SciELO - Scientific Electronic Library Online

 
vol.10Efecto insecticida del extracto metanólico de Argemone mexicana para el control de Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae)Desarrollo de un método mediante Cromatografía de Líquidos de Alta Eficiencia acoplado a un detector de arreglo de diodos (HPLC-DAD) y su validación para la cuantificación de triclosán en pasta de dientes. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.10  Tepic  2023  Epub 22-Feb-2024

https://doi.org/10.15741/revbio.10.e1405 

Original articles

Ecological condition in an altitude gradient of the Margaritas River, Chiapas, Mexico.

R. Y. Escalona-Domenech1  2 
http://orcid.org/0000-0003-1130-5988

R. J. Barrios-Calderón3  * 
http://orcid.org/0000-0002-8025-6369

1 Programa educativo Ingeniería en Nanotecnología, Universidad Politécnica de Tapachula, Carretera Tapachula-Puerto Madero Km 24 + 300. C.P. 30700, Tapachula, Chiapas, México.

2 Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula. Carretera Antiguo Aeropuerto km 2.5. C.P. 30700, Tapachula, Chiapas, México.

3 Facultad de Ciencias Agrícolas. Universidad Autónoma de Chiapas. Entronque Carretera Costera y Pueblo de Huehuetán. C.P. 30660, Huehuetán, Chiapas, México.


ABSTRACT

The ecological condition is a parameter that allows us to diagnose the structure and functionality of rivers. The Margaritas River basin, located in the municipality of Pijijiapan, Chiapas, Mexico, is an important source of water recharge and supply. In order to evaluate the ecological condition present at three altitudinal gradients of the Margaritas River, a visual evaluation of the physical habitat was performed following Barbour’s protocol and some physical-chemical parameters were determined (depth, dissolved oxygen, electrical conductivity, temperature, salinity and hydrogen potential). Ammonium, nitrite, nitrate and phosphate ions were also measured at the three study sites. Three replicates were carried out and an analysis of variance and comparison of means by Tukey-kramer (p ≥ 0.05) was applied. The results showed a suboptimal (Margaritas 1 and 2 sites) and marginal (Río Ramón site) habitat condition. Physicochemical parameters presented significant differences for site-specific electrical conductivity (F2,6 = 68.77 p ≤ 0.0001), electrical conductivity at 25 ºC (F2,6 = 59.67 p = 0.0001) and water temperature (F2,6 = 160.66, p ≤ 0.0001), where the highest values correspond to site Margaritas 2. The amount of nitrates (6.83 ± 0.55 mg/L) and nitrites (3.67 ± 1.15 mg/L) at site Margaritas 2 were the highest values obtained. Finally, phosphate ions presented their highest values at the Río Ramón site (0.12 ± 0.05 mg/L). The results obtained provide a current perspective on the state and condition of the Margaritas River, and it is necessary to implement appropriate management strategies for each study area.

KEY WORDS: quality; river ecosystem; river assessment; aquatic systems; river vulnerability

RESUMEN

La condición ecológica es un parámetro que permite diagnosticar la estructura y funcionalidad de los ríos. La cuenca del Río Margaritas, localizada en el municipio de Pijijiapan, Chiapas, México es una fuente importante de recarga y provisión hídrica. Con el objetivo de evaluar la condición ecológica presente en un gradiente altitudinal del Río Margaritas, se realizó la evaluación visual del hábitat físico a través del protocolo de Barbour y se determinaron los parámetros fisicoquímicos (profundidad, oxígeno disuelto, conductividad eléctrica, temperatura, salinidad y potencial de Hidrógeno). También se cuantificaron los iones de amonio, nitritos, nitratos y fosfatos en tres sitios de estudio. Se realizaron tres repeticiones y se aplicó un análisis de varianza y comparación de medias por Tukey-kramer (p ≥ 0.05). Los resultados mostraron una condición de hábitat sub óptima (sitios Margaritas 1 y 2) y marginal (sitio Río Ramón). Los parámetros fisicoquímicos presentaron diferencias significativas para la conductividad eléctrica específica en el sitio (F2,6 = 68.77 p ≤ 0.0001), conductividad eléctrica a 25 ºC (F2,6 = 59.67 p = 0.0001) y temperatura del agua (F2,6 = 160.66, p ≤ 0.0001), donde los valores más altos fueron los del sitio Margaritas 2. La concentración de nitratos (6.83 ± 0.55 mg/L) y nitritos (3.67 ± 1.15 mg/L) obtenidos en el sitio Margaritas 2 fueron los valores más altos. Finalmente, los iones de fosfato presentaron los valores más altos en el sitio Río Ramón (0.12 ± 0.05 mg/L). Los resultados obtenidos brindan una perspectiva actual sobre el estado y condición del Río Margaritas, siendo necesario implementar estrategias de gestión propicias para cada zona de estudio.

PALABRAS CLAVE: Water quality; river ecosystem; river assessment; aquatic systems; river vulnerability

Introduction

River ecosystems provide humans with ecosystem services, such as drinking water, food, and recreational activities (Ullah et al., 2018). Changes in land use and some landscape patterns significantly influence the management of river ecosystems and are reflected in water quality, structure, and functionality (Malacarne et al., 2016; Rossi et al., 2018; Liu et al., 2022). River ecosystems have been used by humans as a source of resources and as a pathway for waste disposal, which historically originated a gradual degradation (Alonso & Camargo, 2005). For example, in Mexico, the occupation of the deltaic plain formed by the Mezcalapa-Grijalva-Usumacinta rivers dates back 3500 years with the presence of the Olmec culture and the impact of deforestation, as well as the modification of these rivers, has affected the morphodynamics of deltaic system (Sandoval-Rivera et al., 2022).

Ecosystems deterioration was accentuated after the Industrial Revolution, due to the increased production of waste materials, the introduction of new pollutants, and the increase in population in cities, which in turn generated more waste (Oscoz et al., 2006; De los Santos et al., 2022). Indeed, deterioration is such that currently, these ecosystems constitute one of the most degraded worldwide (Reid et al., 2019, Albert et al., 2021).

In recent years, climate change and human disturbances such as dam construction and deforestation have caused severe impacts on the ecological environment of large river basins, significantly altering the structure and functionality of the ecosystems, and enhancing vulnerability (Varis et al., 2012; Pan et al., 2022). Currently, worldwide and particularly in Mexico, there are several causes of water quality alteration and the degradation of biological communities. These include organic matter pollution, nutrient enrichment, elimination or degradation of riparian forests (Escalona-Domenech et al., 2022), rectification and channelization of rivers (Tovilla, 2005), channel regulation, increase of inorganic and persistent organic pollutants, and mining activities (Zhou et al., 2019; De los Santos et al., 2022; Golin et al., 2022). These causes have led to significant modifications in the ecological status of rivers in Mexico (Díaz-Pascacio et al., 2018; Ortiz, 2019).

Ecological status is the measure of the quality of the structure and functioning of ecosystems (Ferreira, 2012). Good ecological status becomes visible when the biological communities in an aquatic system are equal or very close to those that can be found in unaltered conditions (Volonté et al., 2015). In a good ecological state, the physicochemical conditions and also the configuration of the environment (hydromorphological conditions) should allow the development of these communities (Martínez et al., 2004; Ferreira, 2012).

Particularly in a river, a worthy ecological status is defined by aspects such as water quality, habitat, aquatic organisms, ecological processes, or hydrology, acting at different scales of interaction (Deegan et al., 2010; Pinto & Maheshwari 2011; Poole et al., 2013). Therefore, the assessment of physicochemical, hydromorphological, and biological quality (based mainly on the composition of aquatic flora, invertebrate fauna, and fish) determines the ecological status of water bodies (Ferreira, 2012). Specifically, physicochemical parameters provide adequate information on the nature of the physical properties and chemical species of water, allowing an assessment of its quality for different types of use, unlike other biological methods (Samboni et al., 2007).

The study of the ecological condition of rivers in Chiapas, Mexico is of singular importance due to the extensive process of land cover and land use change that the watersheds of the state are undergoing (Tovilla, 2005). These processes cause an increase in sediments that are naturally carried by the rivers downstream, and reach the coastal lagoons (where most of the coastal rivers flow), and cause siltation problems in the lagoons (Carbajal-Evaristo et al., 2015).

The Margaritas River basin in southeastern Chiapas is an important source of recharge and water supply that supplies coastal lagoons and low-lying communities (Tovilla, 2005). Some authors have found a very close relationship between the ecological condition of the habitat and abiotic factors assessed in the river (habitat quality, water temperature, pH) and nutrient concentrations such as phosphorus and nitrogen (Stevenson, 2014; Charles et al., 2019; Tang, 2020).

Thirty-seven percent of the extension of the Margaritas watershed is formed by induced grasslands in which livestock activity predominates, which has led to a decrease in the ecological condition of the banks and the fragmentation of riparian vegetation (Escalona-Domenech et al., 2022). For this reason, it is of utmost importance to make a diagnosis of the current state and condition of this river ecosystem. From this perspective, this study aimed to evaluate the ecological condition present in an altitudinal gradient of the Margaritas River, based on the physicochemical parameters of the water and the evaluation of the physical aquatic habitat.

Material and Methods

Description of the study area

The Margaritas river basin is located within the municipality of Pijijiapan, Chiapas, Mexico, between coordinates 93° 07’ 57” and 92° 59’ 06” W and 15° 25’ 01” and 15° 41’ 40” N. The watershed is located within the slope formed by the Sierra Madre de Chiapas and the Pacific Ocean, and is part of the hydrological region No. 23 (RH 23) Costa de Chiapas (CONAGUA, 2009) and its total land area is 19,475.81 ha (Figure 1).

Figure 1 The geographical location of the Margaritas River basin 

The Margaritas River basin belongs to the physiographic region of the Pacific Coastal Plains of Chiapas, located in the Central American Cordillera (INEGI, 2002). The predominant climate in the basin is warm humid Am (w), which represents 60.95 % (11,871.25 ha) of the total surface area of the basin, while 39.05 % (7,604.56) has a warm subhumid climate Aw2(w) (in the middle and lower part of the basin) and a semi-warm humid climate ACm(W) (in the upper part of the basin) (INEGI, 2008). An average annual temperature of 27.6 °C and an average precipitation of 2,596 mm are reported for the basin according to data from meteorological station No. 23018 of the Comisión Nacional del Agua (CONAGUA-MEXICO) (Escalona-Domenech et al., 2022), although in the higher areas of the basin it can reach 2,600 mm per year. The flows of this river follow a behavior according to two marked seasons of the year, rainy and dry. The rainy season includes the months from May to October, while the dry season includes the months from November to April. The historical maximum precipitation values occur during the month of September and the minimum in January (Figure 2).

Figure 2 Walter and Lieth climate diagrams of the Margaritas River basin for the period 1951 to 2021. 

Throughout the Margaritas River basin, the edaphology is formed by seven soil units, where cambisol, lithosol, and regosol units predominate, representing 37.58, 37.21 and 17.18 % respectively of the total area of the basin (INEGI, 2016).

Location of sampling sites

Three sampling sites, located at different altitudes of the Margaritas River, were located: 1) Margaritas 1 established between coordinates 15°32’14.37” N and 93° 4’50. 12” W at an altitude of 15 masl, 2) Margaritas 2 installed between 15°35’31.97” N and 93°3’23.53” W at 70 masl and 3) Río Ramón demarcated between coordinates 15°39’46.05” N and 93°1’45.39” W at an altitude of 386 masl (Figure 1).

Habitat evaluation

At each sampling site, the visual evaluation of the physical habitat was carried out following the Barbour et al. (1999) protocol for wadeable rivers, which consists of ten variables that are assigned a value from 0 to 20 points. With the sum of all the variables, a final score is given, giving the habitat condition a rating of optimal, suboptimal, marginal, and poor (Table 1).

Table 1 Variables for the evaluation of the condition of the habitat and its score 

Parameter Condition
Optimal Suboptimal Marginal Poor
Channel alteration 20-16 15-11 10-6 5-0
Channel status 20-16 15-11 10-6 5-0
Covering of edges by sediments 20-16 15-11 10-6 5-0
Bank stability Right 10-9 8-6 5-3 2-0
Left 10-9 8-6 5-3 2-0
Speed and depth regimes 20-16 15-11 10-6 5-0
Substrate for epifauna 20-16 15-11 10-6 5-0
Rapids frecuencies 20-16 15-11 10-6 5-0
Width of the riparian zone of the bank Right 10-9 8-6 5-3 2-0
Left 10-9 8-6 5-3 2-0
Sediment deposition 20-16 15-11 10-6 5-0
Vegetal protection of the bank Right 10-9 8-6 5-3 2-0
Left 10-9 8-6 5-3 2-0
Total (200-166) (156-113) (100-60) (47-0)

Bibliographical source: Barbour et al. (1999)

Hydrology and physicochemical water parameters

At each site, the parameters of depth (Prof), dissolved oxygen (Od), electrical conductivity (EC), temperature (T), and salinity (Sal) were determined directly in the field in triplicate using a YSI model 85 portable multiparameter equipment. Hydrogen potential (pH) was measured with an eco-Test pH sensor model pH2. In addition, ammonium (NH4 +), nitrite (NO2 -), nitrate (NO3 -), and phosphate (PO4 -) concentrations were determined using a Hach portable Case equipment model DR/890.

Statistical analysis

A completely randomized design was applied. The sample size included a total of three replicates for each experimental analysis performed (n ≥ 3). For the analysis of the results of each of the variables evaluated in the study sites, an analysis of variance and comparison of means by Tukey-Kramer (p ≥ 0.05) was applied using jmp pro 15 software (Statistical Analysis System [SAS], 2020).

Resultados

Physical habitat

In the three sites evaluated, ratings were obtained corresponding to two of the states for habitat conditions mentioned by Barbour et al. (1999), which were: marginal and suboptimal. Sites Margaritas 1 and Margaritas 2 showed the highest score corresponding to a suboptimal habitat condition (Table 2).

Table 2 Values obtained in the evaluation of the physical aquatic habitat 

Site Altitude msnm Coordinates Score Qualification
Margaritas 1 56 15°32’14.37”N, 93°4’50.12”O 141 Sub-optime
Margaritas 2 68 15°35’31.97”N, 93°3’23.53”O 143 Sub-optime
Ramón river 386 15°39’46.05”N 93°1’45.39”O 92 Marginal

The variables that most influenced this rating were those related to bank protection and riparian vegetation width (Table 3). The variable that showed the least variation among sites was channel alteration (Figure 3).

Table 3 Values were obtained for each variable by sites of the physical aquatic habitat evaluation according to Barbour et al. (1999

Variable Ramón river Margaritas 1 Margaritas 2
Bottom substrate for epifauna 10 14 13
Embedment (covering of edges by sediments) 8 12 15
Speed/depth regime 10 13 20
Sediment deposition 10 12 10
State of the flow in the channel 14 19 14
Alteration of the channel 16 19 16
Rapids frequencies 14 20 15
Margin stability (right margin) 2 9 9
Margin stability (left margin) 2 10 9
Margin protection (right margin) 2 2 6
Margin protection (left margin) 2 5 6
Riparian vegetation width (right margin) 1 2 5
Riparian vegetation width (left margin) 1 4 5
Total 92 141 143

Physical-chemical parameters

The results obtained from the measurement of physicochemical parameters of the waters of the Margaritas River, taking into account each of the replicates, are shown in Table 4.Od (%) = dissolved oxygen in percent, Od (mg/L) = dissolved oxygen in milligrams per liter, EC 1 (µS/cm) = site specific electrical conductivity expressed in micro siemens/centimeters, EC 2 (µS/cm) = electrical conductivity at 25°C expressed in micro siemens/centimeters, Sal (ppm) = salinity in parts per thousand, T (°C) = emperature in degrees centigrade, pH = Hydrogen potential.

The mean values obtained for each parameter evaluated are shown graphically in Figure 4, while the mean comparison test and ANOVA applied to each parameter are shown in Table 5.

Figure 3 Status of each one of the attributes of the physical habitat of the protocol of Barbour et al, 1999 in the 3 sampling sites of the Margaritas River, Chiapas 

Table 4.  Depth, oxygen, electrical conductivity, salinity, temperature and pH of the water of the Margaritas River at the sampling sites 

Site Repetition Depth (cm) Od (%) Od (mg/L) EC 1 (µS/cm) EC 2 (µS/cm) Sal (ppm) T (0C) pH
Margaritas 1 1- Left 28 95.2 7.86 80.5 82.1 0.00 24.1 8.2
Margaritas 1 2- Center 28 96.0 8.07 83.8 85.2 0.00 24.2 8.1
Margaritas 1 3- Right 20 91.6 7.64 83.6 85.2 0.00 24.1 8.0
Margaritas 2 1- Left 34 92.4 7.59 86.6 86.4 0.00 25.1 8.3
Margaritas 2 2- Center 62 98.5 8.14 86.6 86.4 0.00 25.1 8.0
Margaritas 2 3- Right 46 94.7 7.70 86.7 86.4 0.00 25.2 8.1
Ramón river 1- Left 14 81.2 6.79 76.10 77.4 0.00 24.2 8
Ramón river 2- Center 29 90.4 7.44 74.20 75.7 0.00 24 7.7
Ramón river 3- Left 56 92.8 7.83 74.00 75.4 0.00 24 7.6

Figure 4 Graphic interpretation of each of the physical-chemical parameters evaluated at each study site and their respective repetitions with respect to the mean 

Table 5 Average values ​​of depth, oxygen, electrical conductivity (EC), salinity, temperature and Hydrogen potential (pH) in Río Margaritas ± D.E. Tukey-Kramer test, p ≤ 0.05 

Site Average S.D.
Depth (cm)
Margaritas 1 25.33 4.61 F2,6=1.67
Margaritas 2 47.33 14.04 n.s. p = 0.26
Ramón river 33 21.28
Oxygen (%)
Margaritas 1 94.26 2.34 F2,6=2.52
Margaritas 2 95.2 3.08 n.s. p = 0.15
Ramón river 88.13 6.12
Oxygen mg/L
Margaritas 1 7.85 0.21 F2,6=1.71
Margaritas 2 7.81 0.29 n.s p = 0.25
Ramón river 7.35 0.52
EC 1 (µS/cm)
Margaritas 1 82.63 1.85 b F2,6=68.77
Margaritas 2 86.63 0.05 a p ≤ 0.0001
Ramón river 74.76 1.15 c
EC 2 (µS/cm)
Margaritas 1 84.16 1.78 a F2,6=59.67
Margaritas 2 86.4 1.74e-14 a p = 0.0001
Ramón river 76.16 1.07 b
Salinity (ppm)
Margaritas 1 0
Margaritas 2 0
Ramón river 0
T (0C)
Margaritas 1 24.13 0.05 b F2,6=160.66
Margaritas 2 25.13 0.05 a p ≤ 0.0001
Ramón river 24.06 0.11 b
pH
Margaritas 1 8.1 0.1 F2,6=4.82
Margaritas 2 8.13 0.15 n.s. p = 0.06
Ramón river 7.76 0.2

According to the average values obtained in each of the sites, there were significant differences in electrical conductivity, which was evaluated under two conditions: site-specific electrical conductivity (EC1) and electrical conductivity at 25 ºC (EC2). The results show differences between the three sites evaluated for both conditions. For EC1, the highest value corresponds to the Margaritas 2 site (86.63 ± 0.05 µS/cm), while, in EC2, the Margaritas 1 (84.16 ± 1.78 µS/cm) and Margaritas 2 (86.4 ± 1.74e-14 µS/cm) sites were much higher. For both EC1 and EC2, the results obtained for the Río Ramón site were significantly lower (Table 5).

Water temperature also presented significant statistical differences, having a higher value at the Margaritas 2 site (25.13 ± 0.05 ºC) with respect to the Margaritas 1 site (24.13 ± 0.05 ºC) and the Río Ramón site (24.06 ± 0.11 °C), as shown in Table 5. Depth (Prof.), dissolved oxygen (Od) and pH values did not present significant differences in the three evaluated zones within the Margaritas River (Table 5).

As for the chemical parameters, ammonium only presented one value for the Margaritas 2 site, which was very low (Table 6). The amount of nitrate was higher at the Margaritas 2 site with an average value of 6.83 ± 0.55 mg/l while the Río Ramón site only presented 0.2 ± 3.40E-17 mg/l (Table 6).

Table 6 Results of the physicochemical parameters of the water of the Margaritas River at three sampling sites during the rainy season with standard deviation values 

Site Parameter
NH4 + (mg/L) NO3 - (mg/L) NO2 - (mg/L) PO4 - (mg/L)
Margaritas 1 0 ± 0 2.57 ± 2.60 0 ± 0 0.02 ± 0.02
Margaritas 2 0.01 ± 0.02 6.83 ± 0.55 3.67 ± 1.15 0.05 ± 0.12
Ramón river 0 ± 0 0.2 ± 3.40E-17 0.67 ± 0.58 0.12 ± 0.05

NH4 + = ammonium, NO2 - = nitrites, NO3 - = nitrates, PO4 - = phosphates

Nitrites had similar behavior to nitrates at the Margaritas 2 site, obtaining the highest values (3.67 ± 1.15 mg/l) with respect to the Río Ramón and Margaritas 1 sites (Table 6). For phosphate analysis, the site that presented the highest values was Río Ramón (0.12 ± 0.05 mg/l) as shown in Table 6. Thus, it is considered that ammonium and phosphate concentrations were low in the three sites analyzed.

Discusion

The results of the habitat assessment showed that in the Margaritas River, human activities such as cattle ranching have caused a decrease and/or change in riparian vegetation towards other types of vegetation or its disappearance. This may be accompanied by a human disturbance in the landscape, geological aspects, and precipitation that tend to naturally affect stream conductivity (Vander Laan et al., 2013) and could have contributed to the destabilization of the banks, which was observed in the case of the Río Ramón site.

Precipitation, soil fertility, watershed slope, and river size affect the location and intensity of agricultural and urban land use because they regulate crop growth, erosion, transport, and water supply (Ramankutty et al., 2006). These regional-scale natural factors also determine land use and cover changes at the watershed level (Dodds et al., 2015). The habitat condition, structure, and functionality of ecosystems determine the potential for the existence of their vulnerability (Micheli et al., 2014). Therefore, riparian ecosystems such as the Margaritas River that present suboptimal (Margaritas 1 and 2 sites) and marginal (Ramon River site) conditions in their tributaries, give the first indication of habitat degradation. So, from a management perspective, as Tang (2020) points out, human activities can be managed to reduce pollutants and ecosystem alterations in the evaluated sites.

The physical-chemical parameters Prof, Od and pH show similarity in the three zones evaluated within the Margaritas River. Water pH showed a certain level of alkalinity in the waters of the Margaritas River in the three sites evaluated, which is very similar to that reported by Garcia et al. (2019) applying linear regression models in which no differences were presented in the alkaline pH of the Chimbo River, Ecuador. On the other hand, the EC shows significant differences in which the Río Ramón site has low values with respect to the other study sites, however, the obtained values at study sites turn out to be higher than those reported by Arroyo and Encalada (2009) in the Guajalito (58.8 μS/cm), Palmeras (55 μS/cm) and Brincador (30 μS/cm) rivers which are within the permissible standards as established by Ríos and Prat (2004). Thus, some physicochemical conditions in the stream such as high nutrient concentrations have been widely associated with natural and human factors at the watershed scale (Golden et al., 2016), which makes it more evident a higher concentration of dissolved solids at site Margaritas 2. The above could be derived from a higher emission of organic waste, fertilizers, or materials from agricultural and livestock practices that increase these values.

In the case of chemical parameters such as phosphates, it was observed that these showed a decrease as the altitude decreased and the river flow increased, also increasing due to seasonal rainfall. Similar results were obtained by Hernández (2014) for the Cacaluta River. This decrease in phosphates could be explained due to the dilution effect that water has on this compound, this is because the Río Ramón site is located in a headwater river, while the Margarita 1 and Margarita 2 sites are located on the main channel, much wider and with greater flow. Marcarelli and Wurtsbaugh (2007) note that high phosphorus concentrations benefit the abundance of nitrogen-fixing taxa and an increase in their rate of fixation as nitrogen input into the waters increases; however, nitrate concentrations at the Río Ramón site were lower concerning the Margaritas 1 and Margaritas 2 sites. This low nitrogen fixation at the Río Ramón site, in addition to the altitude, may be due to a very limited light energy whose fixation rate in shaded rivers is lower (Marcarelli et al., 2008) as is the case in this higher altitude zone within the Margaritas River.

Ammonium concentrations only showed very low values for the Margaritas River 2 site but related to the higher EC obtained for this site, they are indicative of greater contamination in its waters. This result is also influenced by the concentration of oxygen and pH, which causes it to oxidize rapidly to nitrite (Hernández, 2014), which could be related to the fact that the Ramón 2 site obtained the highest results in nitrites. Agricultural activities (nitrogen fertilizers and cattle manure) that are carried out in this watershed could be influencing the concentration of these parameters (Auquilla et al. 2005; Hernández, 2014).

Conclusions

In the Margaritas River, the ecological condition reported for the three sections evaluated is favorable according to the information obtained. Habitat conditions and dissolved oxygen values generate suboptimal conditions for the development of aquatic life. However, it is necessary to implement management strategies at the Margaritas 2 site, since this site has a higher electrical conductivity and a greater presence of nitrites, which indicate the degradation of this area of the river.

Obtained data provide an overview of the ecological condition of the Margaritas River in the three zones evaluated. However, it is recommended that a more extensive and intensive study be carried out, increasing the number of sites at different altitudes. It will also be important to include climatic conditions (rainfall and dryness) to complete the information generated in this research so that more concrete management strategies can be proposed for each zone of the Margaritas River.

Acknowledgment

To Dr. Dulce Infante Mata, Dr. Everardo Barba Macías and Biologist José R. García Alfaro from El Colegio de la Frontera Sur for the administrative and technical support, and all the facilities provided (materials and equipment used) to carry out this study. ; Ing. José H. López Urbina for his support in the elaboration of the map and LDG Nereyda J. Barrios Calderón for the design and image processing.

Referencias

Alonso, A., & Camargo, J. A. (2005). Estado actual y perspectivas en el empleo de la comunidad de macroinvertebrados bentónicos como indicadora del estado ecológico de los ecosistemas fluviales españoles. Ecosistemas, 14(3), 87-99. http://www.revistaecosistemas.net/articulo.asp?Id=133Links ]

Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O. , & Ripple, W. J. (2021). Scientists’ warning to humanity on the freshwater biodiversity crisis.Ambio, 50, 85-94. https://doi.org/10.1007/s13280-020-01318-8 [ Links ]

Arroyo, J. C., & Encalada, A. (2009). Evaluación de la calidad de agua a través de macroinvertebrados bentónicos e índices biológicos en ríos tropicales en bosque de neblina montano. Avances en Ciencias e Ingeniería, 1(1). https://doi.org/10.18272/aci.v1i1.4 [ Links ]

Auquilla, R. C., Astorga, Y., & Jiménez, F. (2005). Influencia del uso del suelo y calidad del agua en la subcuenca del río Jabonal, Costa Rica. Recursos Naturales y Ambiente, 48, 81-92.https://www.uv.mx/oabcc/files/2018/11/Revista-Rec.-Nat.-y-Amb.-No.-48.pdfLinks ]

Barbour, M., Gerritsen, J., Snyder, B., & Stribling, J. (1999). Habitat assessment and physicochemical parameters. In Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Second Edition. Washington D.C.: U.S. Environmental Protection Agency; Office of Water.https://www.waterboards.ca.gov/water_issues/programs/tmdl/docs/303d_policydocs/161.pdf [ Links ]

Carbajal-Evaristo, S. S., Tovilla-Hernández, C., Díaz-Gallegos, J. R., Infante-Mata, D.M., & Acosta-Velázquez, J. (2015). Evaluación del impacto del azolvamiento en la Laguna Cerritos como consecuencia de la canalización del río Cintalapa, Chiapas. En: Velázquez Velázquez, E., Romero-Berny, E.I., & Rivera-Velázquez, G. (Eds.) Reserva de la Biósfera La Encrucijada, dos décadas de investigación para su conservación. Universidad de Ciencias y Artes de Chiapas. 253-264. [ Links ]

Charles, D. F., Tuccillo, A. P., & Belton, T. J., (2019). Use of diatoms for developing nutrient criteria for rivers and streams: a biological condition gradient approach. Ecological Indicators, 96(1), 258-269. https://doi.org/10.1016/j.ecolind.2018.08.048 [ Links ]

Comisión Nacional del Agua [CONAGUA]. (2009). Atlas del agua en México. Comisión Nacional del Agua, SEMARNAT. https://www.gob.mx/cms/uploads/attachment/file/259343/_2009__Atlas_del_Agua_en_M_xico_2009.compressed.pdf Links ]

De Los Santos, L., Ccamapaza, J. L., Valencia-Bedregal, R. A., Borja-Castro, L. E., Velazquez-Garcia, J., Nimalika, D. H., Ionescu, A., Arvidsson, D., Peregrine, E., Newton, P., Lepage, H., Byrne, P., Bustamante, A. G., & Barnes, C. (2022). Physical and chemical characterization of sediments from an Andean river exposed to mining and agricultural activities: The Moquegua River, Peru. International Journal of Sediment Research, 37(6), 780-793. https://doi.org/10.1016/j.ijsrc.2022.06.002 [ Links ]

Deegan, L. A., Neill, C., Haupert, C. L., Ballester, M. V. R., Krusche, A. V., Victoria, R. L., Thomas, S. M., & Moor, E. (2010). Amazon deforestation alters small stream structure, nitrogen biogeochemistry and connectivity to larger rivers. Biogeochemistry, 105, 53-74. https://doi.org/10.1007/s10533-010-9540-4 [ Links ]

Díaz-Pascacio, E., Ortega-Argueta, A., Castillo-Uzcanga, M. M., &Ramírez-Marcial, N. (2018). Influence of land use on the riparian zone condition along an urban-rural gradient on the Sabinal River, Mexico. Botanical Sciences, 96(2),180-199.https://doi.org/10.17129/botsci.1858 [ Links ]

Dodds, W. K., Gido, K., Whiles. M. R., Daniels, D., & Grudzinski, B. P. (2015). The stream biome gradient concept: factors controlling lotic systems broad biogeographic scales. Freshwater Science, 34(1), 1-19. http://dx.doi.org/10.1086/679756 [ Links ]

Escalona-Domenech, R. Y., Infante-Mata, D., García-Alfaro, J. R., Ramírez-Marcial, N., Ortiz-Arrona, C. I., & Barba, E. (2022). Evaluación de la calidad del agua y de la ribera en la cuenca del Río Margaritas, Chiapas, México. Revista internacional de contaminación ambiental,38, 54092. https://doi.org/10.20937/rica.54092 [ Links ]

Ferreira, T. (2012). Restauración y Gestión Ecológica Fluvial. Un Manual de Buenas Prácticas de Gestión de Ríos y Riberas. Camprodon J, Ferreira MT, Ordeix M, editors. http://observatoriaigua.uib.es/repositori/gf_restauracion_sudoe.pdfLinks ]

García, S. L., Arguello, A., Parra, R., & Pincay Pilay, R. (2019). Factores que influyen en el pH del agua mediante la aplicación de modelos de regresión lineal. INNOVA Research Journal, 4(2), 59-71. https://doi.org/10.33890/innova.v4.n2.2019.909 [ Links ]

Golden, H. E., Lane, C. R., Prues, A. G., & D’Amico, E. (2016). Boosted regression tree models to explain watershed nutrient concentrations and biological condition. Journal of the American Water Resources Association, 52(5), 1251-1274. https://doi.org/10.1111/1752-1688.12447 [ Links ]

Golin,N., Santos, L., Esquivel.,Lima de Souza, T., Gallucci, M., Pinto, A., Castro, C., & de Oliveira, C. A. (2022). Organic and inorganic pollutants in Jordão and Iguaçu rivers southern Brazil impact early phases of Rhamdia quelen and represent a risk for population.Chemosphere, 303, part 1, 134989https://doi.org/10.1016/j.chemosphere.2022.134989 [ Links ]

Hernández, J. L. (2014). Caracterización de uso de suelo y evaluación de la calidad riparia del río Cacaluta, Acacoyagua, Chiapas, México. [Tesis de Maestría, El Colegio de la Frontera Sur, Tapachula, Chiapas]. https://ecosur.repositorioinstitucional.mx/jspui/bitstream/1017/2026/1/100000054653_documento.pdf Links ]

INEGI [Instituto Nacional de Estadística, Geografía e Informática]. (2002). Conjunto de datos vectoriales edafológico. Escala 1:250000. Serie III (continuo nacional). Instituto Nacional de Estadística y Geografía,México. [ Links ]

INEGI [Instituto Nacional de Estadística, Geografía e Informática]. (2016). Conjunto de datos vectoriales de uso de suelo y vegetación. Escala 1:250000. Serie VI. Instituto Nacional de Estadística y Geografía, México . https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359 Links ]

INEGI [Instituto Nacional de Estadística, Geografía e Informática]. (2008). Carta climática de acuerdo al sistema de Koppen modificado. [ Links ]

Liu, Y., Shen, Y., Cheng, C., Yuan, W., Gao, H., & Guo, P. (2022). Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. Science of The Total Environment, 817,152999. https://doi.org/10.1016/j.scitotenv.2022.152999. [ Links ]

Marcarelli, A. M., & Wurtsbaugh, W. A. (2007). Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshwater Biology, 52(11), 2211-2225. https://doi.org/10.1111/j.1365-2427.2007.01851.x [ Links ]

Marcarelli, A. M., Baker, M. A., & Wurtsbaugh, W. A. (2008). Is in-stream N2fixation an important N source for benthic communities and stream ecosystems? Journal of the North American Benthological Society, 27(1), 186-211. https://doi.org/10.1899/07-027.1 [ Links ]

Malacarne, T.J., Baumgartner, M. T., Moretto, Y., & Gubiani, E. A. (2016). Effects of land use on the composition and structure of aquatic invertebrate community and leaf breakdown process in neotropical streams. River Research and Applications 32(9), 1958-1967.https://doi.org/10.1002/rra.3031 [ Links ]

Martínez, J. F., Correcher, E., Piñón, A., Martínez, M. A., & Pujante, A. M. (2004). Estudio del estado ecológico de los ríos de la cuenca hidrográfica del Júcar (España) mediante el índice BMWP. Limnética, 23(3-4), 331-346. https://doir.org/10.23818/limn.23.28 [ Links ]

Micheli, F., Mumby, P. J., Brumbaugh, D. R., Broad, K., Dahlgren, C. P., Harborne, A. R., Holmes, K. E., Kappel, C. V., Litvin, S. Y., & Sanchirico, J. N. (2014). High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biological Conservation, 171, 186-194. https://doi.org/10.1016/j.biocon.2013.12.029 [ Links ]

Ortiz, C. I. (2019). Los corredores ribereños en la cuenca del río Ayuquila-Armería en México. Vegetación ribereña y calidad de las riberas. Universidad de Guadalajara, Centro Universitario de la Costa Sur (Eds.). Guadalajara, México. [ Links ]

Oscoz, J., Campos, F., & Escala, M. C. (2006). Variación de la comunidad de macroinvertebrados bentónicos en relación con la calidad de las aguas.Limnetica, 25(3), 683-692. https://doi.org/10.23818/limn.25.46 [ Links ]

Pan, Z., Gao, G., & Fu, Bojie. (2022). Spatiotemporal changes and driving forces of ecosystem vulnerability in the Yangtze River Basin, China: Quantification using habitat-structure-function framework. Science of The Total Environment , 835, 155494. https://doi.org/10.1016/j.scitotenv.2022.155494. [ Links ]

Pinto, U., & Maheshwari, B. L. (2011). River health assessment in peri-urban landscapes: An application of multivariate analysis to identify the key variables.Water Research,45(13), 3915-3924. https://doi.org/10.1016/j.watres.2011.04.044 [ Links ]

Poole, A. E., Bradley, D., Salazar, R., & Macdonald, D. W. (2013). Optimizing agrienvironment schemes to improve river health and conservation value.Agriculture, ecosystems & environment, 181, 157-168. https://doi.org/10.1016/j.agee.2013.09.015 [ Links ]

Ramankutty, N., Graumlich, L., Achard, F., Alves, D., Chhabra, A., DeFries, R.S., Foley, J., Gesit, H., Houghton, R., Goldewijk, K., Lambin, E., Millington, A., Rasmussen, K., Reid, R., & Turner, B. (2006). Global land-cover change: Recent progress, remaining challenges. In: Lambin, E. F., Geist, H. (Eds.). Land-Use and Land-Cover Change: Local Processes and Global Impacts (1st ed), 9-39 https://researchnow.flinders.edu.au/en/publications/global-land-cover-change-recent-progress-remaining-challengesLinks ]

Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S., Smol , P. J., Taylor, W. W., Tockner, K., Vermaire, C. J., Duggeon, D., & Cooke, J. S. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849-873. https://doi.org/10.1111/brv.12480 [ Links ]

Ríos, B., & Prat, N. (2004). Estudios de las condiciones de referencia de las cuencas del río Pita, San Pedro y Machángara. Departamento de Ecología, Universitat de Barcelona , , España. [ Links ]

Rossi, F., Mallet, C., Portelli, C., Donnadieu, F., Donnadieu, F., & Artigas, J. (2018). Stimulation or inhibition: leaf microbial decomposition in streams subjected to complex chemical contamination. Science of The Total Environment , 648, 1371-1383. https://doi.org/10.1016/j.scitotenv.2018.08.197 [ Links ]

Sandoval-Rivera, J. P., Sáenz-Arroyo, A., Alcérreca-Huerta, J. C., & Rodiles-Hernández, R. (2022). Impacto histórico de la deforestación y la modificación de los ríos en la morfología de la costa del sur del Golfo de México.Revista de historia (Concepción),29(1), 150-181. https://dx.doi.org/10.29393/rh29-6ihjr40006 [ Links ]

Samboni, N., Carvajal, Y., & Escobar, J. C. (2007). Revisión de parámetros fisicoquímicos como indicadores de calidad y contaminación del agua.Ingeniería e Investigación,27(3), 172-181. http://www.redalyc.org/articulo.oa?id=64327320Links ]

Statistical Analysis System [SAS Institute Inc.]. (2020). JMP 14. Statistical discovery from SAS. Cary, NC, USA: Author [ Links ]

Stevenson, R. J. (2014). Ecological assessments with algae: a review and synthesis. Journal of Phycology, 50(3), 437-461. https://doi.org/10.1111/jpy.12189 [ Links ]

Tang, T., Stevenson, R. J., & Grace, K. B. (2020). The importance of natural versus human factors for ecological conditions of streams and rivers. Science of The Total Environment , 704, 135268. https://doi.org/10.1016/j.scitotenv.2019.135268 [ Links ]

Tovilla, C. (2005). Agonía y desaparición de los ríos y humedales en la costa de Chiapas. Ecofronteras, 25, 5-8. https://revistas.ecosur.mx/ecofronteras/index.php/eco/article/view/873/866Links ]

Ullah, K. A., Jiang, J., & Wang, P. (2018). Land use impacts on surface water quality by statistical approaches. Global Journal of Environmental Science and Management, 4(2), 231-250. http://dx.doi.org/10.22034/gjesm.2018.04.02.010 [ Links ]

Vander Laan, J. J., Hawkins, C. P., Olson, J. R., & Hill, R. A. (2013). Linking land use, instream stressors, and biological condition to infer causes of regional ecological impairment in streams. Freshwater Science , 32 (3), 801-820. https://doi.org/10.1899/12-186.1 [ Links ]

Varis, O., Kummu, M., & Salmivaara, A. (2012). Ten major rivers in monsoon Asia-Pacific: an assessment of vulnerability. Applied Geography, 32(2), 441-454. http://dx.doi.org/10.1016/j.apgeog.2011.05.003 [ Links ]

Volonté, A., Campo, A., & Gil, V. (2015). Estado ecológico de la cuenca baja del arroyo San Bernardo, Sierra de la Ventana, Argentina. Revista Geográfica de América Central, 1(54),135-151. http://dx.doi.org/10.15359/rgac.1-54.6 [ Links ]

Zhou, M., Xia, J., & Deng, S. (2019). One-dimensional modelling of channel evolution in an alluvial river with the effect of large-scale regulation engineering. Journal of Hidrology, 575, 965-975. https://doi.org/10.1016/j.jhydrol.2019.05.074 [ Links ]

Financing This research did not receive external funding.

Financiamiento Esta investigación no recibió financiamiento externo.

Received: August 23, 2022; Accepted: January 01, 2023; Published: January 19, 2023

*Corresponding Author: Romeo de Jesús Barrios-Calderón. Facultad de Ciencias Agrícolas. Universidad Autónoma de Chiapas. Entronque Carretera Costera y Pueblo de Huehuetán. C.P. 30660, Huehuetán, Chiapas, México. Telefono: +52 9622342421. E-mail: romeo.barrios@unach.mx

Contribution of the authors

Raisa Yarina Escalona Domenech: Conceptualization of the work, development of the methodology, data management, writing and preparation of the manuscript, writing, revision and editing. Romeo de Jesús Barrios Calderón: Conceptualization of the work, experimental validation, analysis of results, writing and preparation of the manuscript, writing, revision and editing.

Interest conflicts

The authors declare no conflict of interest.

Contribución de los autores

Raisa Yarina Escalona Domenech: Conceptualización del trabajo, desarrollo de la metodología, manejo de datos, escritura y preparación del manuscrito, redacción, revisión y edición. Romeo de Jesús Barrios Calderón: Conceptualización del trabajo, validación experimental, análisis de resultados, escritura y preparación del manuscrito, redacción, revisión y edición.

Conflicto de interés

Los autores declaran no tener conflicto de interés

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License