SciELO - Scientific Electronic Library Online

 
vol.23 número1Frecuencia histórica de incendios (1779-2013) en bosques de pino-encino de la comunidad de Charcos, Mezquital, DurangoDistribución espacial de las plantaciones forestales al sur de Chile, zona con presencia de una planta de celulosa índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.23 no.1 Chapingo ene./abr. 2017

https://doi.org/10.5154/r.rchscfa.2016.03.018 

Articles

Analysis of land use change in an urban ecosystem in the drainage area of the Grijalva river, Mexico

Miguel Á. Palomeque-De la Cruz1 

Adalberto Galindo-Alcántara1  * 

Miguel J. Escalona-Maurice2 

Silvia del C. Ruiz-Acosta3 

Alberto J. Sánchez-Martínez1 

Eunice Pérez-Sánchez1 

1Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas. km 0.5 carretera Villahermosa-Cárdenas entronque a Bosques de Saloya. C. P. 86150. Villahermosa Tabasco, México.

2Colegio de Postgraduados, Campus Montecillo. km 36.5 carretera México-Texcoco. C. P. 56230. Montecillo, Texcoco, Estado de México, México.

3Instituto Tecnológico de la Zona Olmeca. Prolongación Ignacio Zaragoza s/n. C. P. 86720. Villa Ocuiltzapotlán, Centro, Tabasco. México.


Abstract

The land use change was analyzed based on the effect of the urban growth of Villahermosa city, Tabasco, on arboreal vegetation and aquatic ecosystems. A multitemporal analysis was carried out using the Land Change Modeler for Ecological Sustainability and the CrossTab module of IDRISI Selva® software and change rates were calculated. According to the results, for almost three decades (1984-2008), a total of 4,008 ha of land occupied by arboreal vegetation and 289 ha of wetland were lost, due to the accelerated growth of grasslands and urban areas. Stochastic transition models (Markov chains and cellular automata) projected a loss of 1,171 ha of arboreal vegetation and 247 ha of wetland between 2008 and 2030. This trend is likely to be sustained by the relentless growth of grassland and urban area.

Keywords: Woodlands; wetlands; urban growth; Markov chain; cellular automata

Resumen

El cambio de uso del suelo de la ciudad de Villahermosa, Tabasco, se analizó con base en el efecto provocado por el crecimiento urbano sobre la vegetación arbórea y los ecosistemas acuáticos. Se hizo un análisis multitemporal mediante el modelador de cambio de uso del suelo (Land Change Modeler for Ecological Sustainability) y el módulo CrossTab del software IDRISI Selva® y se calcularon tasas de cambio. De acuerdo con los resultados, durante casi tres décadas (1984-2008) se perdieron 4,008 ha de suelo ocupado por vegetación arbórea y 289 ha de humedales, debido al crecimiento acelerado de los pastizales y la zona urbana. Mediante modelos de transición estocástica (cadenas de Markov y autómatas celulares) se proyectó una pérdida de 1,171 ha de vegetación arbórea y 247 ha de humedales entre el periodo 2008 y 2030. Es probable que esta tendencia se mantenga por el incesante crecimiento del pastizal y la zona urbana.

Palabras clave: Vegetación arbórea; humedales; crecimiento urbano; cadenas de Markov; autómatas celulares

Introduction

Urbanization, one of the main socio-environmental processes, is conceptualized in general terms as the transformation of land into urban environments (Angeoletto et al., 2015). Urbanization causes desertification, deforestation, loss of biodiversity and emission of greenhouse gases that contribute to climate change. Land change by urban growth accounts for about 47 % of the planet, only Africa accounts for 65 % of the world’s degraded soil (Biro, Pradhan, Buchroithner, & Makeschin, 2013). In Europe and Asia, land use change has contributed to landscape fragmentation, and in America, large forest coverages have been lost and about 50 % of wetland areas have disappeared (Mitsch, Goseelink, & Anderson, 2009).

Forests, deserts and wetlands near urban ecosystems are deteriorating in Mexico; for example, in Mexico City, an extensive area of natural reserves has become an urban area and more than 30 % of wetlands have disappeared (Torres‐Vera, Prol‐Ledesma, & García‐ López, 2009; Zepeda-Gómez, Nemiga, Lot-Helgueras, Madrigal-Uribe, 2012). In the decade of the 70’s, the beginning of the oil boom was added to the economic impulse and consequent urban growth in the southeastern cities of the country, including Villahermosa (Bazant, 2010). In this field, from 1993 to 2007, the forest area decreased from 36 to 9 % in the basin of Grijalva-Usumacinta (Kolb & Galicia 2012). The loss of vegetation and wetland cover in the basin has been linked to city growth, deforestation for livestock use, and logging and oil exploitation (Kolb, Mas, & Galicia, 2013; Perevochtchikova & Lezama, 2010). In the case of Villahermosa, urban expansion was based on the filling and fragmentation of wetlands (Díaz-Perera, 2014).

The basin of the rivers Grijalva-Usumacinta, located in the coastal plain of the southern Gulf of Mexico, covers 91,345 km2 and represents 4.7 % of the country (Comisión Nacional del Agua [CONAGUA], 2012). Since the seventeenth century, the low drainage area of the basin of the Grijalva River has been transformed by agricultural activities and modifications to the river network (Navarro & Toledo, 2004; Salazar, 2002). Since 1970, land use change has altered natural flood cycles, with consequent disruption of water volumes in rivers and areas of temporary flooding, biogeochemical cycles and trophic dynamics of wetlands, leading to fragmentation and loss of habitat, as well as to the decline of biodiversity and society-environment relations (Pinkus-Rendón & Contreras-Sánchez, 2012; Sánchez et al., 2015).

The city of Villahermosa, capital of the state of Tabasco, is one of the four most important urban ecosystems in the drainage zone of the Grijalva River.

The presence of economic activities such as agriculture and oil exploitation, has allowed it to maintain the state’s political status. Villahermosa has 13 riverine lagoon ecosystems related to the surrounding rivers of Mezcalapa Viejo, Carrizal and Sierra-Grijalva (Sánchez-Colón, Flores- Martínez, Cruz-Leyva, & Velázquez, 2009). The model of excessive growth of the urban ecosystem is associated with the modification of the physiography and the increase of the vulnerability of the floods. In adjacent urban and suburban areas, both wetlands and their temporary floodplains or associated marshes were dried up, rivers changed, floodplains were devastated and forests were deforested (CONAGUA, 2012). However, the lack of data on the measurement of changes in tree cover and wetlands still exists, despite the fact that this information is relevant to support models of land use change that allow to mitigate their loss or seek rehabilitation to restore environmental services and benefits.

The spatial-temporal dynamics estimates the distribution of the change of natural coverages and artificial uses to identify those that show greater environmental pressure (Velázquez et al., 2002); therefore, the study of dynamics is very important for environmental impact assessment and for environmental planning strategies. Land-use change modelers, Markov chains and cellular automata are useful transition models for detecting the factors and consequences involved in land-use change, and predicting spatial scenarios (Eastman, 2012; Reynoso-Santos, Valdez-Lazalde, Escalona-Maurice, De los Santos-Posadas, & Pérez-Hernández, 2016).

The aim of this study was to evaluate the spatial-temporal dynamics in the city of Villahermosa during the period 1984-2008, to estimate the distribution of arboreal vegetation and wetlands. These coverages were selected because they are subject to greater environmental pressure due to urban growth. Based on this, a prospective scenario (2030) based on Markov chains and cellular automata was built.

Materials and methods

Study area

The study was carried out at the boundary of urban influence of the city of Villahermosa (92° 55’ O and 17° 59’ N), which has an area of 20,655 ha and is located in the lower part of the drainage zone of the Grijalva river. The river of the Sierra drains by the east and the carrizal River borders the north. The city has an average height of 10 m and a minimum relief dominated by low floodplain areas and some hills in the East (CONAGUA, 2012).

Database development

Thematic layers of land use were created in vector format in 1984, 2000 and 2008 (1: 75,000, 1: 20,000, 1: 10,000), digitized from black and white aerial photographs using ArcGis® 10.2.2 software (Environmental Systems Research Institute [ESRI], 2016). In order to correct inconsistencies in the pixel size, a transformation was made by means of cartographic restitution (RMS < 0.5, WGS 84), based on the image of 2008 and using the PCI Geomatics® V9.1 software (PCI Geomatics Enterprises, 2003). A total of seven categories of land use were established: (1) arboreal vegetation, (2) wetlands, (3) grassland, (4) wasteland, (5) industrial land, (6) roads and (7) urban land. Along with the digitization, a field study was carried out to verify the defined classes.

Land Use Change Analysis

The multitemporal analysis was performed using the Land Change Modeler for Ecological Sustainability and the CrossTab module of the IDRISI Selva® software, generating a cross tabulation matrix (Eastman, 2012). The periods considered covered from 1984 to 2000 and from 2000 to 2008. The matrices obtained were validated with the Kappa statistic (K) = 0.8963 (1984- 2000) and Kappa (K) = 0.9033 (2000-2008), close to 1.0000, generating a reliable analysis of spatial dynamics. The results include the summary of the matrices showing the surface of each category in comparison with others, in terms of gains, losses and contributions among categories (Eastman, 2012).

Change rates

Land use change rates were calculated using the formula of Palacio-Prieto et al.(2004):

Td = [(S2 / S1) (1 / n) -1] * 100

where:

Td

Annual change rate (%)

S1

Area covered at the beginning of the period (ha)

S2

Area covered at the end of the period (ha)

n

Number of years in the period

Projection of land use change (2030)

The probabilities and spatial scenarios of land use change were projected using the combined techniques of transition models: Markov chains and cellular automata. Markov chains were used to calculate the probability of change from one pixel to another and to generate a transition probability matrix and a transition area matrix (Eastman, 2012; Reynoso-Santos et al., 2016). For this calculation, the land use maps of 1984 (Figure 1) and of 2008 (Figure 2) were used, and the MARKOV module of IDRISI Selva® software was used, regarding a 22 year interval (2030). The result was a transition probability matrix and a matrix of transition areas, with a collection of maps representing transition areas for the seven land use categories in 2030.

Figure 1 Land use map of the city of Villahermosa, Tabasco (1984). Scale 1:10,000. 

Figure 2 Land use map of the city of Villahermosa, Tabasco (2008). Scale 1:10,000. 

Subsequently, the map of 2008 (Figure 2), the transition matrix and the collection of maps of transition areas of 2030, generated with MARKOV, were used as variables to run the cellular automata module (CA-MARKOV) of the software IDRISI Selva® (Eastman, 2012; Reynoso- Santos et al., 2016), to generate the map of 2030 (Figure 3). The suitability of the model was evaluated through a comparison of similarity between the image of 2008 and the projected map of 2030, using the VALIDATE module. The Kappa statistic indicated that Standard K = 0.9081, Kno = 0.9488 and Klocalition = 0.9630 were close to 1.0000; showing precision for the scenarios building. Both images were intersected in the Land Change Modeler and CrossTab modules to obtain the change matrices; thus, gain, loss and contribution between coverages for the map of 2008 and the scenario of 2030 were calculated.

Figure 3 Land use map of the city of Villahermosa (projection 2030). Scale 1:10,000. 

Results and discussion

Change analysis of 1984-2000-2008

Table 1 reports the land use areas and change rates by period analyzed. Land use in 1984 was distributed as follows: 44.5 % of the land was occupied by grassland, while 28.6 % and 12.3 % corresponded to arboreal vegetation and wetlands, respectively. By contrast, the urban area occupied 10.6 % of the territory. Figure 1 shows the land use map in Villahermosa of that year, in which it is observed that most of the arboreal vegetation was close to aquatic ecosystems in non-urbanized areas.

Table 1 Land use change and change rate (CR) in Villahermosa, Tabasco. 

Category Area 1984 2000 2008 Projection 2030 Period 1984-2000 Period 2000-2008 Period 1984-2008 Period 2008-2030
Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) CR (%) Area (ha) CR (%) Area (ha) CR (%) Area (ha)
Arboreal vegetation 5,901 28.6 3,517 17 1,893 9.2 722 3.5 2,384 -3.18 1,624 -7.45 4,008 -4.63 1,171
Wetlands 2,533 12.3 2,457 11.9 2,244 10.9 1,997 9.7 76 -0.19 213 -1.13 289 -0.50 247
Grassland 9,192 44.5 10,699 51.8 11,239 54.4 10,922 52.9 -1,507 0.95 -540 0.62 -2,047 0.84 317
Wastelands 465 2.2 407 2 203 1 84 0.4 58 -0.82 204 -8.36 262 -3.40 119
Industrial land 10 0.05 64 0.3 184 0.9 325 1.6 -54 12.17 -120 14.08 -174 12.81 -141
Roads 373 1.8 387 1.9 435 2.1 476 2.3 -14 0.24 -48 1.46 -62 0.65 -41
Urban land 2,182 10.6 3,124 15.1 4,458 21.6 6,137 29.7 -942 2.27 -1334 4.55 -2,276 3.02 -1,679
Total 20,655 100 20,655 100 20,655 100 20,655 100

In the first period of analysis (1984-2000), arboreal vegetation lost 2,384 ha with a high rate of change of -3.18 %; wetlands lost 76 ha with a change rate of -0.19 %. In contrast, grassland and urban area increased by 1,507 and 942 ha, with change rates of 0.95 and 2.27 %, respectively. Sánchez-Munguía (2005) found that in Tabasco, from 1950 to 2000, about 83,518 ha of wetlands had been lost at a rate of 3,341 ha∙year-1 and that in Villahermosa, the urban advance of 2,296 ha between 1990 and 2000 invaded lagoons and marshes, and freshwater wetlands and cattatil vegetation that functioned as regulating vessels, were removed.

In the period of 2000-2008, the loss of areas of arboreal vegetation (1,624 ha) and wetlands (213 ha) increased compared to the previous period, with wide change rates (-7.45 and -1.13 %, respectively), while grassland (540 ha) and urban areas (1,334 ha) continued to occupy more area, with change rates of 0.62 and 1.46 %, respectively (Table 1).

During the 24 years (1984-2008), arboreal vegetation and wetlands lost 4,008 and 289 ha, respectively. In contrast, grassland and urban areas increased by 2,047 and 2,276 ha (Table 1), respectively, being the greatest impacts of the last three decades reflected in their spatial-temporal dynamics. In the period 1984-2008, the rate of land use change of the arboreal vegetation was of -4.63 %, being greater than that recorded in the Grijalva-Usumacinta basin and country. Kolb and Galicia (2012) observed that the rate of deforestation in the Grijalva-Usumacinta basin was 0.90 % during 1993 and 2007, and reports from the FAO (Food and Agriculture Organization of the United Nations, 2015) reported deforestation rates of -0.3 % in Mexico during 1990 and 2015.

The analysis of land use change shows that Villahermosa is expanding uncontrollably in the face of poor sustainable development, from being a compact city it transformed into a sectorial perimeter and then into a fragmented city, which is common in Latin American cities (Bähr & Borsdorf, 2005). The city shows a growth pattern associated with industrialization, land use regulations, regional economy, population movements, demand for agricultural products and political environment providing total control to the real estate sector and socio-cultural processes (Kolb et al., 2013 Linard, Tatem, & Gilbert, 2013). The territory also has the influence of the relief, the low slope and the roads that facilitate the establishment of new population centers that demand urban infrastructure (Gutiérrez, Condeço-Melhorado, & Martín, 2010; Kolb et al., 2013).

Table 2 reports the losses and gains of surface of the seven categories analyzed in the periods of 1984-2000 and 2000-2008. In the period of 1984-2000, arboreal vegetation gained 0.08 % of its surface area, but it was the category that provided more areas (3.65 %) to other land uses. Grasslands and the urban area were the categories that gained more areas (3.31 and 1.44 %, respectively), although the former also lost 1.05 %, while the latter showed no loss. Of the total wetland area, 0.18 % changed to other uses, while roads gained 0.03 % of their area. Between 2000 and 2008, the pressure on wetlands intensified, as their area decreased by 0.74 %. Similarly, grassland loss (3.31 %) was higher, although 2.26 % of its area was restored. The arboreal vegetation lost 2.61 %, while other categories such as industrial land, roads and urban land recorded an overall growth equivalent to 2.27 % of the surface.

Table 2 Loss and gain of area (1984-2000 and 2000-2008) per category analyzed in Villahermosa, Tabasco. 

Category Area 1984 Area 2000 Gains Losses
(ha) (ha) (ha) (%) (ha) (%)
Arboreal vegetation 5,901 3,517 51 0.08 -2,436 -3.65
Wetlands 2,533 2,457 41 0.06 -117 -0.18
Grassland 9,192 10,699 2,210 3.31 -703 -1.05
Wasteland 465 407 83 0.12 -140 -0.21
Industrial land 10 64 54 0.08 0 0
Roads 373 387 19 0.03 -5 -0.01
Urban land 2,182 3,124 959 1.44 -17 -0.03
Category Area 2000 Area 2008 Gains Losses
(ha) (ha) (ha) (%) (ha) (%)
Arboreal vegetation 3,517 1,893 116 0.17 -1,741 -2.61
Wetlands 2,457 2,244 0 0 -215 -0.74
Grassland 10,699 11,239 1,507 2.26 -967 -3.31
Wasteland 407 203 22 0.03 -226 -0.78
Industrial land 64 184 121 0.18 -1 0
Roads 388 435 54 0.08 -6 -0.01
Urban land 3,124 4,458 1,343 2.01 -8 -0.01

Table 3 shows the surface contributions among the seven categories in the two periods evaluated. In the first period (1984-2000), 38 ha of arboreal vegetation were transformed into wetlands and 2,011 ha into grassland. In addition, another 306 ha of arboreal vegetation contributed to the growth of urban areas, industrial areas and roads, and only 29 ha remained as wasteland. Although wetlands gained 38 ha of arboreal vegetation, they gave 113 ha to the grasslands. This last category added another 2,011 ha coming from the arboreal vegetation, but lost 528 ha because of the growth of urban areas, industrial areas and roads. The urban area required 288 ha, 528 ha and 123 ha of arboreal vegetation, grassland and wasteland, respectively. In the second period (2000-2008), arboreal vegetation continued to provide areas to grassland (1,252 ha) and urban area (424 ha). On the other hand, due to the reforestation, arboreal vegetation recovered 77 ha coming from wasteland. The negative trend of the wetlands was maintained by contributing another 212 ha to grassland. This last category expanded with 1,252 ha of arboreal vegetation, although it reduced 102 ha due to the increase of the industrial area. In these eight years, 424 ha of arboreal vegetation, 762 ha of grassland and 141 ha of wasteland were urbanized.

Table 3 Surface contributions (1984-2000 and 2000-2008) among categories analyzed in Villahermosa, Tabasco. 

Contributions 1984-2000 (ha) Contributions 2000-2008 (ha)
Category Arboreal vegetation Wetlands Grassland Urban land Category Arboreal vegetation Wetlands Grassland Urban land
Arboreal vegetation 0 38 2,011 288 Arboreal vegetation 0 0 1,252 424
Wetlands -38 0 113 0 Wetlands 0 0 212 0
Grassland -2,011 -113 0 528 Grassland -1,252 -212 0 762
Wasteland -29 0 -39 123 Wasteland 77 0 -14 141
Industrial land -13 0 -41 0 Industrial land -19 0 -102 1
Roads -5 -1 -11 3 Roads -5 0 -48 6
Urban land -288 0 -528 0 Urban land -424 0 -762 0

In this study, deforestation and drastic reduction of wetlands were primarily caused by the transition to grassland for agricultural use and secondly by urbanization. These results agree with Zavala et al. (2009), who found that agricultural activities (60 %), especially grassland for livestock cattle, and urban areas (9.1 %) were dominant in Villahermosa. In the same study, the authors pointed out that 74 % of the landscape was transformed in the years 1984 and 2005 and that areas with arboreal vegetation and the wetlands occupied 25.3 and 5.2 % of the urban territory, respectively.

Between 1940-1996, 95 % of Tabasco forests were lost, due to the increase of areas for agricultural and livestock activities (Zavala & Castillo, 2007). Sánchez-Munguía (2005) analyzed the land use in Tabasco for the period of 1950-2000 and reported that the forest area distributed in ejidos and private property was 538,861 ha in 1950; 10 years later, the area of natural vegetation decreased to 453,411 ha; and in 1970 an accelerated deforestation initiated, leaving 146,485 ha of forest, which were reduced to 71,387 ha in 1980 and 41,079 in 1990. This decrease meant that, in 40 years, forests changed from representing 21.7 % to 1.6 % of the state area. Sánchez- Munguía (2005) linked deforestation between 1950 and 1991 with the increase in the number of heads of cattle, which was the economic activity that replaced the export of banana and other agricultural products before the oil boom (Allub & Michel, 1979).

The trend of land-use change agrees with other studies (Kolb & Galicia, 2013; Perezechchikova & Lezama, 2010; Sánchez-Munguía, 2005; Zavala & Castillo, 2007; Zavala et al., 2009) regarding the replacement of arboreal vegetation and wetlands cover by grassland and urban use; however, different surfaces and rates of change are detected due to the periods of analysis, evaluation methods and study scales. Velázquez et al. (2002) pointed out that the approaches used for the analysis of land use change are not homogeneous and, therefore, the results of different studies are varied in mapping categories and study scales. Thus, in order to compare with greater accuracy and reliability the dynamics of the different ecosystems in Mexico, it is necessary to systematize the mechanisms of evaluation, prediction and monitoring with compatible databases in categories and study scales.

Although the land use change modeler detected the accelerated growth of grassland for agricultural use against the declining of arboreal vegetation and wetlands, Sánchez-Munguía (2005) mentioned that in the last decades, there was a notable abandonment of agricultural activity in the territory, reflected in the collapse of the slaughter of cattle in the Frigorífico of Villahermosa. In spite of the decrease of this activity, the transition from grassland to arboreal vegetation by natural regeneration was not recorded; in contrast, only small reforested areas were located. Soil erosion in the Grijalva-Usumacinta basin may explain the lack of natural restoration, as 47.64 % of the area has slopes of more than 8 degrees (Sánchez-Hernández, Mendoza- Palacios, De la Cruz-Reyes, Mendoza-Martínez, & Ramos-Reyes, 2013).

In Tabasco, wetlands have deteriorated due to increased grassland, urban infrastructure and the construction of industrial areas and roads (Estrada, Barba, & Ramos, 2013), despite the fact that such coverage is valued as environmental regulators, flood damping, ecosystems hosting high biodiversity and habitat for resident and migratory species (Henny & Meutia, 2014; Hettiarachchi et al., 2014). With regard to the contamination of wetlands, the discharge of chemical products and the contribution of sediments derived from urban developments have led to hypertrophic conditions since the beginning of the 1990s (Goñi-Arévalo, Hernández- Pérez, Toledo-Gómez, & Pérez, 1991). These conditions have increased in Villahermosa (Hansen, Van Afferden, & Torres-Bejarano, 2007; Sánchez et al., 2012) and in other urban and coastal areas of the basin (Salcedo, Sánchez, De la Lanza, Kamplicher, & Florido, 2012).

Projection of the probabilities of land use change (2030)

By 2030, the replacement of arboreal vegetation by grasslands recorded 0.52 probability, which was followed by 0.13 related to urban growth (Table 4). In this sense, wetlands will disappear to become grasslands with a probability of 0.11; however, grassland will in turn be replaced by the urban area with a probability index of 0.11 (Table 4). Wasteland have a probability of 0.18 of transforming into arboreal vegetation, because these are places suitable for reforestation; however, wasteland will decrease by the growth of the urban area (probability of 0.45).

Table 4 Matrix of land use transition probabilities for 2030 in Villahermosa, Tabasco. 

Category Arboreal vegetation Wetlands Grassland Wasteland Industrial land Roads Urban land
Arboreal vegetation 0.321 0.004 0.522 0.004 0.005 0.003 0.137
Wetlands 0.000 0.882 0.116 0.000 0.000 0.000 0.000
Grassland 0.005 0.000 0.856 0.002 0.013 0.004 0.117
Wasteland 0.184 0.000 0.000 0.356 0.000 0.004 0.454
Industrial land 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Roads 0.000 0.000 0.002 0.000 0.000 0.973 0.024
Urban land 0.000 0.000 0.000 0.000 0.000 0.000 0.999

It was detected that the arboreal vegetation and the wetlands will decrease 1,187 and 254 ha, respectively with the model of cellular automata. In contrast, grassland will apparently increase 1,114 ha, as it will lose 1,431 ha. The urban area will continue to accumulate area and will add 6,137 ha in 2030 (Table 5). The contributions between coverages from 2008 to 2030 (Table 6) predicted that the arboreal vegetation will lose 860 ha when replaced by grassland; moreover, 254 ha of wetlands will be transformed into grassland. Likewise, for its imminent expansion, the urban area will invade 316 ha of arboreal vegetation and 1,252 ha of wetlands.

Table 5 Losses and gains of area in the period 2008-2030 in Villahermosa, Tabasco, according to the model of cellular automata. 

Category Area 2008 Area 2030 Gains Losses
(ha) (%) (ha) (%) (ha) (%) (ha) (%)
Arboreal vegetation 1,893 9.2 722 3.5 16 0.02 -1,187 -1.78
Wetlands 2,244 10.9 1,997 9.7 7 0.01 -254 -0.38
Grassland 11,239 54.4 10,922 52.9 1,114 1.67 -1431 -2.14
Wasteland 203 1 84 0.4 0 0 -121 -0.018
Industrial land 184 0.9 325 1.6 137 0.2 0 0
Roads 435 2.1 476 2.3 42 0.06 0 0
Urban land 4,458 21.6 6,137 29.7 1,679 2.51 0 0

Table 6 Surface contributions between categories for the period 2008-2030 in Villahermosa, Tabasco. 

Category / Categoría Arboreal vegetation (ha) / Vegetación arbórea(ha) Wetlands (ha) / Humedales (ha) Grassland (ha) / Pastizal (ha) Wasteland (ha) / Terrenos baldíos (ha)
Arboreal vegetation / Vegetación arbórea 0 7 860 316
Wetlands / Humedales -7 0 254 0
Grassland / Pastizal -860 -254 0 1,258
Wasteland / Terrenos baldíos 16 0 0 104
Industrial land / Industrial -4 0 -132 0
Roads / Carreteras 0 0 -41 0
Urban land / Urbano -316 0 -1,252 0

The land-use change model, Markov chains and cellular automata accurately detected the distribution of natural coverages and artificial uses, probabilities and spatial projection of change for year 2030, providing useful information for environmental planning for the city of Villahermosa. Jiménez-Moreno, González- Guillén, Escalona-Maurice, Valdez-Lazalde and Aguirre- Salado (2011) mentioned that it is essential to use one or several models of land use change so that soil authorities and planners can understand the scope of the changes recorded and the risks involved. In addition, the changes recorded allow to identify the factors that are causing them and, therefore, are useful to follow the territorial order.

Conclusions

Urban growth has been characterized by the development of urban and industrial surfaces in natural areas, especially wetlands. In the period analyzed, the urban area increased by almost 5,000 ha, causing a double risk; on the one hand, the loss of natural areas, and on the other hand, perhaps more important, is that it represents high probabilities of flooding for the population settled in this area. Meanwhile, foresight indicates that the loss of natural resources, and in particular of wetlands, will progressively continue to exceed more than 1,000 ha if there is no significant change in the paradigm or a program of land use management. This means that a significant part of the damage to infrastructure and economy due to recurrent floods in the urban area of the low basin is not necessarily a result of surplus precipitation, but instead the damage responds to the loss of wetlands and their use change to become residential areas. Therefore, to avoid scenarios of environmental deterioration in the next two decades, it is necessary to protect the territory with a comprehensive management plan and a legal decree to back it up.

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología for the scholarship awarded for Ph.D. studies in Ecology and Tropical Systems Management (PNPC), and the Colegio de Postgraduados Campus Montecillos for training on geomatic models for the analysis of land use change.

References

Allub, L., & Michel, M. A. (1979). La formación socioeconómica de Tabasco y el petróleo. Investigación Económica, 38(148/149), 327-355. Retrieved from http://www.jstor.org/stable/42777039Links ]

Angeoletto, F., Essy, C., Sanz, J. P. R., Da Silva, F. F., Albertin, R. M., & Santos, J. W. M. C. (2015). Ecología urbana: La ciencia interdisciplinaria del planeta ciudad. Desenvolvimento em Questão, 13(32), 6-20. Retrieved from https://www.revistas.unijui.edu.br/index.php/desenvolvimentoemquestao/article/view/4001/4664Links ]

Bähr, J., & Borsdorf, A. (2005). La ciudad latinoamericana. La construcción de un modelo. Vigencia y perspectivas. Urbes. Revista de ciudad, urbanismo y paisaje, 2(2), 207-222. Retrieved from http://www.guzlop-editoras.com/web_des/arquit01/pld0472.pdfLinks ]

Bazant, J. (2010). Expansión urbana incontrolada y paradigmas de la planeación urbana. Espacio abierto, 19(3). Retrieved from http://www.redalyc.org/pdf/122/12215112003.pdfLinks ]

Biro, K., Pradhan, B., Buchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation & Development, 24(1), 90-102. doi: 10.1002/ldr.1116 [ Links ]

Comisión Nacional del Agua (CONAGUA). (2012). Programa Integral Hídrico de Tabasco (PIHT). Libro Blanco (ONAGUA-OI) Retrieved from http://www.conagua.gob.mx/conagua07/contenido/Documentos/LIBROS%20BLANCOS/CONAGUA-01%20Programa%20Integral%20de%20Tabasco%20(PIHT).pdfLinks ]

Díaz-Perera, M. Á. (2014). La construcción histórica de las condiciones de posibilidad de un desastre: el caso de dos colonias de Villahermosa, Tabasco. En M. González-Espinosa, & M. C. Brunel-Manse (Eds.), Montañas, pueblos y agua: dimensiones y realidades de la cuenca Grijalva (pp. 1-25). México: Editorial Juan Pablos. [ Links ]

Estrada, L. F., Barba, M. E., & Ramos, R. R. (2013). Cobertura de los humedales en la cuenca del Usumacinta, Balancán, Tabasco, México. Universidad y Ciencia, 29(2), 141-151. Retrieved from http://132.248.10.25/era/index.php/rera/article/view/49Links ]

Eastman, J. R. (2012). IDRISI Selva GIS and image processing software version 17.0. Massachusetts, USA: Clark Labs. [ Links ]

Environmental Systems Research Institute (ESRI). (2016). Using map topology editing tools in ArcView. Retrieved from http://www.esri.com/news/arcuser/0703/files/av_topo_tut.pdfLinks ]

Goñi-Arévalo, J. A., Hernández-Pérez, O., Toledo-Gómez, J. L., & Pérez, M. M. Á. (1991). Eutrofización de la laguna de las Ilusiones y un modelo empírico del fósforo. Universidad y Ciencia, 8(15), 47-53. Retrieved from http://132.248.10.25/era/index.php/rera/article/view/474/393Links ]

Gutiérrez, J., Condeço-Melhorado, A., & Martín, J. C. (2010). Using accessibility indicators and GIS to assess spatial spillovers of transport infrastructure investment. Journal of Transport Geography, 18(1), 141-152. doi: 10.1016/j.jtrangeo.2008.12.003 [ Links ]

Hansen, A. M., Van Afferden, M., & Torres-Bejarano, F. (2007). Saneamiento del vaso Cencali, Villahermosa, Tabasco. I. Contaminación y reúso de sedimentos. Ingeniería Hidráulica en México, XXII(4), 87-102. Retrieved from http://repositorio.imta.mx:8080/cenca-repositorio/bitstream/123456789/847/1/215854.pdfLinks ]

Henny, C., & Meutia, A. A. (2014). Urban lakes in megacity Jakarta: Risk and management plan for future sustainability. Procedia Environmental Sciences, 20, 737-746. doi: 10.1016/j.proenv.2014.03.088 [ Links ]

Hettiarachchi, M., Morrison, T. H., Wickramsinghe, D., Mapa, R., De Alwis, A., & McAlpine, C. A. (2014). The eco-social transformation of urban wetlands: A case study of Colombo, Sri Lanka. Landscape and Urban Planning, 132, 55-68. doi: 10.1016/j.landurbplan.2014.08.006 [ Links ]

Jiménez-Moreno, M. J., González-Guillén, M. D. J., Escalona- Maurice, M., Valdez-Lazalde, J. R., & Aguirre-Salado, C. A. (2011). Comparación de métodos espaciales para detectar cambios en el uso del suelo urbano. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(3), 389-406. doi: 10.5154./r.rchscfa.2010.04.020 [ Links ]

Kolb, M., & Galicia, L. (2012). Challenging the linear forestation narrative in the Neo‐tropic: Regional patterns and processes of deforestation and regeneration in southern Mexico. The Geographical Journal, 178(2), 147- 161. Doi: 10.1111/j.1475-4959.2011.00431.x [ Links ]

Kolb, M., Mas, J. F., & Galicia, L. (2013). Evaluating drivers of land-use change and transition potential models in a complex landscape in Southern Mexico. International Journal of Geographical Information Science, 27(9), 1804-1827. doi: 10.1080/13658816.2013.770517 [ Links ]

Linard, C., Tatem, A. J., & Gilbert, M. (2013). Modelling spatial patterns of urban growth in Africa. Applied Geography, 44, 23-32. doi: 10.1016/j.apgeog.2013.07.009 [ Links ]

Mitsch, W. J., Goseelink, J. G., & Anderson, C. J. (2009). Wetland ecosystems. Hoboken, New Jersey, USA: John Wiley & Sons, Inc. [ Links ]

Navarro, J. M., & Toledo, H. (2004). Transformación de la cuenca del río Grijalva. Revista Noticias AMIP, 4(16), 11-22. Retrieved from http://www.amip.org.mx/htm/RevAMIP/A4NUM16/AMIP41611.pdfLinks ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2015). Evaluación de los recursos forestales mundiales 2015. Roma, Italia: Autor. Retrieved from http://www.fao.org/3/a-i4808s.pdfLinks ]

Palacio-Prieto, J. L., Sánchez-Salazar, M. T., Casado, J. M., Propin, F. E., Delgado, C. J., Velázquez, M. A., Camacho, R. C. G. (2004). Indicadores para la caracterización y el ordenamiento territorial. México: SEMARNAT. Retrieved from http://www2.inecc.gob.mx/publicaciones/download/434.pdfLinks ]

PCI Geomatics Enterprises. (2003). Geomatica training guide. Ontario, Canadá: Autor. Retrieved from http://www.pcigeomatics.com/pdf/TrainingGuide-Geomatica-1.pdfLinks ]

Perevochtchikova, M., & Lezama, T. J. L. (2010). Causas de un desastre: Inundaciones del 2007 en Tabasco, México. Journal of Latin American Geography, 9(2), 73-98. doi: 10.1353/lag.2010.0010 [ Links ]

Pinkus-Rendón, M. J., & Contreras-Sánchez, A. (2012). Impacto socioambiental de la industria petrolera en Tabasco: el caso de la Chontalpa. LiminaR, 10(2), 122-144. Retrieved from http://liminar.cesmeca.mx/index.php/r1/article/view/99/86Links ]

Reynoso-Santos, R., Valdez-Lazalde, J. R., Escalona-Maurice, M. J., De los Santos-Posadas, H. M., & Pérez-Hernández, M. J. (2016). Cadenas de Markov y autómatas celulares para la modelación de cambio de uso de suelo. Ingeniería Hidráulica y Ambiental, 37(1), 72-81. Retrieved from http://riha.cujae.edu.cu/index.php/riha/article/view/319/272Links ]

Salazar, L. F. (2002). Ubicación cartográfica de Villahermosa en 1579. Antropología. Boletín Oficial del INAH, 66, 32-40. Retrieved from https://revistas.inah.gob.mx/index.php/antropologia/article/view/4989/5015Links ]

Salcedo, M. A., Sánchez, A. J., De la Lanza, G., Kamplicher, C., & Florido, R. (2012). Condición ecológica del humedal tropical Pantanos de Centla. En A. J. Sánchez, X. Chiappa-Carrara, & R. Brito (Eds.), Recursos acuáticos costeros del sureste (vol. II, pp. 112-136). Mérida, Yucatán, México: CONCYTEY. [ Links ]

Sánchez, A. J., Salcedo, M. A., Florido, R., Mendoza, J. D., Ruiz-Carrera, V., & Álvarez-Pliego, N. (2015). Ciclos de inundación y conservación de servicios ambientales en la cuenca baja de los ríos Grijalva-Usumacinta. ContactoS, 97, 5-14. Retrieved from https://www.researchgate.net/publication/291827814_Ciclos_de_inundacion_y_conservacion_de_servicios_ambientales_en_la_cuenca_baja_de_los_rios_Grijalva-UsumacintaLinks ]

Sánchez, A. J., Salcedo, M. Á., Macossay-Cortez, A. A., Feria- Díaz, Y., Vázquez, L., Ovando, N., & Rosado, L. (2012). Calidad ambiental de la laguna urbana. La Pólvora en la cuenca del río Grijalva. Tecnología y ciencias del agua, 3(3), 143-152. Retrieved from http://www.scielo.org.mx/pdf/tca/v3n3/v3n3a10.pdfLinks ]

Sánchez-Colón, S., Flores-Martínez, A., Cruz-Leyva, I. A., & Velázquez, A. (2009). Estado y transformación de los ecosistemas terrestres por causas humanas. En Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (Ed.), Capital natural de México, vol. II: Estado de conservación y tendencias de cambio, (pp. 75-129). México: Autor. Retrieved from http://www.biodiversidad.gob.mx/pais/pdf/CapNatMex/Vol%20II/II02_Estado%20y%20transformacion%20de%20los%20ecosistemas%20terrestres.pdfLinks ]

Sánchez-Hernández, R., Mendoza-Palacios, J. D. D., De la Cruz-Reyes, J. C., Mendoza-Martínez, J. E., & Ramos- Reyes, R. (2013). Mapa de erosión potencial en la cuenca hidrológica Grijalva-Usumacinta México mediante el uso de SIG. Universidad y ciencia, 29(2), 153-161. Retrieved from http://132.248.10.25/era/index.php/rera/article/view/50Links ]

Sánchez-Munguía, A. (2005). Uso del suelo agropecuario y desforestación en Tabasco 1950-2000. Villahermosa, Tabasco, México: Universidad Juárez Autónoma de Tabasco. [ Links ]

Torres‐Vera, M. A., Prol‐Ledesma, R. M., & García‐López, D.(2009). Three decades of land use variations in Mexico City. International Journal of Remote Sensing, 30(1), 117- 138. doi: 10.1080/01431160802261163 [ Links ]

Velázquez, A., Mas, J. F., Gallegos, J. R. D., Mayorga-Saucedo, R., Alcántara, P. C., Castro, R., & Palacio, J. L. (2002). Patrones y tasas de cambio de uso del suelo en México. Gaceta ecológica, 62, 21-37. Retrieved from http://www2.inecc.gob.mx/publicaciones/download/357.pdfLinks ]

Zavala, C. J., & Castillo, A. O. (2007). Cambio de uso de la tierra en el estado de Tabasco. En D. J. Palma-López, & A. Triano (Eds.), Plan de uso sustentable de los suelos del estado de Tabasco (vol. II, pp. 38-56). Villahermosa, Tabasco, México: Colegio de Postgraduados. [ Links ]

Zavala, C. J., Castillo, A. O., Ortiz, I. C., Palma, L. D. J., Salgado, G. S., Rincón, R. J. A., Ramos, R. R. (2009). Capacidad de uso del suelo urbano en Tabasco: Con base en suelo, uso actual y vegetación. Cárdenas, Tabasco, México: Colegio de Postgraduados. [ Links ]

Zepeda-Gómez, C., Nemiga, X. A., Lot-Helgueras, A., & Madrigal-Uribe, D. (2012). Análisis del cambio del uso del suelo en las ciénegas de Lerma (1973- 2008) y su impacto en la vegetación acuática. Investigaciones geográficas, 78, 48-61. Retrieved from http://www.revistas.unam.mx/index.php/rig/article/view/32469/29941Links ]

Received: March 31, 2016; Accepted: November 09, 2016

*Corresponding author. Email: aga2003a@hotmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License