SciELO - Scientific Electronic Library Online

 
vol.10Actividad coleoptericida de un extracto enzimático de Neem (Azadirachta indica) sobre Aethina tumidaParásitos gastrointestinales en heces de perros sin dueño en Tulancingo Hidalgo, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.10  Tepic  2023  Epub 23-Feb-2024

https://doi.org/10.15741/revbio.10.e1497 

Original articles

In vitro suppression of fungal root pathogens in Annona muricata L. by Trichoderma strains and conventional fungicides

Supresión in vitro de patógenos fúngicos de raíz en Annona muricata L. por cepas de Trichoderma y fungicidas convencionales

Carlos Bryan Cambero Ayón1 
http://orcid.org/0000-0002-4696-8362

Claudio Rios Velasco2 
http://orcid.org/0000-0002-3820-2156

Gregorio Luna Esquivel1  3 
http://orcid.org/0000-0003-4716-0805

Graciela López Guzmán1  3 
http://orcid.org/0000-0003-2594-2275

Mario Orlando Estrada Virgen1  3 
http://orcid.org/0000-0002-9182-2864

Octavio Jhonathan Cambero Campos1  3  * 
http://orcid.org/0000-0001-5197-9907

1Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México. C.P. 63155.

2Centro de Investigación en Alimentación y Desarrollo, A.C. Cuauhtémoc, Chihuahua, México. C.P. 31570.

3Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México. C.P. 63155.


ABSTRACT

Fusarium falciforme and Lasiodiplodia theobromae are the main root and stem fungal pathogens in soursop trees (Annona muricata L.) in Nayarit, Mexico. Regional fruit producers do not have effective strategies to control this pathology. Therefore, the main objective of the research was to evaluate the in vitro biocontrol potential of strains of Trichoderma antagonists and the efficacy of conventional fungicides. Twelve Trichoderma strains were evaluated in vitro against F. falciforme and L. theobromae. Also, the in vitro sensitivity of both fungal pathogens to eight commercial fungicides was evaluated. The strains of T. hamatum and T. asperellum inhibited the in vitro mycelial growth of F. falciforme up to 75.31%. On the other hand, Mancozeb was the only fungicide that completely inhibited the in vitro mycelial growth of both phytopathogens. Obtained data suggest the potential use of both control strategies for the suppression of root and stem diseases in soursop. It is recommended to conduct additional studies on the possible synergistic effects of the combination of both strategies in preventing and controlling this fungal disease in A. muricata.

KEYWORDS: Antagonism; inhibition; molecules; soursop; Trichoderma

RESUMEN

Fusarium falciforme y Lasiodiplodia theobromae, son los principales patógenos fúngicos en raíz y tallo en árboles de guanábana (Annona muricata L.) en Nayarit, México. A la fecha los productores de este frutal en la región no cuentan con estrategias efectivas para el control de esa patología. Por lo que, el objetivo de la investigación fue evaluar el potencial de biocontrol in vitro de cepas de antagonistas de Trichoderma y la eficacia de fungicidas convencionales. Se evaluaron in vitro 12 cepas de Trichoderma contra F. falciforme y L. theobromae. Así mismo, se evaluó la sensibilidad in vitro de ambos patógenos fúngicos a ocho fungicidas comerciales. Las cepas de T. hamatum y T. asperellum inhibieron el crecimiento micelial in vitro de F. falciforme hasta un 75.31 %. Por otra parte, Mancozeb fue el único fungicida que inhibió por completo el crecimiento micelial in vitro de ambos fitopatógenos. Los resultados sugieren el potencial uso de ambas estrategias de control para la supresión de estas enfermedades radiculares y del tallo en guanábana. Se sugiere conducir estudios adicionales relacionados con los posibles efectos sinérgicos de la combinación de ambas estrategias en la prevención y control de esta enfermedad fúngica en A. muricata.

PALABRAS CLAVE: Antagonismo; inhibición; moléculas químicas; guanábana; Trichoderma.

Introduction

In Mexico, up to 30 790 tons of soursop (Annona muricata L.) (Annonaceae) are produced and there is a total area of 3 612 ha established, distributed in 10 states, wherein Nayarit is positioned as the main producer, with an area of 2 456 ha and 23 230 t (SIAP, 2019). Due to its bittersweet, pleasant, and aromatic flavor, the A. muricata fruits are used in the food industry for fresh consumption, in fruits combinations, or industrialization (Sosa et al., 2022), likewise, this fruit tree has benefits for human health, as it can favor digestion and has preventive and curative effects for obesity, hypertension, cancer, and heart disease (Clement et al., 2016; Leiva et al., 2018).

However, the quality and size of A. muricata fruits are affected by diverse diseases caused by phytopathogens such as Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. and C. theobromicola Declar. which cause anthracnose in inflorescences, leaves, and stems (Álvarez et al., 2004; Betancourt et al., 2019), and some strains of Colletotrichum spp., L. pseudotheobromae, Pestalotiopsis sp. and Rhizopus oryzae, which cause soursop fruit rot (Álvarez et al., 2004; Cambero et al., 2019). These affectations are in addition to those caused by other fungal pathogens such as the fungi Fusarium falciforme (Hypocreales, Nectriaceae) (belonging to the F. solani species complex) and Lasiodiplodia theobromae (Pat.) Griffon and Maubl. (Botryosphaeriales, Botryosphaeriaceae) have recently been identified as root and stem pathogens causing necrosis, individually or as a complex, in soursop crops in Compostela and San Blas, Nayarit, Mexico (Cambero et al., unpublished data); trees affected by these pathogens, as a consequence, decrease its production, unfortunately, the affectations by these fungal pathogens have not yet been estimated in Nayarit.

One of the first actions implemented for the control of fungal diseases in fruit crops, including soursop, is the use of chemical fungicides (commonly broad spectrum). In commercial soursop plantations in Nayarit state, growers commonly use methyl thiophanate, captan, Mancozeb, or copper hydroxide to reduce the effects of fungal diseases, however, available data on the use of fungicides for the suppression of phytopathogenic fungi in soursop is limited, and there are no available records at COFEPRIS for its use (COFEPRIS, 2023).

Based on the negative impacts of fungal pathogens on soursop in Nayarit and the low effectiveness of chemical fungicides commonly used for their control, it is of utmost importance to look for strategies to reduce the losses caused by such pathogens in this fruit tree. Therefore, using microbial biocontrol agents such as Trichoderma and new chemical fungicides could be a promising alternative for effectively controlling F. falciforme and L. theobromae.

The antifungal capacity of Trichoderma has been widely documented against plant pathogenic fungi, including members of the genera Fusarium (F. oxysporum, F. nygamai, F. oxysporum f. sp. ciceri, among others) (Martinez et al., 2018; Michel et al., 2018; Michel et al., 2019) and Lasiodiplodia (L. pseudo theobromae, L. theobromae, L. citricola, among others) (Valle et al., 2019; Cambero et al., 2020). Thus, in search of viable alternatives for the management of root diseases of soursop crops in Nayarit, this study aimed to evaluate the in vitro sensitivity of Fusarium falciforme and Lasiodiplodia theobromae to conventional fungicides and the inhibition of its mycelial growth by Trichoderma strains.

Material and Methods

Reagents, microbial strains, and fungicides

All used reagents (analytical grade) were purchased from Sigma Aldrich Corp. (St. Louis, MO, USA). Trichoderma isolates were obtained from soil near the root zone of healthy soursop trees in Compostela and San Blas, Nayarit, Mexico. Trichoderma sp., T. longibrachiatum, T. asperellum, and T. harzianum, provided by the Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Unidad Cuauhtémoc, Chihuahua, were also included. The chemical fungicides evaluated were obtained from local commercial stores.

Strains of Lasiodiplodia theobromae and Fusarium falciforme were isolated and morphologically and molecularly characterized, from root tissues of diseased soursop trees from San Blas and Compostela, Nayarit, Mexico.

Trichoderma isolation and identification

Antagonistic microorganisms were isolated from soil near the rhizosphere of healthy-appearing soursop trees. In July 2020, in six commercial soursop orchards (Table 1), soil samples (500 g per tree) were collected from five trees located at the cardinal points and the center, subsequently, homogenized, and finally 200 g per orchard were recovered, and placed in transparent plastic bags (25 × 35 cm) for processing at the Laboratorio de Parasitología Agrícola of the Centro Multidisciplinario de Investigación Científica 03 (CEMIC-03) of the Universidad Autónoma de Nayarit (UAN).

Trichoderma isolation was done by serial dilutions (1:10) of the soil. Aliquots of 50 μL of the dilutions 10-4 to 10-6 were sown in Petri dishes (90 × 15 mm) with Potato-Dextrose-Agar (PDA) culture medium. The fungal microorganisms that showed antagonistic activity were purified using monohyphal cultures (Moreno & Albarracín, 2012; Pérez et al., 2015; Méndez et al., 2017). All fungi with purified antagonistic qualities were preliminarily tested in vitro for their antifungal activity against F. falciforme and L. theobromae. Isolates that did not show antifungal properties were not considered in subsequent in vitro tests (Mendoza et al., 2020).

Table 1 Sites for collection of rhizospheric soil samples from Annona muricata trees in Nayarit, Mexico. 

MUNICIPALITY ORCHARD COORDINATES ALTITUDE
Compostela Capomo I N 21°07'08" W 105°10'02" 36
Divisadero I N 21°07'18" W 105°11'33" 94
Tonino I N 21°04'02" W 105°12'48" 335
San Blas Infiernillo I N 21°32'21" W 105°11'06" 175
La Palma I N 21°31'00" W 105°11'57" 9
La Palma II N 21°32'00" W 105°10'43" 213

In vitro biocontrol tests on Trichoderma strains

The ability of Trichoderma strains to suppress in vitro the fungal pathogens F. falciforme and L. theobromae was evaluated through an in vitro Dual Confrontation Assay. Both microorganisms (antagonists and pathogens) were confronted in Petri dishes (90 × 15 mm) containing solidified PDA medium. In the Trichoderma confrontation assays, explants (PDA with mycelium and conidia with 7 d of growth) of 6 mm in diameter of both the antagonist and the pathogen were used. Explants of both groups of microorganisms were simultaneously inoculated into the ends of Petri dishes containing PDA culture medium (Bell et al., 1982). In these confrontations, the level of antagonism was determined according to the scale proposed by Bell et al. (1982) and the type of antagonism (antibiosis, mycoparasitism, and/or competition) according to Infante et al. (2009).

Experimental Petri dishes were incubated at 24 ± 2 °C in darkness until the control pathogen filled the Petri dish. Mycelial growth of pathogenic fungi (alone and confronted) was measured daily until the control pathogen filled the Petri dish (Rios et al., 2016).

In vitro susceptibility testing of F. falciforme and L. theobromae to conventional fungicides

The poisoned medium technique was used according to Albuqueque & Gusqui (2018), on solidified PDA + fungicide at the dose recommended by the manufacturer (Table 2) in Petri dishes (90 × 15 mm), 6 mm diameter explants (with surface growth of mycelium and conidia of 7 d of growth) of the pathogenic fungus were placed. Petri dishes with PDA without fungicide were used as controls. The experimental Petri dishes were incubated at 24 ± 2 °C in the dark until the control filled the Petri dish.

Molecular identification of antifungal Trichoderma isolates

Only the strains (T62, T1, and T10) of Trichoderma that inhibited mycelial growth of fungal pathogens by more than 60 % were molecularly characterized. Trichoderma genomic DNA (gDNA) was extracted according to the methodologies described by Allers & Litchen (2000) and Bobadilla et al. (2020), from fungal mycelium with 3 d of growth grown in liquid medium (broth) PDB (Potato Dextrose Broth). DNA quality was visualized by electrophoresis on a 1% agarose gel.

DNA was used to amplify the internal transcribed spacer (ITS) of rDNA, with the universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCTCCTCCGCTTATTGATATATGC-3'), an initial step at 94 °C/5 min, 30 cycles at 94 °C/30 s, 60 °C/30 s, 72 °C/10 min and final elongation at 72 °C/4 min were employed (White et al., 1990; Ruíz et al., 2017). Detection of PCR products was performed by 1.5 % agarose gel electrophoresis for 110 min at 80V. The 100 bp molecular weight marker (Invitrogen by Thermo Fisher Scientific®) was used. PCR products were sequenced by Macrogen company in Beotkkot-ro, Geumcheon-gu, Seoul (Gasan-dong, World Meridian I), South Korea. The sequences obtained were compared with those available in the National Center for Biotechnology Information (NCBI, 2022) database by BLAST algorithm, and finally deposited in the NCBI database.

Table 2 Active ingredients of conventional fungicides used in the in vitro assays against Lasiodiplodia theobromae and Fusarium falciforme, both root and stem fungal pathogens on Annona muricata. 

ACTIVE INGREDIENT RECOMMENDED DOSAGE CHEMICAL GROUP
Mancozeb 12.5 g/L Dithiocarbamate
Pidiflumethofen+Difenoconazole 5 ml/L Triazole, Carboxamides
Chlorothalonil 15 ml/L Chloronitrile
Carbendazim 0.5 g/L Benzimidazole
Cyprodinil+Fludioxonil 0.75 g/L Fenilpiroles, AP
Captan 25 g/L Phthalimide
Mancozeb+Azoxystrobin 25 g/L Carbamates, Strobilurin
Boscalid+Pyraclostrobin 4 g/L Pyridinecarboxamides, Methoxy-carbamates

Statistical analysis

In the in vitro confrontations (Trichoderma and fungicides vs. F. falciforme and L. theobromae), nine Petri dishes were used in each confrontation, and a control group (culture of the phytopathogens in the absence of the antagonists-fungicides). In both fungal pathogens, Mycelial Growth Inhibition (MCI) by Trichoderma was evaluated, with the formula MCI= (R1-R2) /R1 ×100, where R1 is the radius of the control pathogen (F. falciforme-L. theobromae) and R2 is the radius of the pathogen in the confrontation (Rios et al., 2016). All experiments were conducted in triplicate independently. MSI data were subjected to analysis of variance (ANOVA) with Statistical Analysis System version 9.0, 2002 (SAS, 2002), and means were separated with Tukey's range test (p= 0.05).

Results and Discussion

Isolation and in vitro confrontation of antagonistic microorganisms

A total of 12 fungi of the genus Trichoderma were isolated, 10 isolated from Compostela and two from San Blas, of which, in preliminary in vitro tests, only eight showed antagonistic activity against Fusarium falciforme and Lasiodiplodia theobromae. Different species of antagonists may exist, since the rhizosphere is considered a complex ecosystem, with a great diversity of microorganisms (Sokolova, 2015), where climatic or soil conditions are determinants for the survival of microbial communities (Ordóñez et al., 2020).

Inhibition of mycelial growth in vitro of Fusarium falciforme and Lasiodiplodia theobromae by Trichoderma

The strains evaluated showed antifungal potential against F. falciforme and L. theobromae, after 13 and two days of incubation, respectively (Figure 1). The mycelial growth inhibition values by the Trichoderma strains ranged from 0 to 21.72 % for L. theobromae and 32.13 to 75.31 % for F. falciforme. Trichoderma isolates T1, T10, and T62 native to soils near the root zone of soursop trees inhibited the growth of F. falciforme by more than 64.05 %, but against L. theobromae the growth inhibition of these three Trichoderma strains was less than 11.84 %. Isolate T62 was the most effective in inhibiting up to 75.31 % of the mycelial growth of F. falciforme (Figure 1b). The inhibition values of Trichoderma on F. falciforme in our study are among the ranges reported on other Fusarium species,Rios et al. (2016) reported mycelial growth inhibitions on F. oxysporum from 43.3 to 52.3 %, by T. asperellum strains. On the other hand, Cambero et al. (2020) recorded mycelial growth inhibitions of 49.5 % to 57.9 % against L. pseudotheobromae with Trichoderma strains (T. longibrachiatum, T. harzianum, and T. asperellum) provided by CIAD, A.C., Unidad Cuauhtémoc, Chihuahua.

Equal literals within the same column show statistical equality according to Tukey's test (p = 0.05). 2*, 3*, and 4*= Level on the Bell et al. (1982) scale.

Figure 1 Trichoderma isolates inhibit the mycelial growth of pathogenic fungi Lasiodiplodia theobromae and Fusarium falciforme. 

Similarly, Bhadra et al. (2014) reported mycelial growth inhibitions of L. theobromae of up to 80 % with T. koningii and T. viridae attributing the antifungal capacity of these strains to mycoparasitism and its rapid growth, allowing them to compete for space and available nutrients. The mycelial growth inhibition values of L. theobromae by Trichoderma were lower (Figure 1a) than those documented against F. falciforme, this is possible since in this study L. theobromae could grow rapidly and fill the Petri dish in only two days after sowing, having a faster growth than Trichoderma spp. In the same way, the isolates of native Trichoderma presented higher percentages of mycelial growth inhibition than those evidenced by the strains provided by CIAD A.C., suggesting that they are more likely to adapt to the climatological conditions of the producing zones of A. muricata in Nayarit.

Trichoderma suppresses fungal pathogens through different mechanisms, such as mycoparasitism, antibiosis, as well as, space, light, and nutrient competition, as well as plant growth stimulation (Martínez et al., 2013). Competition for space and available nutrients were the biocontrol mechanism evidenced in our Trichoderma strains on the pathogens L. theobromae and F. falciforme. Fungi of the genus Trichoderma have been reported as successful microbial biocontrol agents of phytopathogenic Fusarium species (Sánchez et al., 2017), such as Fusarium oxysporum f. sp. cubense, F. roseum (Infante et al., 2009; Schuster & Schmoll, 2010) and Lasiodiplodia such as L. pseudotheobromae (Cambero et al., 2020).

In vitro sensitivity of F. falciforme and L. theobromae to conventional fungicides

In vitro, the sensitivity of pathogens to the fungicides tested is shown in Figure 2. Both pathogens showed sensitivity to the eight fungicides tested, with mycelial growth inhibitions of over 74.55 %. Fusarium falciforme and L. theobromae were completely inhibited (100 %) only with the fungicide Mancozeb, possibly as it belongs to the dithiocarbamate group, capable of inhibiting motor proteins and multisite activity (Medina et al., 2022). The fungicides Cyprodinil+Fludioxonil and Mancozeb+Azoxystrobin inhibited the mycelial growth of L. theobromae by 100 %. Fusarium falciforme was less sensitive to the fungicides Boscalid+Pyraclostrobin and Chlorothalonil (Figure 2).

Piñeros et al. (2019) evidenced high sensitivity (100 % MGI) in F. subglutinans and F. graminearum to the fungicides Prochloraz+Difenoconazole, Carboxin+Captan and Tebuconazole+Trifloxystrobin. Michael et al. (2018), obtained MGI of 76.67 % on Fusarium oxysporum f. sp. gladioli with the fungicide Metalaxyl+Chlorothalonil. Tovar et al. (2013) proposed the use of Cyprodinil+Fludioxonil, Pyraclostrobin+Boscalid, Prochloraz, Tebuconazole, and Iprodine as the most effective fungicides for in vitro control of L. theobromae on mamey. Fungicides belong to different chemical groups, therefore, they have different mechanisms of action, they can inhibit mycelial growth, conidial germination, and respiration, and alter the cell membrane, among others (FRAC, 2020), however, in response to the pressure exerted by fungicides, plant pathogenic fungi can acquire resistance or lose sensitivity to them (Li et al., 2020). To prevent pathogens from developing resistance to fungicides, it is suggested to use systemic and contact fungicides in rotation or combination (Denman et al., 2004).

Both fungal pathogens (F. falciforme and L. theobromae) showed mycelial growth 10 d after being treated with the fungicides, evidencing only fungistatic action by Mancozeb+Azoxystrobin, Boscalid+Pyraclostrobin, Pidiflumethofen+ Difenoconazole and Chlorothalonil, possibly these fungicides do not completely inhibit conidia germination of these causal agents, which is essential for successful chemical control of pathogenic fungi in plants (Shin et al., 2014), the development of resistance to fungicides may be one of the main reasons (Moreira et al., 2021).

Means (± standard error) with equal literals indicate statistical equality according to Tukey's range test (p = 0.05). Man+Azo = Mancozeb+Azoxystrobin; Cip+Flu = Cyprodinil+Fludioxonil; Bos+Pir = Boscalid+Piraclostrobin; Pid+Dif = Pidiflumetofen+Diphenoconazole; Car = Carbendazim; *The microorganism evaluated against this fungicide continued with very slow growth (no measurement).

Figure 2 In vitro sensitivity of Lasiodiplodia theobromae and Fusarium falciforme to conventional fungicides. 

These control alternatives can be considered in integrated disease management and a timely diagnosis will allow us to have better results. On the other hand, the use of microorganisms can be applied preventively, and fungicides can be used only in cases where the problem begins to exceed the economic threshold.

Molecularly identified native antifungal Trichoderma isolates

Eight Trichoderma isolates were obtained from the municipalities of Compostela and San Blas, Nayarit, Mexico, only the isolates (T62, T1, T10) were identified as inhibiting >60 % mycelial growth of Fusarium falciforme. According to its molecular features and when compared with NCBI database available sequences, 100% similarity of isolates T62 with T. hamatum, T1 with T. asperellum, and isolate T10 with T. asperellum was observed. Sequences of these isolates were registered in GenBank under the following accession numbers (OQ696060, OQ696061, and OQ696062, respectively). It is worth mentioning that this is the first record of these antagonists in commercial soursop orchards in Nayarit, Mexico. Strains of T. hamatum, have been identified in Catamarca, Argentina, with antagonistic capacity against Verticillium dahliae KLEB (Gonzáles et al., 2021), on the other hand, T. asperellum has been identified in Peru in avocado (Persea americana Mill.) orchards with biocontrol potential against Phytophthora cinnamomi (Morales et al., 2020), although there is a wide diversity of Trichoderma species such as T. asperellum, T. atroviridae, T. koningiopsis, T. piluliferum, T. viridae among others (Sánchez et al., 2018).

Conclusions

Trichoderma spp. isolates successfully inhibited F. falciforme. Trichoderma hamatum (T62) inhibited the mycelial growth of F. falciforme to a greater extent. Lasiodiplodia theobromae was less susceptible to Trichoderma strains. On the other hand, both fungal pathogens were inhibited 100 % by Mancozeb, while Lasiodiplodia theobromae was also completely inhibited by Cyprodinil+Fludioxonil. The in vitro antifungal effects on F. falciforme and L. theobromae of both Trichoderma and the evaluated fungicides are promising. Therefore, it is suggested to conduct more antifungal in situ or field experiments to demonstrate the same antifungal efficacy.

Acknowledment

To the Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT) and the Universidad Autónoma de Nayarit.

REFERENCES

Albuquerque, A. D., & Gusqui, M. R. (2018). Eficacia de fungicidas químicos para el control in vitro de diferentes fitopatógenos en condiciones controladas. Arnaldoa, 25(2), 489-498. https://doi.org/10.22497/arnaldoa.252.25209 [ Links ]

Álvarez, E., Ospina, C., Mejía, J., & Llano, G. (2004). Caracterización morfológica, patogénica y genética del agente causal de la antracnosis (Colletotrichum gloeosporioides) en guanábana (Annona muricata) en el Valle de Cauca. Fitopatología Colombiana, 28(1), 1-8. https://cgspace.cgiar.org/bitstream/handle/10568/44257/Caract_colletotrichum%20EAlvarez1%20_2.pdf?sequence=1&isAllowed=yLinks ]

Allers, T., & Lichten, M. (2000). A method for preparing genomic DNA that restrains branch migration of Holliday junctions. Nucleic Acids Research, 28(2), 26-28. https://doi.org/10.1093/nar/28.2.e6 [ Links ]

Bell, D. K., Well, H. D., & Markham, C. R. (1982). In vitro antagonism of Trichoderma species against six fungal plan pathogens. Phytopathology, 72(4), 379-382. https://doi.org/10.1094/phyto-72-379 [ Links ]

Betancourt, A. A., Cambero, C. J., Rios, V. C., Cruz, C. E., Cambero, A. C., & Luna, E. G. (2019). In vitro evaluation of antagonistic microorganisms and fungicides against Colletotrichum theobromicola Delacr, causal agent of anthracnose on soursop (Annona muricata L.) inflorescences. Revista Bio Ciencias, 6, 1-13. https://doi.org/10.15741/revbio.06.e678 [ Links ]

Bhadra, M., Khair, A., Hossain, A., & Sikder, M. (2014). Efficacy of Trichoderma spp. and fungicides against Lasiodiplodia theobromae. Bangladesh Journal of Scientific and Industrial Research, 49(2), 125-130. https://doi.org/10.3329/bjsir.v49i2.22008 [ Links ]

Bobadilla, C. G., Magallón, S. P., López, V. M., Palomino, H. Y., Ramírez, R. J., Gutiérrez, L. R., Ibarra, C. L., & Bautista, R. P. (2020). Characterization and proliferation capacity of potentially pathogenic fungi in marine and freshwater fish commercial feeds. Archives of Microbiology, 202(9), 1-12. https://doi.org/10.1007/s00203-020-01954-4 [ Links ]

Cambero, A. C., Luna, E. G., Rios, V. C., Díaz, H. M., Rodríguez, P. M., Betancourt, A. A., & Cambero, C. J. (2019). Causal agents of rot in soursop fruit (Annona muricata L.) in Nayarit, Mexico. Revista Bio Ciencias , 6, 1-13. http://dx.doi.org/10.15741/revbio.06.e538 [ Links ]

Cambero, A. C., Luna, E. G., Rios, V. C., Estrada, V. O., Betancourt, A. A., & Cambero, C. J. (2020). Evaluación in vitro de antagonistas contra patógenos de fruto de guanábana (Annona muricata L.) en Nayarit, México. Revista Brasileira de Fruticultura, 42(2), 1-6. https://doi.org/10.1590/0100-29452020147 [ Links ]

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. (Ed.), PCR protocols: A guide to methods and applications. (pp. 315-322). https://doi.org/10.1016/b978-0-12-372180-8.50042-1 [ Links ]

Clement, Y., Mahase, V., Jagroop, A., Kisson, K., Maharaj, A., Mathura, P., Quan, M., Ramadhin, D., & Mohammed, C. (2016). Herbal remedies and functional foods used by cancer patients attending specialty oncology clinics in Trinidad. BMC Complementary and Alternative Medicine, 16(1), 1-7. https://doi.org/10.1186/s12906-016-1380-x [ Links ]

Comisión Federal para la Protección contra Riesgos Sanitarios [COFEPRIS]. (2023, march 23). Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. http://siipris03.cofepris.gob.mx/Resoluciones/Consultas/ConWebRegPlaguicida.aspLinks ]

Denman, S., Crous, P., Sadie, A., & Wingfield, M. (2004). Evaluation of fungicides for the control of Botryosphaeria protearum on Protea magnifica in the Western Cap Province of South Africa. Australasian Plant Pathology, 33, 97-102. https://doi.org/10.1071/ap03080 [ Links ]

Fungicide Resistance Action Committee [FRAC]. (2020, May 23). Mode of action group. https://www.frac.info/fungicide-resistance-management/by-frac-mode-of-action-groupLinks ]

Gonzáles, B. M., Picón, M. C., & Bellone, C. (2021). Evaluación de la capacidad antagónica de cepas nativas de Trichoderma spp. frente a Verticillium dahliae en la provincia de Catamarca. Revista FAVE - Ciencias Agrarias, 20(2), 33-44. https://bibliotecavirtual.unl.edu.ar/publicaciones/index.php/FAVEAgrarias/article/view/10623/14124 [ Links ]

Infante, D., Martínez, B., González, N., & Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal, 24(1), 14-21. http://scielo.sld.cu/pdf/rpv/v24n1/rpv02109.pdf Links ]

Leiva, G.S., Gayoso, B.G., & Chang, C.L. (2018). Annona muricata L. “soursop” (Annonaceae), a fruit used for feeding in Ancient Peru. Arnaldoa , 25(1), 127-140. http://www.scielo.org.pe/pdf/arnal/v25n1/a08v25n1.pdfLinks ]

Li, Y., Tsuji, S., Hu, M., Cámara, S., Michereff, S., Schnabel, G., & Chen, F. (2020). Characterization of difenoconazole resistance in Lasiodiplodia theobromae from papaya in Brazil. Pest Management Science, 76(4), 1344-1352. https://doi.org/10.1002/ps.5645 [ Links ]

Martínez, B., Infante, D., Caraballo, W., Duarte, Y., & Echevarría, H. (2018). Antagonismo de cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg frente a aislamientos de Fusarium spp. procedentes de garbanzo. Revista de Protección Vegetal , 33(2), 1-13. http://scielo.sld.cu/pdf/rpv/v33n2/2224-4697-rpv-33-02-e07.pdf Links ]

Martínez, B., Infante, D., & Reyes, Y. (2013). Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal , 28(1), 1-11. http://scielo.sld.cu/pdf/rpv/v28n1/rpv01113.pdf Links ]

Medina, O. F., Gutiéreez, D. A., Ochoa, A. S., & Sinagawa, G. S. (2022). In vitro sensitivity of Fusarium sacchari isolated from sugar cane to five fungicides. Revista Mexicana de Fitopatología, 40(3), 447-457. https://doi.org/10.18781/r.mex.fit.2206-1 [ Links ]

Méndez, U. J., Flores, H. M., & Páramo, A. L. (2017). Isolation and identification of Bacillus subtilis and evaluation of antagonism in vitro against phytopathogenic fungi. Nexo Revista Científica, 30(2), 96-110. https://dialnet.unirioja.es/descarga/articulo/6483874.pdf Links ]

Mendoza, H. Y., Rios, V. C., Cambero, C. J., De Dios, Á. N., Pérez, C. D., Rodríguez, G. R., & Estrada, V. M. (2020). Actinomicetos antagonistas a Colletotrichum sp. Penz. en el cultivo de mango en Nayarit, México. Ecosistemas y Recursos Agropecuarios, 7(2), 1-9. https://www.scielo.org.mx/pdf/era/v7n2/2007-901X-era-7-02-00007.pdf Links ]

Michel, A. A., Ariza, F. R., Otero, S. M., Barrios, A. A., & Quiroz, M. A. (2018). Efectividad in vitro e in situ de fungicidas químicos y biológicos en el control de Fusarium oxysporum f. sp. gladioli y Uromyces transversalis en gladiola. Agro Productividad, 7(3), 3-11. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/518/398Links ]

Michel, A. A., Hernández, M. J., Toledo, A. R., Sabino, L. J., & Romero, R. T. (2019). Capacidad antagónica de Trichoderma spp. nativa contra Phytophthora parasítica y Fusarium oxysporum aislados de cultivos de Jamaica. Revista Fitotecnia Mexicana, 42(3), 235-241. https://doi.org/10.35196/rfm.2019.3.235-241 [ Links ]

Morales, T. E., Lino, N. M., Ortega, R. E., & Castellanos, S. P. (2020). Evaluación de la capacidad antagónica in vitro de cepas de Trichoderma spp. frente a Phytophthora cinnamomi, fitopatógeno de Persea americana (Palta). Ciencia e Investigación, 23(1), 65-70. https://doi.org/10.15381/ci.v23i1.18754 [ Links ]

Moreira, M. A., Cedeño, M. Á., Canchingnia, M. F., & Garcés, F. F. (2021). Lasiodiplodia theobromae (Pat.) Griffon & Maubl [(syn.) Botryodiplodia theobromae Pat] in the cocoa crop: symptoms, biological cycle, and strategies management. Scientia Agropecuaría, 12(4), 653-662. https://doi.org/10.17268/sci.agropecu.2021.068 [ Links ]

Moreno, J., & Albarracín, V. (2012). Aislamiento, cultivo e identificación de microorganismos ambientales a partir de muestras naturales. Reduca (Biología). Serie Microbiología, 5(5), 79-93. http://revistareduca.es/index.php/biologia/article/view/963/996Links ]

National Center for Biotechnology Information [NCBI]. (2022, October 20). Gen Bank. https://www.ncbi.nlm.nih.gov/Links ]

Ordóñez, B. V., Orduño, C. N., Rios, V. C., Jacobo, C. J., Hernández, D. C., & Acosta, M. C. (2020). Characterization of Rhizobacteria associated with Vitis vinifera and its interaction in vitro with Entomopathogenic fungi. Eurastan Soil Science, 53(10), 1469-1479. https://doi.org/10.1134/s1064229320100130 [ Links ]

Pérez, C. D., García, G. N., Gallegos, M. G., Ruiz, C. M., Berlanga, R. D., & Rios, V. C. (2015). Isolation of actinomycetes associated to apple trees rhizosphere antagonistic to Fusarium equiseti. Revista Mexicana de Ciencias Agrícolas, 6(7), 1629-1638. https://www.scielo.org.mx/pdf/remexca/v6n7/v6n7a16.pdfLinks ]

Piñeros, G. N., Maldonado, A. G., & Gómez, C. S. (2019). Effect of thermal and in vitro fungicide treatments on pathogens of the genus Fusarium associated with maize seeds. Agronomía Colombiana, 37(3), 228-238. https://doi.org/10.15446/agron.colomb.v37n3.80302 [ Links ]

Rios, V. C., Caro, C. J., Berlanga, R. D., Ruiz, C. M., Ornelas, P. J., Salas, M. M., Villalobos P. E., & Guerrero, P. V. (2016). Identificación y actividad antagónica in vitro de aislados de Bacillus spp. y Trichoderma spp. contra hongos fitopatógenos comunes. Revista Mexicana de Fitopatología , 34(1), 84-99. https://www.scielo.org.mx/pdf/rmfi/v34n1/2007-8080-rmfi-34-01-00085-es.pdfLinks ]

Ruíz, C. M., Rios, V. C., Berlanga, R. D., Ornelas, P. J., Acosta, M. H., Romo, C. A., Zamudio, F., & Pérez, C. D. (2017). Incidence and causal agents of root diseases and its antagonists in apple orchards of Chihuahua, Mexico. Mexican Journal of Phytopathology , 35(3), 437-462. https://www.scielo.org.mx/pdf/rmfi/v35n3/2007-8080-rmfi-35-03-00437-en.pdfLinks ]

Sánchez, G. B., Espinosa, H. E., Villordo, P. E., Rodríguez, G. R., & Mora, A. M. (2017). Trichoderma spp. native strains molecular identification and in vitro antagonistic evaluation of root phytopathogenic fungus of the common bean (Phaseolus vulgaris L.) cv. Montcalm. Agrociencia, 51, 63-79. https://www.scielo.org.mx/pdf/agro/v51n1/1405-3195-agro-51-01-00063-en.pdf Links ]

Sánchez, H. L, Arias, M. R., Rosique, G. J., & Pacheco, F. C. (2018). Diversidad del género Trichoderma (Hypocraceae) en un área natural protegida en Tabasco, México. Acta Botánica Mexicana, 123, 1-20. https://doi.org/10.21829/abm123.2018.1269 [ Links ]

Schuster, A., & Schmoll, Monika. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787-799. https://doi.org/10.1016/c2012-0-00434-6 [ Links ]

Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2019, March 23). Anuario Estadístico de la Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/Links ]

Shin, J., Han, J., Lee, J., & Kim, K. (2014). Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathologhy Journal, 30(4), 397-406. https://doi.org/10.5423/ppj.oa.08.2014.0078 [ Links ]

Sokolova, T. A. (2015). Specificity of soil properties in the rhizosphere: Analysis of literature data. Eurasian Soil Science, 48, 968-980. https://doi.org/10.1134/s1064229315050099 [ Links ]

Sosa, C. I., Pareja, A. J., Mugarte, M. A., Chel, G. L., & Betancur, A. D. (2022). Propiedades, beneficios y efectos de la guanábana (Annona muricata L.) sobre la glucemia y el cáncer. Revista Colombiana de Investigaciones Agroindustriales, 9(2), 86-101. https://doi.org/10.23850/24220582.4976 [ Links ]

Tovar, P. J., Mora, A. J., Nava, D. C., Téliz, O. D. , Villegaz, M. Á., & Leyva, M. S. (2013). Control of Lasiodiplodia theobromae, the causal agento of dieback of sapote mamey [Pouteria sapota (Jacq.) H. E. Moore and Stearn] grafts in Mexico. Revista Fitotecnica Mexicana, 36(3), 233-238. https://doi.org/10.35196/rfm.2013.3.233 [ Links ]

Valle, P. M., Guillén, S. D., Alia, T. I., López, M. V., Juárez, L. P., Martínez, F. E., Hernández, A. M., & Ariza, F. R. (2019). Control in vitro de Lasiodiplodia theobromae (Pat.) Griff. & Maubl y L. citrícola Abdollahz aislados de lima Persa (Citrus latifolia Tanaka) en Morelos, México. Acta Agrícola y Pecuaria, 5, 4-10. https://doi.org/10.30973/aap/2019.5.0051001 [ Links ]

Financing This research was funded by the “Fondo Sectorial de Investigación en Materia Agrícola, Pecuaria, Acuacultura, Agrobiotecnología y Recursos Fitogenéticos” Núm. 266891.

Received: April 25, 2023; Accepted: July 18, 2023; Published: August 31, 2023

*Corresponding Author: Octavio Jhonathan Cambero-Campos. Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México. C.P. 63155. E-mail:jhony695@uan.edu.mx

Contribution of the authors

C. A. C. B. Methodology development, data management; R. V. C. Experimental validation; L. E. G. Experimental validation; L. G. G. G. Methodology development; E. V. M. O. Conceptualization of the work, experimental validation; C. C. O. J. Fundraising, project manager, experimental validation. “All authors of this manuscript have read and accepted the published version of it".

Interest conflict

“The authors declare no conflict of interest”

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License