SciELO - Scientific Electronic Library Online

 
vol.24 número3Reconstrucción de la precipitación histórica (1877-2014) para el suroeste de la Reserva de la Biosfera Sierra Gorda, Querétaro, MéxicoCaracterísticas de los troncos de palma aceitera para la crianza de Rhynchophorus palmarum (Coleoptera: Curculionidae) en la Amazonía peruana índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.24 no.3 Chapingo sep./dic. 2018  Epub 19-Feb-2021

https://doi.org/10.5154/r.rchscfa.2018.02.020 

Scientific article

Above-ground biomass and carbon sequestration in mangroves in the arid area of the northwest of Mexico: Bahía del Tóbari and Estero El Sargento, Sonora

Ana L. Bautista-Olivas1 

Mayra Mendoza-Cariño2  * 

Julio Cesar-Rodriguez1 

Christian E. Colado-Amador1 

Carlos A. Robles-Zazueta1 

Alf E. Meling-López3 

1Universidad de Sonora, Departamento de Agricultura y Ganadería. Carretera Bahía de Kino km 21. A. P. 305. Hermosillo, Sonora, México.

2Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. Batalla 5 de mayo s/n esquina Fuerte de Loreto, col. Ejército de Oriente. C. P. 09230. Iztapalapa, Ciudad de México, México.

3Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas. Rosales y bulevar Luis Donaldo Colosio M., col. Centro. C. P. 83000. Hermosillo, Sonora, México.


Abstract

Introduction:

Mangroves are the largest carbon sinks and contribute to mitigate the effects of global climate change.

Objective:

To estimate the above-ground biomass (AB) of El Sargento estuary and Bahía del Tóbari, to compare the carbon stocks between both places.

Materials and methods:

Measurements were taken from May 2014 to November 2015. The species were identified, and tree diameter, height and canopy cover were measured in 16 plots of 10 x 10 m. The AB was estimated with allometric equations and was related to the carbon content by the factor 0.5. The statistically significant differences between the carbon contents of both study sites were detected with the t test for independent samples.

Results and discussion:

The AB in El Sargento estuary was estimated between 108.1 and 316.78 Mg∙ha-1 with predominance of Laguncularia racemosa (L.) Gaertn (60 %); in Bahía del Tóbari, the AB varied between 72.12 and 130 Mg∙ha-1, prevailing Avicennia germinans (L.) L. (83.4 %). In both sites Rhizophora mangle L. was found marginally. Total carbon storage was greater in El Sargento (with a range of 54.1 to 158.4 Mg C∙ha-1) compared to Bahía del Tóbari (36.1 to 65.5 Mg C∙ha-1); the difference was statistically significant (F = 0.01; P = 0.02).

Conclusion:

The difference in the carbon reserves of the study sites is related to the good species development and diversity of a pristine environment (El Sargento), compared to another severely impacted environment (Bahía del Tóbari).

Keywords: Avicennia germinans; Laguncularia racemosa; Rhizophora mangle; greenhouse gases; carbon sink

Resumen

Introducción:

Los manglares son los mayores sumideros de carbono y contribuyen a mitigar los efectos del cambio climático global.

Objetivo:

Estimar la biomasa aérea (BA) del estero El Sargento y de la Bahía del Tóbari, para comparar los almacenes de carbono entre ambos lugares.

Materiales y métodos:

Las mediciones se realizaron en mayo de 2014 a noviembre de 2015. Las especies se identificaron, y el diámetro de árboles, altura y cobertura del dosel se midieron en 16 parcelas de 10 x 10 m. La BA se estimó con ecuaciones alométricas y se relacionó con el contenido de carbono mediante el factor 0.5. Las diferencias estadísticamente significativas entre los contenidos de carbono de ambos sitios de estudio se detectaron con la prueba t para muestras independientes.

Resultados y discusión:

La BA en el estero El Sargento se estimó entre 108.1 y 316.78 Mg∙ha-1 con predominancia de Laguncularia racemosa (L.) Gaertn (60 %); en Bahía del Tóbari, la BA varió entre 72.12 y 130 Mg∙ha-1, prevaleciendo Avicennia germinans (L.) L (83.4 %). En los dos sitios se encontró Rhizophora mangle L. de manera marginal. El almacén total de carbono fue mayor en El Sargento (con un rango de 54.1 a 158.4 Mg C∙ha-1) que en Bahía del Tóbari (36.1 a 65.5 Mg C∙ha-1); la diferencia fue estadísticamente significativa (F = 0.01; P = 0.02).

Conclusión:

La diferencia en las reservas de carbono de los lugares de estudio se relaciona con el buen desarrollo y diversidad de especies de un medio ambiente prístino (El Sargento), en comparación con otro severamente impactado (Bahía del Tóbari).

Palabras clave: Avicennia germinans; Laguncularia racemosa; Rhizophora mangle; gases de efecto invernadero; sumidero de carbono

Introduction

Human activities emit significant amounts of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) into the atmosphere, contributing to the increase in the concentration of greenhouse gases (GHG) with consequences on global climate change (Intergovernmental Panel on Climate Change [IPCC], 2013). This situation worries scientists and society as a whole, since GHGs increased since the industrial era began in 1750: CO2 increased 30 %; CH4, 100 %; and N2O, 15 % (Olivo & Soto-Olivo, 2010). The use of natural resources has elevated the concentrations of CO2 in the atmosphere. In 2000, a total of 23.5 Gt were estimated worldwide; 60 % from stationary sources (World Meteorological Organization-United Nations Environment Program [WMO-UNEP], 2005). In 2004, emissions were attributed to the energy sector (25.9 %), industrial sector (19.4 %), forestry sector (17.4 %) and agricultural sector (13.5 %) (IPCC, 2007).

Wetlands store 40 % of the carbon generated on the planet (Moya, Hernández, & Borrell, 2005). The most representative are mangroves, submerged grasses, deltaic floodplains, estuaries, lakes and low flood forests (Yáñez-Arancibia & Day, 2010); together, they occupy between 4 and 6 % of the world's territory (Mistch & Gosselink, 2000). At a global scale there are 13.8 million ha of mangrove distributed in Asia (34 to 42 %), Indonesia (23 %), Africa (20 %), North and Central America (15 %), Oceania (12 %), South America (11 %) and Australia (7 %) (Kauffman, Heider, Norfolk, & Payton, 2014). According to Kauffman et al. (2013), 64 % of mangroves are concentrated in 10 countries: 42 % in Indonesia, Brazil, Australia and Mexico; the most diverse are located in Asia. Indonesia ranks first with 2 986 496 ha and Mexico ranks fifth with 964 438 ha (Hutchison, Manica, Swetnam, Balmford, & Spalding, 2014). In 2015, the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) reported 775 555 ha.

In comparison with other ecosystems, mangroves have a potential impact on the global carbon flux (Dittmar, Hertkorn, Kattner, & Lara, 2006), because mangroves have the highest carbon sequestration rate (Brevik & Homburg, 2004): up to 1.023 Mg∙ha-1 in soil (Donato et al., 2011) and 7.4 Mg∙ha-1 in biomass (Lema & Polanía, 2006). In Mexico, the reserve of carbon in the wetlands has been estimated at 282 Mg∙ha-1, of which 223 Mg∙ha-1 correspond to biomass and 105 Mg∙ha-1 are found in soil, dead trees and fallen branches, while the rest is part of the decomposing matter, forest products and fossil fuels (Masera, Cerón, & Ordóñez, 2001). Recently, in Mexico, the total reserve of organic carbon in soil has been estimated at 2.21 Pg (Cartus et al., 2014), 30 % higher than the 1.69 Pg reported by the FAO (Food and Agriculture Organization) in 2010.

Mangrove coverage in Mexico decreased 10 % in the 25 years prior to 2014 (Valderrama et al., 2014) with an annual deforestation rate of 2.5 % (Instituto Nacional de Ecología [INE], 2005). The deterioration of mangroves in the last half century (30 to 50 %) allowed to estimate the loss of their functionality in only 100 years (Duke et al., 2007), because, when intervening, they become vulnerable to methanogenesis (production of CH4 by microorganisms) (Purvaja & Ramesh, 2001); because logging decreases biomass and releases CO2 and CH4, mangroves reverse their carbon sequestration capacity and become GHG emitters (Troxler et al., 2015).

In Mexico, little has been studied about the dynamics of CO2 and CH4 exchange, and carbon accumulation in wetland soils (Hernandez, 2009), therefore studies are required to determine global flows with precision (Betancourt-Portela, Parra, & Villamil, 2013). For the above, the objectives of this study were: i) to estimate the above-ground biomass and carbon content in live trees from El Sargento and Bahía del Tóbari in Sonora, using allometric equations, and ii) to compare carbon stocks of both mangroves. The hypothesis establishes that carbon stock in the above-ground biomass is greater in El Sargento, because it presents natural conditions that favor the development of biomass and carbon sequestration.

Materials and methods

Study area

The present study was carried out in the estuary El Sargento and Bahía del Tóbari in Sonora, in the arid zone of northern Mexico. The areas have a different degree of anthropogenic pressure, but similar atmospheric conditions: very dry and warm climate, mean annual temperature greater than 22 °C, warm summer and intermediate rainfall regime between summer and winter (BW[h’]hw) (García & CONABIO, 1998).

El Sargento is located between the coordinates 29° 19´- 29° 34´´ NL and 112.3°-112° 22´ WL (Figure 1), covers 717 ha and 7 km long (Rodríguez-Zúñiga et al., 2013). The estuary represents a pristine zone of the Gulf of California (López-Medellín, Acosta-Velázquez, & Vázquez-Lule, 2009), where white mangrove species (Laguncularia racemosa [L.] Gaertn), black mangrove species (Avicennia germinans [L.] L.) and red mangrove species (Rhizophora mangle L.) are housed, which are considered under threat in the NOM-059-SEMARNAT-2010 (Secretaría del Medio Ambiente y Recursos Naturales [SEMARNAT], 2010).

The Bahía del Tóbari is located between the coordinates 27° 01´- 27° 07´ NL and 109° 54´-110° 03´ 18´´ WL (Figure 1), it occupies 16 700 ha and is part of the Protection Area of Flora and Fauna “Islas del Golfo de California” (Carmona et al., 2015). The body of water has deteriorated due to the construction of the road to Huivulai Island, pollution and sedimentation, which together modify the natural hydrodynamic circulation and interrupt the natural marine cleaning and vent streams (Domínguez, 2010).

Figure 1 Location of El Sargento estuary and Bahía del Tóbari in Sonora, Mexico. 

Field research

The measurements were made from May 2014 to November 2015. In both study sites, an arrangement of 16 plots of 10 x 10 m was drawn. In each plot, two subplots of 4 x 4 m were established (Figure 2). In the plots of 100 m2, the mangrove species were identified; live trees were counted; trees with a diameter at breast height (DBH; 1.3 m) greater than 5 cm were measured with a measuring tape; height and width of canopy were obtained with the technique of Kauffman et al. (2013). In R. mangle, DBH was measured based on the highest root. In subplots of 16 m2, DBH trees < 5 cm were measured with the same technique.

Figure 2 Distribution of plots and sampling design in mangroves of El Sargento estuary and Bahía del Tóbari in Sonora. 

Live above-ground biomass and carbon content

The AB was determined with allometric equations (Table 1) and was related to the estimation of carbon content by the factor 0.5 recommended by the IPCC (2013). The total above-ground biomass (TAB) was estimated by adding the average values of AB in correspondence with the species percentage.

Table 1 Allometric equations to determine the total above-ground biomass in mangrove species of El Sargento estuary and Bahía del Tóbari in Sonora. 

Source Mangrove species Allometric equation
Day, Conner, Ley-Lou, Day, and Navarro (1987) Lr AB = Exp [2.192 * (NL(DBH)) - 1.591]
Ag AB = Exp [2.302 * (NL(DBH)) - 1.585]
Rm AB = Exp [2.507 * (NL(DR)) - 1.560]
Smith and Whelan (2006) Lr AB = 10^[1.930 * (LOG10(DBH)) - 0.441]
Ag AB = 10^[1.934 * (LOG10(DBH)) - 0.395]
Rm AB = 10^[1.731 * (LOG10(DBH)) - 0.112]
Fromard et al. (1998) Lr AB = 0.1023 * (DBH^2.50)
Ag AB = 0.14 * (DBH^2.40)
Rm AB = 0.1282 * (DBH^2.6)
Imbert and Roller (1989) Lr AB = 0.209 * (DBH^2.24)
Ag AB = 0.0942 * (DBH^2.54)
Rm AB = 0.178 * (DBH^2.47)
Chave et al. (2005) Common equation AB = 0.168 * ρ * (D^2.47)
Komiyama, Poungparn, and Kato (2005) Common equation AB = 0.251 * ρ * (D^2.46)

Ag = Avicennia germinans; Lr = Laguncularia racemosa; Rm = Rhizophora mangle. AB: above-ground biomass, NL: natural logarithm, DBH: diameter at breast height (cm), ρ: density of wood (Ag = 0.759, Lr = 0.762 [Ministerio del Ambiente y los Recursos Naturales, 1994]; Rm = 0.80 [Richter & Dallwitz, 2000]).

Statistical analysis

The statistically significant differences between the means of carbon contents of both study sites, with respect to each mangrove species and global stocks, were detected with the T test for independent samples. The homoscedasticity of the data was determined by the F test with significance level of 0.05. Analyzes were carried out using the Excel program of Windows 10.

Results and discussion

Table 2 shows the characteristics of the species that make up the mangroves in El Sargento estuary and Bahía del Tóbari in Sonora. Based on the total number of trees sampled, a density of 4 406 trees∙ha-1 was estimated in El Sargento. The most abundant species was L. racemosa, followed by A. germinans and R. mangle. The R. mangle species had the lowest development: DBH of 1.3 cm, trunk height (TH) of 1 m, and canopy width of 0.4 m.

In the Bahía del Tóbari, density was 3 162 trees∙ha-1; A. germinans predominated over R. mangle (Table 2). The latter showed greater development and composition in Bahía del Tóbari (DBH = 8.24 cm, 16.6 %) than in El Sargento (DBH = 1.3 cm, 5.82 %), which suggests the adaptability of the species to the anthropic modifications of the site.

Table 2 Characteristics of the species under study in the mangroves of El Sargento and Bahía del Tóbari in Sonora 

Species DBH (cm) Trunk height (m) Canopy width (m) Canopy height (m) Density (tree∙ha-1) Composition (%)
El Sargento
Lr 8.3 ± 1.3 2.3 ± 0.2 1.1 ± 0.1 1.5 ± 0.1 2 650 60.14
Ag 7.0 ± 1.4 2.1 ± 0.2 1.3 ± 0.3 1.5 ± 0.2 1 500 34.04
Rm 1.3 ± 0.3 1.1 ± 0.3 0.6 ± 0.1 0.4 ± 0.1 256 5.82
Total density (trees∙ha-1) 4 406 100
Bahía del Tóbari
Ag 4.8 ± 0.5 1.6 ± 0.2 0.9 ± 0.4 1.0 ± 0.4 2 637 83.4
Rm 8.24 ± 1.5 1.8 ± 0.8 0.8 ± 0.3 0.7 ± 0.3 525 16.6
Total density (trees∙ha-1) 3 162 100

Ag = Avicennia germinans; Lr = Laguncularia racemosa; Rm = Rhizophora mangle. DBH: diameter at breast height. ± Standard error of the mean with 95 % confidence interval.

Determination of the mangrove above-ground biomass

Figure 3 illustrates, graphically, the estimate of AB of the species that make up the mangrove of El Sargento estuary, by means of different allometric equations. In El Sargento, the AB of L. racemosa varied between 81.5 (equation of Smith & Whelan, 2006) and 268.8 Mg∙ha-1 (equation of Komiyama et al., 2005); in A. germinans, between 26.6 (equation of Smith & Whelan, 2006) and 47.9 Mg∙ha-1 (equation of Komiyama et al., 2005); and in R. mangle, between 0.0064 (equation of Chave et al., 2005) and 0.038 Mg∙ha-1 (equation of Smith & Whelan, 2006). The rest of the equations produced intermediate values of those intervals.

Figure 3 Above-ground biomass of El Sargento mangrove, Sonora, estimated with different allometric equations. The biomass of red mangrove (Rhizophora mangle) is lower in comparison with the white mangrove (Laguncularia racemosa) and the black mangrove (Avicennia germinans). The standard error of the mean with 95 % confidence interval is represented on the bars. 

In Bahía del Tóbari, the AB of A. germinans varied between 60 (equation of Smith & Whelan, 2006) and 104.4 Mg∙ha-1 (equation of Komiyama et al., 2005), while in R. mangle the AB varied between 12.1 (equation of Smith & Whelan, 2006) and 32.3 Mg∙ha-1 (equation of Chave et al., 2005). The other equations provided intermediate values (Figure 4).

Figure 4 Above-ground biomass of the black mangrove (Avicennia germinans) and red mangrove (Rhizophora mangle) in Bahía del Tóbari, Sonora, estimated with different allometric equations. The standard error of the mean with 95 % confidence interval is represented on the bars. 

In the Atasta peninsula in Campeche, Guerra-Santos et al. (2014) reported AB of 206.07 Mg∙ha−1 for L. racemosa, 161.93 Mg∙ha−1 for A. germinans and 181.70 Mg∙ha−1 in R. mangle. In the Yucatan Peninsula, Adame et al. (2013) reported 5.3 Mg∙ha−1 for R. mangle enano. On the other hand, in French Guiana, Fromard et al. (1998) estimated 31.5 Mg∙ha-1 for L. racemosa from two to three years of age, and 315 Mg∙ha-1 for A. germinans and R. mangle from 60 to 70 years; while in Africa, Fatoyinbo and Simard (2013) found 76 (in Benin) and 178 Mg·ha-1 (in Congo) as the average of the biomass of several species, among them A. germinans, L. racemosa and R. mangle. The differences of these values ​​with respect to those obtained in the present study are justified by the typical environmental conditions of the ecoregions, the particular characteristics of the species and the different degree of deterioration by human activities.

Figure 5 shows the TAB estimates in the mangroves of El Sargento and Bahía del Tóbari. In El Sargento, the TAB varied between 108.1 and 316.78 Mg∙ha-1, while in Bahía del Tóbari, the TAB was estimated between 72.12 and 130 Mg∙ha-1. In both sites, the largest estimates derived from the equation of Komiyama et al. (2005), and the lower estimates by Smith and Whelan (2006). In El Sargento, the values estimated with the equation of Komiyama et al. (2005) equals 2.93 times those calculated with the equation of Smith and Whelan (2006); the same was observed in Bahía del Tóbari, whose relation was 1.81 times greater. The equation of Chave et al. (2005) generated lower values with respect to that of Komiyama et al. (2005), but higher to the rest; this was also reported by Komiyama, Ong, and Poungparn (2008), using the same value for density of wood in both equations.

Figure 5 Estimates of total above-ground biomass in the mangroves of El Sargento and Bahía del Tóbari, Sonora, using different allometric equations. The standard error of the mean with 95 % confidence interval is represented on the bars. 

Estimates of total above-ground biomass in the mangroves of El Sargento and Bahía del Tóbari, Sonora, using different allometric equations. The average error with 95 % confidence interval is represented on the bars.

The differences between AB calculated were attributed to the specificity or generality of the equations used, since the highest values ​​correspond to those commonly used in the forest area (equations of Komiyama et al., 2005 and Chave et al., 2005); and the lower values, to those of particular use of each species. For some scientists, it is still controversial to state whether the allometry of a mangrove species is specific to a particular location (Komiyama et al., 2008); however, others determined similar equations for the same species at different sites, this is the case of Rhizophora apiculata Blume (Ong, Gong, & Wong, 2004).

Komiyama et al. (2008) compared the AB of Rhizophora species and found that the equation of Komiyama et al. (2005) had a relative error of -5.81 to -4.94 % in the estimate with respect to Imbert and Rollet (1989), and -8.44 to 6.79 % with respect to the equation of Fromard et al. (1998); in Avicennia, the relative error was -4.05 to -10.8 % for the equation of Imbert and Rollet (1989), and -11.7 to 3.99 for the equation of Fromard et al. (1998). This indicated that the estimate of AB with the commonly used equation of Komiyama et al. (2005) has a relative error of less than 10 %, which suggests that the allometric relationships of the same mangrove species do not differ between sites, and that the density of the wood can be the determining factor (Komiyama et al., 2008).

El Sargento had greater TAB (between 108.1 and 316 Mg∙ha-1) compared to Bahía del Tóbari (72.1 and 130 Mg∙ha-1) (Figure 5). In this interval, we found AB values ​​reported by Hutchison et al. (2014) for North, Central America and the Caribbean (145.3 Mg∙ha-1), who also pointed out that the highest global averages come from the Pacific Islands (233.3 Mg∙ha-1) and Southeast Asia (230.9 Mg∙ha-1), while the lower averages are from East Asia (107.2 Mg∙ha-1).

Total above-ground biomass and carbon stock

There is a statistically significant difference in the average values of the carbon content of A. germinans (F = 0.12, P = 0.0004), R. mangle (F = 1.95-13; P = 0.0003) and the global (F = 0.01; P = 0.02) between both study sites. Laguncularia racemosa was excluded from the analysis because it was only found in El Sargento.

Table 3 indicates the carbon stock in the above-ground biomass of the mangroves of El Sargento and Bahía del Tóbari. In El Sargento, the carbon estimates in the AB of L. racemosa ranged between 40.7 and 134.44 Mg C∙ha-1; in A. germinans, from 13.3 to 24 Mg C∙ha-1; and in R. mangle, from 0.003 to 0.019 Mg C∙ha-1. In Bahía del Tóbari, the carbon stock in the AB of A. germinans varied between 30 and 52.2 Mg C∙ha-1; and in R. mangle, from 6 to 16.2 Mg C∙ha-1. The total carbon stock in the AB of El Sargento was estimated between 54.1 and 158.4 Mg C∙ha-1, while in Bahía del Tóbari it ranged from 36.1 to 65.5 Mg C∙ha-1.

Table 3 Carbon stock in the above-ground biomass of the mangroves of El Sargento and Bahía del Tóbari in Sonora. 

Carbon in above-ground biomass (Mg C∙ha-1) Estimation equation
Laguncularia racemosa Avicennia germinans Rhizophora mangle Total
El Sargento
40.7 ± 9.8 13.3 ± 3.5 0.019 ± 0.014 54.1 ± 9.3 Smith and Whelan (2006)
52.1 ± 16.1 19.6 ± 5.1 0.011 ± 0.009 71.7 ± 16.0 Day et al. (1987)
66.7 ± 21.3 15.5 ± 4.2 0.006 ± 0.005 82.2 ± 21.0 Imbert and Roller (1989)
82.7 ± 34.8 15.1 ± 4.1 0.005 ± 0.004 97.8 ± 34.2 Fromard et al. (1998)
93.3 ± 37.9 16.5 ± 4.5 0.003 ± 0.002 109.8 ± 37.4 Chave et al. (2005)
134.4 ± 54.1 24.0 ± 6.6 0.005 ± 0.004 158.4 ± 53.3 Komiyama et al. (2005)
Bahía del Tóbari
30.0 ± 3.9 6.0 ± 2.2 36.1 ± 5.6 Smith y Whelan (2006)
31.3 ± 5.2 11.7 ± 4.4 42.9 ± 8.2 Imbert and Roller (1989)
32.1 ± 4.9 11.8 ± 4.5 43.9 ± 8.1 Fromard et al. (1998)
34.9 ± 4.9 11.6 ± 6.0 46.5 ± 10.0 Chave et al. (2005)
35.9 ± 5.1 16.2 ± 6.1 52.0 ± 9.5 Day et al. (1987)
52.2 ± 7.9 13.3 ± 5.6 65.5 ± 12.8 Komiyama et al. (2005)

± Standard error of the mean with 95 % confidence interval.

Research in Mexico on AB of mangrove and its carbon content is scarce; however, estimates have been made for some regions, which are shown in Table 4. In the Gulf of Mexico and the central Pacific, 137.32 and 101.75 Mg C∙ha-1 are recorded, respectively (Herrera et al., 2016); in the Yucatan Peninsula, the carbon content varies between 2.5 and 84.6 Mg C∙ha-1 (Adame et al., 2013); the North Pacific, where the study sites are located, has an average of 42 Mg C∙ha-1, where the Agua Brava de Nayarit Lagoon (162.41 Mg C∙ha-1) and Bahía del Tóbari (3.4 Mg C∙ha-1) had the extreme values ​​(Herrera et al., 2016). When comparing the previous data with those of this study, the minor stocks of El Sargento (54.1 Mg C∙ha-1) and of Bahía del Tóbari (36.1 Mg C∙ha-1) are close to the estimates of the North Pacific region (42 Mg Mg C∙ha-1), although there is contrast with respect to Bahía del Tóbari, where the comparison is complicated by the lack of information.

Despite the environmental differences between ecoregions, the Yucatan peninsula (Sian Ka'an) records AB (176.2 Mg∙ha-1) and intermediate carbon stocks (84.6 Mg∙ha-1) (Adame et al., 2013), with respect to the interval estimated in El Sargento (AB = 108.1-316 Mg∙ha-1 and C = 54.1-158.4 Mg∙ha-1) (Table 4). Different sites of the Atasta peninsula reported stocks from 36.8 to 235.77 Mg C∙ha−1 in R. mangle, and in Bahía de Cispatá (Colombia), of 64.85 Mg C∙ha−1 (Yepes et al., 2016). Approximations of the amounts previously reported with respect to El Sargento were attributed to L. racemosa being the dominant species in Sian Ka'an, although of moderate presence in Atasta.

Table 4 Above-ground biomass and organic carbon in different mangrove forests. 

Study site Dominant species Mangrove characteristics Above-ground biomass (Mg∙ha-1) Carbon (Mg∙ha-1) Source
Height (m) DBH (cm)
Mexico
El Sargento, Sonora Ag y Lr 108.1-316 54.1-158.4 Present study
Bahía del Tóbari, Sonora Ag y Rm 72.12-130 36.1-65.5
Sian Ka'an, Yucatán Lr 176.2 84.6 Adame et al. (2013)
Rm > 5 144.9 69.6
Rm 3-5 114.2 54.8
Rm <1.5 5.3 2.5
Reserva de la Biósfera La Encrucijada, Chiapas Ag, Lr y Rm 20-40 8-11 421.1 215 Adame et al. (2015)
North Pacific 42.09 Herrera et al. (2016)
Central Pacific 101.75
Gulf of México 137.32
South Pacific 139.65
French Guyana Lr (Age = 2-3 years old) 31.5 Fromard et al. (1998)
Ag (age = 50 years old) 180
Ag y Rm (age = 60-70 years old) 315
Dominican Republic Rm <3 11.9 10 Kauffman et al. (2014)
Lr and Rm 3-10 54.2 47
Rm >10 240.7 161
Colombia
Bahía de Cispatá Rm 129.69 64.85 Yepes et al. (2016)
Delta del Río Atrato Rm >15 165.9 82.9 Blanco-Libreros, Ortiz-Acevedo, y Urrego (2015)
Ensenada de Rionegro Rm <2 115.6 57.8
Puerto César-Punta Ag, Lr and Rm 5-16.5 85.4 42.7
Turbo Ag, Lr and Rm < 5 75.8 37.9
USA (East Coast of Florida) Ag, Lr and Rm > 2 114 55 Doughty et al. (2016)

Ag = Avicennia germinans, Lr = Laguncularia racemosa, Rm = Rhizophora mangle. DBH: Diameter at breast height (1.3 m).

The differences or similarities of the AB between the study sites are justified by the diversity and abundance of the species. Environmental components, management practices and disturbances in hydrological regimes also influence the AB development. Height decreases as latitude increases, a pattern that produces small amounts of AB and decreases carbon sequestration (Morrisey et al., 2010). In contrast, primary or mature mangroves have higher AB (lower in temperate zones) at lower latitudes, which is associated with climatic conditions (temperature, solar radiation, precipitation and frequency of storms) (Komiyama et al., 2008).

The structural characteristics of the vegetation provide a certain tolerance of the species to the effects of global climate change (Doughty et al., 2016). The properties and nutrient condition of the soil affect the biomass growth rate and carbon sequestration capacity (Komiyama et al., 2008). This correlates with the size of trees and the potential carbon sequestration in R. mangle: Adame et al., (2013) indicated that trees smaller than 1.5 m store 2.5 Mg C∙ha-1 and greater than 5 m store 69.6 Mg C∙ha-1. Kauffman et al. (2014) coincide with the above: trees smaller than 3 m capture 10 Mg C∙ha-1 and greater than 10 m capture up to 161 Mg C∙ha-1.

Conclusions

El Sargento is a pristine environment which recorded higher amounts of above-ground biomass and carbon reserves compared to Bahía del Tóbari, whose mangrove has anthropic impacts. The storage of carbon in natural habitats is essential to mitigate the effects of global climate change. Mangrove conservation and management policies are required at the national level, to favor their protection and maintain their ecological and environmental functions.

Acknowledgments

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the financing granted to the first author, through the project "Behavior of greenhouse gases (GHG) in the El Sargento estuary and Bahía el Tóbari mangroves, in Sonora and its relation with hydroclimatology". They also thank the University of Sonora, for the facilities provided for the field trips; to the inhabitants of El Sargento and Tóbari communities, for allowing access to the study sites; and they also thank Jorge Luis Rodríguez Ibarra, for his support in the field.

References

Adame, M. F., Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., …Herrera-Silveira, J. A. (2013). Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLOS ONE, 8(2), e56569. doi: 10.1371/journal.pone.0056569 [ Links ]

Adame, M. F., Santini, N. S., Tovilla, C., Vázquez-Lule, A., Castro, L., & Guevara, M. (2015). Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences, 12, 3805-3818. doi: 10.5194/bg-12-3805-2015 [ Links ]

Betancourt-Portela, J. M., Parra, J. P., & Villamil, C. (2013). Emisión de metano y óxido nitroso de los sedimentos de manglar de la Ciénaga Grande de Santa Marta, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras-INVEMAR, 42(1), 131-152. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-97612013000100008Links ]

Blanco-Libreros, J. F., Ortiz-Acevedo, L. F., & Urrego, L. E. (2015). Reservorios de biomasa aérea y de carbono en los manglares del golfo de Urabá (Caribe colombiano). Actualidades Biológicas, 37(103), 131-141. doi: 10.17533/udea.acbi.v37n103a02 [ Links ]

Brevik, E. C., & Homburg, J. A. (2004). A 5000 years record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. CATENA, 57(3), 221-232. doi: 10.1016/j.catena.2003.12.001 [ Links ]

Carmona, R., Arce, N., Ayala, P., V., Mendoza, L. F. Hernández, A., & Cruz, M. A. (2015). Importancia del noroeste de México para la migración e invernación de las aves playeras. Biodiversitas, 121, 6-11. Retrieved from http://bioteca.biodiversidad.gob.mx/janium/Documentos/7539.pdfLinks ]

Cartus, O., Kellndorfer, J., Walker, W., Franco, C., Bishop, J., Santos, L., & Michel, F. J. M. (2014). A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sensing, 6(6), 5559-5588. doi: 10.3390/rs6065559 [ Links ]

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., …Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. doi: 10.1007/s00442-005-0100-x [ Links ]

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2010). Biodiversidad mexicana. Retrieved October 8, 2017, from http://www.biodiversidad.gob.mx/ecosistemas/manglares2013/manglares.htmlLinks ]

Day, J. W., Conner, W. H., Ley-Lou, F., Day, R. H., & Navarro, A. M. (1987). The productivity and composition of mangrove forests, Laguna de Términos, Mexico, Aquatic Botany, 27(3), 267-284. doi: 10.1016/0304-3770(87)90046-5 [ Links ]

Dittmar, T., Hertkorn, N., Kattner, G., & Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles, 20(1), GB1012. doi: 10.1029/2005GB002570 [ Links ]

Domínguez, S. L. (2010). Descripción del sistema ambiental y señalamiento de la problemática ambiental, detectada en el área de influencia del campo pesquero el paredón colorado y el paredoncio, Bahía del Tóbari, municipio de Benito Juárez, Sonora, para el establecimiento de infraestructura pesquera. Revista Sistemas Ambientales, 3(2), 18-61. [ Links ]

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293-297. doi: 10.1038/ngeo1123 [ Links ]

Doughty, C. L., Langley, J.A., Walker, W. S., Feller, I. C., Schaub, R., & Chapman, S. K. (2016). Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts , 39(2), 385-396. doi: 10.1007/s12237-015-9993-8 [ Links ]

Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., …Dahdouh-Guebas, F. (2007). A world without mangroves? Science, 317(5834), 41-42. doi: 10.1126/science.317.5834.41b [ Links ]

Fatoyinbo, T. E., & Simard, M. (2013). Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. International Journal of Remote Sensing, 34(2), 668-681. doi: 10.1080/01431161.2012.712224 [ Links ]

Food and Agriculture Organization (FAO). (2010). Evaluación de los recursos forestales mundiales 2010-Informe nacional México. Roma, Italia: Autor. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=sibe01.xis&method=post&formato=2&cantidad=1&expresion=mfn=028592Links ]

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above groundbiomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia, 115(1), 39-53. doi: 10.1007/s004420050489 [ Links ]

García, E., & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (1998). Climas Escala 1:1 000 000. México: CONABIO. [ Links ]

Guerra-Santos, J. J., Cerón-Bretón, R. M., Cerón-Bretón, J. G., Damián-Hernández, D. L., Sánchez-Junco, R. C., & Guevara, C. (2014). Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations. Journal of Forestry Research, 25(1), 129-134. doi: 10.1007/s11676-014-0437-2 [ Links ]

Hernández, E. (2009). Suelos de humedales como sumideros de carbono y fuentes de metano. Terra Latinoamericana, 28(2), 139-147. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S0187-57792010000200005&script=sci_arttextLinks ]

Herrera, S. J. A., Camacho, R. A., Pech, E., Pech, M., Ramírez, R. J., & Teutli, H. C. (2016). Dinámica del carbono (almacenes y flujos) en manglares de México. Terra Latinoamericana, 34(1), 61-72. Retrieved from http://www.redalyc.org/html/573/57344471004/ [ Links ]

Hutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting global patterns in mangrove forest biomass. Wiley Periodicals, 7(3), 233-240. doi: 10.1111/conl.12060 [ Links ]

Imbert, D., & Rollet, B. (1989). Phytmassaerienne et production primaire dans la mangrove du Grand Cul-de-sac Marine (Guadeloupe, Antilles francaises). Bulletin d´écologie, 20, 27-39. [ Links ]

Instituto Nacional de Ecología (INE). (2005). Evaluación preliminar de las tasas de pérdida de superficie de manglar en México. México: Dirección General de Investigación de Ordenamiento Ecológico y Conservación de los Ecosistemas. Retrieved from http://www.inecc.gob.mx/descargas/con_eco/informe_manglar.pdfLinks ]

Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: Synthesis report. Geneva, Switzerland: Author. Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdfLinks ]

Intergovernmental Panel on Climate Change (IPCC). (2013). Resumen para responsables de políticas. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Cambio Climático 2013: Bases físicas. Contribución del grupo de trabajo I al quinto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. UK & USA: Cambridge University Press. Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_brochure_es.pdfLinks ]

Kauffman, J. B., Donato, D. C., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. Bogor, Indonesia: Center for International Forestry Research (CIFOR). Retrieved from http://webdoc.sub.gwdg.de/ebook/serien/yo/CIFOR_WP/117.pdfLinks ]

Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527. doi: 10.1890/13-0640.1 [ Links ]

Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137. doi: 10.1016/j.aquabot.2007.12.006 [ Links ]

Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471-477. doi: 10.1017/S0266467405002476 [ Links ]

Lema, V., & Polanía, J. (2006). Estructura y dinámica del manglar del delta del río Ranchería, Caribe colombiano. Revista de Biología Tropical, 55(1), 11-21. Retrieved from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442007000100003Links ]

López-Medellín, X. J., Acosta-Velázquez, J., & Vázquez-Lule, A. D. (2009). Caracterización del sitio de manglar estero El Sargento-Isla Tiburón. Sitios de manglar con relevancia biológica y con necesidades de rehabilitación ecológica. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Retrieved from http://www.conabio.gob.mx/conocimiento/manglares/doctos/caracterizacion/PN04_Estero_El_Sargento_Isla_Tiburon_caracterizacion.pdfLinks ]

Masera, O. R., Cerón, A. D., & Ordóñez, A. (2001). Forestry mitigation options for Mexico: Finding synergies between national sustainable development priorities and global concerns. Mitigation and Adaptation Strategies for Global Change, 6(3-4), 291-312. doi: 10.1023/A:1013327019175 [ Links ]

Ministerio del Ambiente y los Recursos Naturales. (1994). Plan de manejo de la cooperativa Pedro Joaquín Chamorro Cardenal. Proyecto de protección del bosque. Managua, Nicaragua: Proyecto Nandarola/ MARENA-DED. [ Links ]

Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd. edition). New York, USA: John Wiley & Sons. doi: 10.1002/rrr.637 [ Links ]

Morrisey, D. J., Swales, A., Dittmann, S., Morrison, M. A., Lovelock, C. E., & Beard, C. M. (2010). The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review, 48, 43-160. doi: 10.1201/EBK1439821169-c2 [ Links ]

Moya, B. V., Hernández, A. E., & Borrell, H. E. (2005). Los humedales ante el cambio climático. Investigaciones Geográficas, 37, 127-132. Retrieved from http://www.redalyc.org/articulo.oa?id=17612746005Links ]

Olivo, M. D. L., & Soto-Olivo, A. (2010). Comportamiento de los gases de efecto invernadero y las temperaturas atmosféricas con sus escenarios de incremento potencial. Universidad, Ciencia y Tecnología, 14(57), 221-230. Retrieved from http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1316-48212010000400002Links ]

Ong, J. E., Gong, W. K., & Wong, C. H. (2004). Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management, 188(1-3), 395-408. doi: 10.1016/j.foreco.2003.08.002 [ Links ]

Organización Meteorológica Mundial & Programa de las Naciones Unidas para el Medio Ambiente (OMM & PNUMA). (2005). La captación y el almacenamiento de dióxido de carbono. Génova, Suiza: Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/pdf/special-reports/srccs/srccs_spm_ts_sp.pdfLinks ]

Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management, 27(4), 547-557. doi: 10.1007/s002670010169 [ Links ]

Richter, H. G., & Dallwitz, M. J. (2000). Commercial timbers: Descriptions, illustrations, identification and information retrieval. Retrieved July 25, 2017 from http://www1.biologie.uni-hamburg.de/b-online/wood/english/intro.htmLinks ]

Rodríguez-Zúñiga, M. T., Troche-Souza, C., Vázquez-Lule, A. D., Márquez-Mendoza, J. D., Vázquez- Balderas, B., Valderrama-Landeros, L., …Galindo-Leal, C. (2013). Manglares de México. Extensión, distribución y monitoreo. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved from http://www.biodiversidad.gob.mx/ecosistemas/manglares2013/pdf/manglares_de_mexico_1.pdfLinks ]

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Nación. México: Autor. Retrieved from http://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdfLinks ]

Smith, T. J., & Whelan, K. R. T. (2006). Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration. Wetlands Ecology and Management, 14(5), 409-419. doi: 10.1007/s11273-005-6243-z [ Links ]

Troxler, T. G., Barr, J. G., Fuentes, J. D., Engel, V., Anderson, G., Sanchez, C., …Davis, S. E. (2015). Component-specif ic dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agricultural and Forest Meteorology, 213, 273-282. doi: 10.1016/j.agrformet.2014.12.012 [ Links ]

Valderrama, L., Troche, C., Rodríguez, M. T., Márquez, D., Vázquez, B., Velázquez, S., …Ressl, R. (2014). Evaluation of mangrove cover changes in Mexico during the 1970-2005 period. Wetlands, 34(4), 747-758. doi: 10.1007/s13157-014-0539-9 [ Links ]

Yáñez-Arancibia, A., & Day, J. W. (2010). La zona costera frente al cambio climático: vulnerabilidad de un sistema biocomplejo e implicaciones en el manejo costero. In E. Rivera-Arriaga, I. Azuz-Adeath, L. Alpuche, & G. J. Villalobo-Zapata (Eds.), Cambio climático en México un enfoque costero-marino (pp. 3-22). Campeche, México: Universidad Autónoma de Campeche CETYS-Universidad, Gobierno del Estado de Campeche. Retrieved from http://etzna.uacam.mx/epomex/publicaciones/Cambio_Climatico/CCMexico1B.pdfLinks ]

Yepes, A., Zapata, M., Bolivar, J., Monsalve, A., Espinosa, S. M., Sierra-Correa, P. C., & Sierra, A. (2016). Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. Revista Biología Tropical, 64(2), 913-926. doi: 10.15517/rbt.v64i2.18141 [ Links ]

Received: February 27, 2018; Accepted: July 26, 2018

*Corresponding author: maymc_zaragoza@yahoo.com.mx, tel.: +52 (55) 5693 6102.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License