Armenta-Montero, 2012; García-Chevesich, 2010; Manson, 2004). With this, the vulnerability of the population to the impact of hydrometeorological phenomena is reduced.

Table 3 Hydrology modeled by SWAT by scenario. 

Parameter Real scenario Mean Deforested scenario Forested scenario
PREC 1,796.76 mm 1,796.76 mm 1,796.76 mm
SURQ 168.58 mm 190.34 mm 159.81 mm
LATQ 97.56 mm 71.55 mm 102.40 mm
PERC 20.41 mm 20.28 mm 21.50 mm
SW 28.53 mm 30.42 mm 27.61 mm
ET 1,514.89 mm 1,519.15 mm 1,517.78 mm
PET 21,725.84 mm 21,725.84 mm 21,725.84 mm
WY 267.15 mm 262.89 mm 263.26 mm
SY 16.84 ton-1ha-1 año-1 18.51 ton- 1ha-1 año-1 7.38 ton-1ha-1 año-1

PREC = precipitation; SURQ = surface runoff; LATQ = lateral flow; PERC = amount of percolating water; SW = soil water content; ET = actual evapotranspiration; PET = potential evapotranspiration; WY = water yield; SY = sediment yield.

Source: SWAT output database.

The ANOVA for the seven hydrological variables modeled by SWAT found significant differences among surface runoff (SURQ) and sediment yield (SY) (Table 4).

Table 4 Comparison chart of ANOVA´s for seven hydrological variables along the Misantla river basin. 

Parameter Mean Standard deviation Degrees of freedom F P
Surface runoff (SURQ) 172.9 69.18 2 0.7665 0.47102
Lateral flow (LATQ) 90.51 17.41 2 34.178 0.00000
amount of water percolating (PERCOLATE) 20.73 6.72 2 0.1447 0.86567
soil water content (SW) 28.85 13.1 2 0.1715 0.84297
Actual evapotranspiration (ET) 1517 191.8 2 0.002 0.99815
Water yield (WYLD) 264.4 75.53 2 0.0140 0.98612
Sediment Yield (SYLD) 14.24 8.566 2 10.5724 0.00019

Validation of the SWAT model

The values obtained in the validation of the model for the Río Misantla basin produced a coefficient of determination (R2) = 0.89 and an Efficiency of the model (ENS) = 0.61. According to Ramanarayanan et al. (1997), these data represent a model that is considered acceptable or satisfactory, when R2 > 0.6 and ENS > 0.5. Moriasi et al. (2007) classified the efficiency of the SWAT model as acceptable when the value ENS is between 0.50 and 0.65, but unsatisfactory when ENS is less than 0.50 (Barrios & Urribarri, 2010). For this reason, the SWAT model obtained in this study can be considered reliable for this basin.

These results indicate that the hydrological models implemented through geographic information systems (GIS) allow us to study the causal relationships of the hydric behavior of a basin, obtaining reliable results even when there is a lack of information and suitable infrastructure for collecting field data (Barrios & Urribarri, 2010; Hernández, 2014).

The fitting model (R2 = 0.89; ENS = 0.61) indicates high reliability (Table 5), according to previous studies. However, it is important to consider the acquisition of field data to calibrate and obtain higher values at the time of model validation, thus increasing the degree of confidence in the predictions.

Table 5 Water modeling adjustments with the SWAT tool. 

Year Basin Country R2 ENS Author
2014 Río Atulapa Guatemala 0.86 0.6 (Hernández, 2014)
2014 Santa Catalina Argentina 0.82 0.66 (Guevara et al., 2014)
2014 Santa Catalina Argentina 0.86 0.74
2014 Río Mixteco México 0.93 - (Salas-Martínez et al., 2014)
2010 Taquiña Bolivia 0.77 0.54 (Zarate, 2010)
2010 Tolomosa Bolivia 0.84 0.63
2010 Río Chama Venezuela 0.88 0.76 (Barrios & Urribarri, 2010)
2008 Tapalta México 0.85 - (Benavides-Solorio et al., 2008)
2008 Río Amajac México 0.59 0.94 (Mata-Espinoza, 2008)
2005 Río La Laja México 0.82 - (Torres-Benites et al., 2005)
2004 El Tejocote México 0.93 0.85 (Torres-Benites et al., 2004)

ENS = model efficiency.

Conclusions

The vegetation of the upper part of the Río Misantla basin has a direct effect on the hydrological cycle and behavior of the basin, protecting it from the impact of extreme hydrometeorological phenomena. This leads us to conclude that it is possible to reduce vulnerability to climatic change in these areas with appropriate management, recuperation and restoration of areas devoid of vegetation and with the regulation of the growth of the agricultural and livestock production footprint.

With tools such as SWAT, it is possible to create a baseline of knowledge that allows modeling of climate change scenarios to support the creation of environmental policies that facilitate conservation and restoration, as well as a reduction in the vulnerability of the Río Misantla basin.

References

Abad, C. (2006). Modelación hidrológica de las cuencas El Chuveje y Arroyo Real como herramienta en la implementación de pago por servicios ecológicos en la Reserva de La Biosfera Sierra Gorda, Querétaro, México (Tesis de Maestría) Tecnológico de Monterrey. https://repositorio.tec.mx/handle/11285/567666?show=fullLinks ]

Armenta-Montero, S. (2012). Impacto de la vegetación y uso del suelo sobre las características hidrológicas en las cuencas de los ríos Tuxpan y Coatzacoalcos, Veracruz. (Tesis de Maestría en Ecología Tropical ). Universidad Veracruzana. [ Links ]

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B. and Neitsch, S. L. (2012). Input/Output Documentation. Soil and Water Assessment Tool. Texas Water Resources Institute. https://swat.tamu.edu/media/69296/swat- iodocumentation-2012.pdfLinks ]

Banco Mundial. (2015). Promedio detallado de precipitaciones (mm anuales) - México. https://datos.bancomundial.org/indicador/AG.LND.PRCP.MM?locations=MXLinks ]

Barrios, A. G. & Urribarri, A. L. (2010). Aplicación del modelo SWAT en los Andes venezolanos: Cuenca alta del río Chama. Revista Geográfica Venezolana, 51(1), 11-29. https://www.redalyc.org/pdf/3477/347730384002.pdfLinks ]

Benavides-Solorio, J. D., González-Guillén, M. J., López-Paniagua, C. and Valdez-Lazalde, J. R. (2008). Oferta hídrica de la cuenca forestal Tapalpa, Jalisco, orientada hacia los servicios ambientales. Madera y Bosques, 14(2), 5-38. http://www.scielo.org.mx/pdf/mb/v14n2/v14n2a2.pdfLinks ]

Bitrán, D. (2001). Características del impacto socioeconómico de los principales desastres ocurridos en México en el periodo 1980-1999. In Serie. Impacto socieconomico de los desastres naturales en México (1ra.). [ Links ]

Comisión Nacional del Agua [CONAGUA]. (2015a). Banco Nacional de Datos de Aguas Superficiales. http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/elaguaenmexico-caucesyencauces.pdfLinks ]

Comisión Nacional del Agua [CONAGUA]. (2015b). Reporte Del Clima En México 2015. https://smn.conagua.gob.mx/tools/DATA/Climatología/Diagnóstico Atmosférico/Reporte del Clima en México/Anual2015.pdfLinks ]

CENAPRED (Centro Nacional de Prevención de Desastres. (2019). Declaratorias Sobre Emergencia, Desastre y Contingencia Climatológica. https://datos.gob.mx/busca/dataset/declaratorias-sobre-emergencia-desastre-ycontingencia-climatologica. [ Links ]

Consejo Nacional de Población [CONAPO]. (2010). Índice de Marginación y Probreza. http://www.conapo.gob.mx/es/CONAPO/Indice_de_Marginacion_por_Localidad_2010Links ]

Conde-Álvarez, A. C. & Palma-Grayeb, B. (2006). Escenarios de riesgo para el territorio veracruzano ante un posible cambio climático. In Inundaciones 2005 en el Estado de Veracruz. https://www.uv.mx/eventos/inundaciones2005/Links ]

García-Chevesich, P. (2010). Factores que afectan la erosión y la sedimentación. In D. Brea & F. Balocchi (Eds.), Procesos de erosión-sedimentación en cauces y cuencas. [ Links ]

Guevara, O. C., Cazenave, G., Vazquez, A. G., Collazos, G. and Vives, L. (2014). Empleo del modelo hidrológico SWAT en regiones de llanuras. Aplicación en una cuenca rural, arroyo Santa Catalina, Provincia de Buenos Aires. II Congreso Internacional de Hidrología de Llanuras, 10. http://sedici.unlp.edu.ar/bitstream/handle/10915/47531/Documento_completo.pdf?sequence=3Links ]

Hernández, M. E. T. (2014). Aplicación del modelo hidrológico soil and water assessment tool (swat), para la simulación del balance hídrico de la microcuenca del río Atulapa, Esquipulas, Chiquimula, Guatemala, C.A. (Tesis de Licenciatura en Agronomía) Universidad de San Carlos, Guatemala. http://biblioteca.usac.edu.gt/tesis/01/01_2927.pdfLinks ]

Instituto Nacional de Estadística y Geografía [INEGI]. (2001). Fisiografía. Conjunto de Datos Vectoriales Fisiográficos Serie I. Continuo Nacional. Escala 1:1,000,000. https://www.inegi.org.mx/temas/fisiografia/Links ]

Instituto Nacional de Estadística y Geografía [INEGI]. (2010). Censo de Población y Vivienda 2010. https://www.inegi.org.mx/programas/ccpv/2010/Links ]

Instituto Nacional de Estadística y Geografía [INEGI]. (2013a). Carta Edafológica Serie II Continuo Nacional Escala 1:250,000. https://www.inegi.org.mx/temas/edafologia/Links ]

Instituto Nacional de Estadística y Geografía [INEGI]. (2013b). Conjunto de Datos Vectoriales de Uso Del Suelo y Vegetación. Escala 1:250 000, Serie V (Capa Unión). https://www.inegi.org.mx/temas/usosuelo/Links ]

Instituto Nacional de Estadística y Geografía [INEGI]. (2015). Cuentame de México: Estado de Veracruz. http://www.cuentame.inegi.org.mx/monografias/informacion/ver/territorio/clima.aspx?tema=me&e=30Links ]

Instituto Nacional de Estadística y Geografía [INEGI]. (1990). Division politica estatal escala 1:4 000 000 http://www.conabio.gob.mx/informacion/gis/Links ]

Intergovernmental Panel on Climate Change [IPCC]. (2001). Impactos, adaptación y vulnerabilidad. Resumen para responsables de políticas cambio climático 2001. In Tercer Informe de Evaluación Cambio climático 2001 Impactos, adaptación y vulnerabilidad Resumen para responsables de políticas y Resumen técnico. [ Links ]

Intergovernmental Panel on Climate Change [IPCC]. (2014). Cambio climático 2014: Impactos, adaptación y vulnerabilidad - Resumen para responsables de políticas. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Contribución del Grupo de trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Organización Meteorológica Mundial. [ Links ]

Isabel, G.-C., Martínez-Otero, A., Ramírez-Soto, A., Niño-Cruz, A., Juan-Rivas, A. and Dominguez-Barradas, L. (2004). La relación agua-bosque: Delimitación de zonas prioritarias para pago de servicios ambientales hidrológicos en la Cuenca del Río Gavilanes, Coatepec, Veracruz. In El Manejo Integral de Cuencas en México: Estudios y Reflexiones para Orientar la Política Ambiental. http://www2.inecc.gob.mx/publicaciones2/libros/528/relacion.pdfLinks ]

Logreira Rentería, A. (2009). Metodologías técnicas en el ámbito biofísico para la determinación y monitoreo de los servicios ambientales relacionados con regulación hídrica y control de sedimento, y su relación con el uso del suelo. [ Links ]

Manson, R. H. (2004). Los servicios hidrológicos y la conservación de los bosques de México. Madera y Bosques , 10(1), 3-20. https://www.uv.mx/personal/tcarmona/files/2010/08/Manson-2004.pdfLinks ]

Mata-Espinoza, H. A. (2008). El modelo de simulación hidrológica SWAT aplicado en la cuenca del río Amajac, Hidalgo, México. (Tesis de maestría) Colegio de Postgraduados. México. http://colposdigital.colpos.mx:8080/jspui/handle/10521/1600Links ]

Medina-Chena, A., Salazar-Chimal, T. E. and Álvarez-Palacios, J. L. (2010). Fisiografía y suelos. In Atlas del patrimonio natural, histórico y cultural de Veracruz. Universidad Veracruzana. https://www.sev.gob.mx/servicios/publicaciones/colec_veracruzsigloXXI/PatrimonionaturalVeracruz/PatrimonionaturalVeracruz1.pdfLinks ]

Monterroso, A. & Conde, C. (2015). Exposure to climate and climate change in Mexico. Geomatics, Natural Hazards and Risk, 6(4), 272-288. https://doi.org/10.1080/19475705.2013.847867 [ Links ]

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885-900. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.2506&rep=rep1&type=pdfLinks ]

Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6 [ Links ]

Olabe-Egaña, A. (2016). Crisis Climática-Ambiental. La hora de la responsabilidad. Ed. Galaxia Gutenberg, S.L. [ Links ]

Pagiola, S., Bishop, J. and Landell, M. N. (2003). La venta de servicios ambientales forestales: mecanismos basados en el mercado para la conservación y el desarrollo. Ed. Instituto Nacional de Ecología. [ Links ]

Paré, L. & Gerez, P. (2012). Al filo del agua: cogestión de la subcuenca del río Pixquiac, Veracruz. Ed. Instituto Nacional de Ecología. [ Links ]

Ramanarayanan, T. S., Williams, J. R., Dugas, W. A., Hauck, L. M. and McFarland, A. M. S. (1997). Using APEX to Identify Alternative Practices for Animal Waste Management: Part II. Model Application. Texas Institute of Applied Environmental Research. [ Links ]

Ruiz-Barradas, A. (2012). Inundaciones 2010 : Lluvias extremas en Veracruz y su relación con la variabilidad natural del clima. University of Maryland, E.U.A. http://www.atmos.umd.edu/~alfredo/Inunda2010paper.pdfLinks ]

Salas-Martínez, R., Ibáñez-Castillo, L. A., Arteaga-Ramirez, R., Martinez-Menes, M. R. and Fernández-Reynoso, D. S. (2014). Modelado hidrológico de la cuenca del río Mixteco en el Estado de Oaxaca, México. Agrociencia, 48(1), 1-15. http://www.scielo.org.mx/pdf/agro/v48n1/v48n1a1.pdfLinks ]

Sánchez-Cohen, I., Díaz-Padilla, G., Cavazos-Pérez, M. T., Granados-Ramírez, G. R. and Gómez-Reyes, E. (2011). Elementos para entender el cambio climático y sus impactos. Ed. Miguel Ángel Porrúa. [ Links ]

Secretaría de Desarrollo Agrario Territorial y Urbano [SEDATU]. (2016). Guía de resiliencia urbana 2016. https://www.gob.mx/cms/uploads/attachment/file/179708/Guia_de_Resiliencia_Urbana_2016.pdfLinks ]

Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT]. (2013). Estrategia nacional de cambio climático. Visión 10-20-40. http://www.semarnat.gob.mx/archivosanteriores/informacionambiental/Documents/06_otras/ENCC.pdfLinks ]

Tejeda-Martínez, A. (2006). Inundaciones 2005 en el estado de Veracruz Ed. Universidad Veracruzana. https://www.uv.mx/eventos/inundaciones2005/Links ]

Tejeda-Martínez, A., Montes-Carmona, E. and Sarabia-Bueno, C. (2012). Las inundaciones de 2010 en Veracruz Vulnerabilidad y adaptación. Ed. Universidad Veracruzana. [ Links ]

Torres-Benites, E., Fernández-Reynoso, D. S., Oropeza-Mota J. L. and Mejía-Saenz, E. (2004). Calibración del modelo hidrológico SWAT en la cuenca “El Tejocote”, Atlacomulco, Estado de México. Terra Latinoamericana, 22(4), 437-444. http://www.redalyc.org/pdf/573/57311096007.pdfLinks ]

Torres-Benites, E., Mejía-Sáenz, E., Cortés-Becerra, J., Palacios-Vélez, E. and Exebio-García, A. (2005). Adaptación de un modelo hidrológico a la cuenca del Río Laja, Guanajuato, México. Agrociencia , 39, 481-490. [ Links ]

Winchell, M., Srinivasan, R., Di Luzio, M. and Arnold, J. G. (2008). User´s Guide. ArcSWAT Interface for SWAT 2005. Texas Agrilife Research - USDA Agricultural Research Service. http://colinmayfield.com/public/PDF_files/ArcSWAT_Documentation.pdfLinks ]

Zarate, B. O. (2010). Aplicabilidad del modelo hidrológico SWAT en cuencas con características extremas - Cuencas de los ríos Taquiña y Tolomosa. Acta Nova, 4(4), 568-577. http://www.revistasbolivianas.org.bo/pdf/ran/v4n4/v4n4a07.pdfLinks ]

Cite this paper: Rodríguez-Hernández, L.D., Valdés-Rodríguez, O.A., Ellis, E.A., Armenta-Montero, S. (2020). Analysis of vulnerability of the Río Misantla basin to extreme hydrometeorological phenomena. Revista Bio Ciencias 7, e900. doi: https://doi.org/10.15741/revbio.07.e900

Received: December 10, 2019; Accepted: August 29, 2020; Published: September 15, 2020

*Corresponding Author: Valdés-Rodríguez, O. A. Colegio de Veracruz, Carrillo Puerto 26, Xalapa, Ver., CP. 91000, Xalapa, Veracruz, México. Phone: +52(228) 841 5100. E-mail: andrea.valdes@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License