SciELO - Scientific Electronic Library Online

 
vol.26 número2Cambios en la temperatura y precipitación causados por tres cultivos en el estado de Veracruz, MéxicoCrecimiento en campo de Pinus patula Schltdl. & Cham. como efecto de la poda radicular y los contenedores utilizados en vivero índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.26 no.2 Chapingo may./ago. 2020  Epub 23-Abr-2021

https://doi.org/10.5154/r.rchscfa.2019.07.061 

Review article

Forest volume estimation techniques with special emphasis on the tropics

Juan Carlos Guzmán-Santiago1 

Oscar Alberto Aguirre-Calderón1  * 

Benedicto Vargas-Larreta2 

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. Carretera Nacional km 145. C. P. 67700. Linares, Nuevo León, México.

2Tecnológico Nacional de México/Instituto Tecnológico de El Salto. Tecnológico núm. 101, La Forestal. C. P. 34947. El Salto, Pueblo Nuevo, Durango, México.


Abstract

Introduction:

Volume is an important variable in forest management since it allows evaluating the growth and development of individuals in stands.

Objective:

To analyze the techniques for estimating forest volume with an emphasis on the tropics.

Materials and methods:

The work was developed with the non-probabilistic snowball technique, in which the bibliography reported in an investigation suggested the search for similar works to enrich the subject.

Results and discussion:

In tropical forests, tree measurement variables provide valuable information for estimating stem or total volume using a xylometer, Pressler and standing tree volume formulas, dendrometric bodies, rigorous volume estimation, graphical method or conventional equations and neural networks. Accurate volume information is only obtained with the xylometer technique, which is the only one that allows estimating volume using the direct method. The rigorous volume estimation technique is the most used in the tropics to obtain the volume of individual sections, which are fitted by conventional or neural network equations to estimate the total volume. Most researchers selected the best models using the coefficient of determination, root mean square error, bias, Durbin-Watson test, and Akaike and Bayesian information criteria.

Conclusion:

Model selection depends directly on the researchers; however, the xylometer technique is the only one that estimates volume with the direct method and in an accurate way.

Keywords: tropical forests; timber volume; xylometer; rigorous volume estimation; volume equations

Resumen

Introducción:

El volumen es una variable importante en la gestión forestal, ya que permite evaluar el crecimiento y desarrollo de los individuos en los rodales.

Objetivo:

Analizar las técnicas de estimación de volumen forestal con énfasis en los trópicos.

Materiales y métodos:

El trabajo se desarrolló con la técnica no probabilística bola de nieve, en la que mediante la bibliografía reportada en una investigación se sugirió la búsqueda de trabajos similares para enriquecer el tema.

Resultados y discusión:

En los bosques tropicales, las variables dasométricas proporcionan información valiosa para estimar el volumen fustal o total mediante xilómetro, fórmulas de Pressler y cubicación en pie, cuerpos dendrométricos, estimación rigurosa, método gráfico o las ecuaciones convencionales y las redes neuronales. La información volumétrica exacta solo se obtiene con la técnica del xilómetro que es la única que permite estimar el volumen mediante el método directo. La técnica de cubicación rigurosa es la más utilizada en los trópicos para obtener el volumen de las secciones, las cuales son ajustadas por las ecuaciones de tipo convencional o de redes neuronales para estimar el volumen total. La mayoría de los investigadores seleccionaron los mejores modelos mediante el coeficiente de determinación, raíz del error medio cuadrático, sesgo, prueba de Durbin-Watson y criterios de información de Akaike y de información bayesiano.

Conclusión:

La selección de los modelos depende directamente de los investigadores; no obstante, la técnica del xilómetro es la única que estima el volumen con el método directo y de manera precisa.

Palabras clave: bosques tropicales; volumen maderable; xilómetro; cubicación rigurosa; ecuaciones de volumen

Introduction

Timber volume estimation allows us to infer the growth and development of forest stands, through the application of silvicultural treatments, with the intention of improving the quality of each of the individuals that comprise them (Diéguez-Aranda et al., 2009). In this sense, forest inventories are tools that allow for the evaluation of the resources available in forests, since they provide an overview of their current situation and enable decision-making on management, conservation, restoration or use of the trees and the commercial distribution of the products (Alvis-Gordo, 2009; Corral-Rivas & Návar-Cháidez, 2009; Del Rio, Montes, Cañellas, & Montero, 2003; El-Juhany, Aref, & El-Wakeel, 2002).

Timber stocks can be quantified by both direct and indirect methods. The xylometer technique is based solely on the direct method (destructive sampling) (Aldana-Pereira, 2008; Cruz-Cobos, Mendía-Santana, Jiménez-Flores, Nájera-Luna, & Cruz-García, 2016), while the Pressler (or guidepoint) and standing tree volume techniques, dendrometric bodies, rigorous volume estimation, the graphical method, conventional equations and artificial neural networks can be calculated using both methods.

Several equations estimated by the direct and indirect methods allow the quantification of timber stocks in natural forests or in plantations of mainly commercial interest, through forest inventories. Mathematical models are tools that allow representing a phenomenon through an equation, facilitating the interpretation of the prediction about the future behavior of an event, for making decisions about resource management. The application of these models guarantees optimal results in timber harvesting work (Diéguez-Aranda et al., 2009). In this context, equations are essential for modeling the variety of relationships between response and estimated variables. Nonlinear (logistic and exponential) equations are ideal to describe biological and physical systems of species (Urbano, Machado, Figueiredo-Filho, Sanquetta, & Zea-Camaño, 2018).

In tropical ecosystems there is a wide diversity of species with morphological structures that contribute to growth and development conditions (Guariguata et al., 2009; Martínez-Tobón, Aunta-Duarte, & Valero-Fandiño, 2013); for example, the tree stem presents difficulties in terms of quantifying forest volume and, consequently, for the distribution of products (Cancino-Cancino, 2012; De Azevêdo, Paes, Calegari, & Do Nascimento, 2014). Given the scarcity of information on volume modeling in tropical species and its importance in forestry, especially in the commercial sector, the objective of this work was to investigate volume estimation techniques in the tropics.

Materials and methods

The paper was developed with the non-probabilistic snowball technique, in which the bibliography reported in an investigation suggested the search for other similar works to enrich the subject (Baltar & Gorjup, 2012; Vásquez-Bautista, Zamudio-Sánchez, Alvarado-Segura, & Romo-Lozano, 2016). For this, books, scientific journals in the EBSCOhost, Scopus, Google Scholar and Elsevier search engines, and libraries of various educational institutions were explored.

The search focused on locating volume equation systems for forest species in tropical zones; in addition, the digital library of the Forest Planning System (SiPlaFor) platform for temperate forests was viewed. Some keywords were used such as: trees, volume estimation, equations, tropical species, estimation methods, accuracy and volume. Subsequently, volume and yield estimation techniques were compared to analyze their application and predictive capabilities.

Results and discussion

Direct and indirect methods

The equations estimated by the direct and indirect methods allow the quantification of timber stocks in natural forests or in plantations of mainly commercial interest, through forest inventories. Based on careful analysis, it can be deduced that the xylometer technique is the only one that can be considered as a direct method (destructive sampling) for volume estimation, since the other techniques can use both methods; the use of the method is at the discretion of the researcher when planning fieldwork.

Each method has its advantages and disadvantages; for example, the indirect method is very practical since it does not imply felling the tree and the variables to be used can be obtained with available tools, such as the Bitterlich tele-relaskop, TruPulse hypsometer or Criterion RD1000 and Barr-Stroud dendrometers (Costas, Veran, Lorán, López, Fosco, & González, 2006; Gómez-González, Domínguez-Domínguez, Martínez-Zurimendi, & Ramírez-Valverde, 2018; Valencia-Manzo et al., 2017; Williams, Cormier, Briggs, & Martínez, 1999). In the direct method, tree measurement information can be obtained through destructive sampling and by means of mountaineering or forest bicycle equipment, telescopic, poles, grade rods, and the use of a diameter tape or tree caliper, with which the diameters are measured at different heights (Diéguez-Aranda et al., 2003). The same equipment can be used in the indirect method. Destructive sampling consists of felling previously selected individuals; because the measurement process can be carried out very easily, the quality of the information obtained is slightly better than that generated with the indirect method and with the equipment (Melo & Lizarazo, 2017).

Xylometer technique

Although not frequently used, this technique, also known as Archimedes' displacement, is the most accurate for estimating the volume of individual trees through the displacement of water caused by submerging each of the pieces in a previously calibrated container (xylometer) (Food and Agriculture Organization of the United Nations [FAO], 1980). This method is based on the principle that a body submerged in a static fluid tends to receive a vertical (upward) thrust equal to the volume of fluid displaced by the object (Romahn de la Vega & Ramírez-Maldonado, 2010). The volume is calculated with the following formula:

V = W1 - W2 + e

where,

V

volume (m3)

W1

initial weight (kg)

W2

final weight (kg)

e

model error.

Martin (1984) concluded that this technique obtained excellent results compared to rigorous volume estimation techniques when experimenting with various broadleaf and shrub species; likewise, Biging (1988) supported this information. On the other hand, Figueiredo-Filho and Budant-Schaaf (1999) indicated that the xylometer technique is more accurate than conventional methods, and even more so when fitted to taper-volume equations; however, despite the high reliability, the use of the xylometer is limited since its application lies in areas with shrub or scrub species that do not have a defined stem (Aldana-Pereira, 2008), while in large logs it is difficult to use (Cancino-Cancino, 2012).

Pressler and standing tree volume formulas

Most of the time, the Pressler (or guidepoint) and standing tree volume formulas have been applied to unfelled trees, as they provide quality information. Volume tables generated with Pressler's formulas provide excellent results for cone-shaped or paraboloid solid bodies and allow estimating the stem without having to divide it (Gómez-González et al., 2018); however, these have been displaced by mathematical models (Da Cunha & Guimarães-Finger, 2009), due to the difficulty in measuring the height at which half the diameter at breast height is found. The standing tree volume formula consists of measuring the diameter at breast height (1.30 m from ground level) of a representative sample of trees, with the aid of a tree caliper or diameter tape; subsequently, a morphic coefficient is used to estimate the volume, although this factor often does not correspond to the species (Hazard & Berger, 1972).

The Pressler (or guidepoint) and standing tree volume equations are expressed, respectively, as follows:

V =23+g*hp+ e

V =0.7854 *d2* mh4+ e

V =0.7854 *d2* (h*f)4+ e

where,

V

volume (m3)

g

basal area (m2)

hp

guidepoint height (m)

d

diameter at breast height (cm) at 1.30 m above ground level

mh

merchantable height (m)

h

total height (m)

f

form factor

e

model error.

The form or morphic coefficient consists of dividing the merchantable or actual volume of the stem by the volume of the conventional geometric body of the same base as the diameter at breast height section of the tree and its same height (Ugalde, 1981). The value of the coefficients depends on the forms of the stem, which can be neiloid, cylindrical, parabolic or conical, with the cylindrical form factor being the most commonly used (Cancino-Cancino, 2012). This coefficient is always less than 1 for the classic dendrometric types (Diéguez-Aranda et al., 2003).

The volume of standing trees can be estimated in plantations or natural forests using the morphic coefficient with excellent results, which makes it possible to prepare a standardized volume table for the species of interest (Michela, Kees, & Skoko, 2018). It is important to highlight the above, since in some works the 0.75 coefficient is still used for several pine species and some broadleaf or tropical ones (Rojas-Gutiérrez, 1977), which overestimates or underestimates the volume, because the coefficient varies with the dimensions of the stem and the species (Aguilar, Sequeira, & Peralta, 2017) and therefore does not always generate confidence (De Azevêdo et al., 2014).

Estimation by dendrometric bodies

Environmental interactions, as well as forestry activities, are responsible for the shape of a tree's trunk, mainly in most tropical species, where the base of the tree resembles a parabola known as a neiloid that changes to a cylinder, while the middle part takes a shape called a paraboloid and the tip resembles a cone (Cancino-Cancino, 2012). Given this, criteria are taken for field measurements to obtain reliable information, where stems bifurcated below the diameter at breast height (1.30 m) are considered to be two trees and averaged, while those bifurcated above 1.30 m are considered to be a single tree (Cruz-Cobos et al., 2016). In these cases, the tree sections are determined using solids of revolution. The equations for the dendrometric bodies are as follows:

Neiloid

V =14* gi* H+ e

Cylinder

V =gi* H + e

Paraboloid

V =12*gi* H + e

Cone

V =13*gi* H + e

where,

V

volume (m3)

gi

sectional area of one end of the section (m2)

H

height in one third (m)

e

model error.

Stems that resemble the neiloid shape have a form factor of less than 0.38; cylindrical stems can take values equal to or greater than 0.75; paraboloid-shaped ones vary from 0.40 to 0.74; and those resembling a cone range from 0.27 to 0.39. Table 1 indicates some tropical species of commercial interest according to the geometric figures that the stem represents (Hernández-Ramos et al., 2018; Rojas-Gutiérrez, 1977; Moras & Vallejos, 2013; Tewari, Mariswamy, & Arunkumar, 2013).

Table 1 Tropical species with defined dendrometric bodies. 

Species Form
Carapa guianensis Aubl. Neiloid
Hymenaea palustris Ducke Neiloid
Pterocarpus officinalis Jacq. Neiloid
Clathrotropis brunnea Amshoff Neiloid
Cordia alliodora (Ruiz & Pav.) Oken Neiloid
Fraxinus chinensis Roxb. Neiloid
Eucalyptus sp. Neiloid
Prioria copaifera Griseb. Cylinder
Brosimum utile (H.B.K.) Pittier Cylinder
Humiriastrum procerum (Little) Cuatrec. Cylinder
Huberodendron patinoi Cuatrec. Cylinder
Tectona grandis L. f. Cylinder
Swietenia macrophylla King Cylinder
Cedrela odorata L. Paraboloid
Protium neglectum Swart Paraboloid
Campnosperma panamense Standl. Paraboloid
Tapirira guianensis Aubl. Paraboloid
Cariniana pyriformis Miers Paraboloid
Jacaranda copaia (Aubl.) D. Don Paraboloid
Guarea trichilioides L. Paraboloid
Couma macrocarpa Barb. Rodr. Paraboloid
Pinus sp. Paraboloid
Pouteria caimito (Ruiz & Pav.) Radlk. Cone
Tabebuia rosea (Bertol.) A. DC. Cone
Anacardium excelsum (Kunth) Skeels Cone
Symphonia globulifera L. f. Cone
Dialyanthera acuminata Standl. Cone
Otoba sp. Cone

The estimation method by dendrometric bodies is used as a basis for research work, since it provides accurate information; however, most of the time the rigorous volume estimation method is used because it is easier (Melo & Lizarazo, 2017; Romahn de la Vega & Ramírez-Maldonado, 2010).

Rigorous volumen estimation

Volume of stem and branch sections in tropical species are frequently estimated with the Smalian, Newton and Huber equations, expressed respectively with the following formulas:

V =gi+gs+12* L + e

V =gm* L + e

V =gi+ 4gm+gs6* L + e

where,

V

volume (m3)

gi

sectional area at one end of the section (m2)

gs+1

sectional area at the other end of the section (m2)

gm

sectional area taken in the middle of the section (m2)

L

length (m)

e

model error.

These equations are more accurate in volume estimations; furthermore, they are the basis for deriving the merchantable or total volume equations, which range from the simplest to the most complex ones (Biging, 1988; Fraver, Ringvall, & Jonsson, 2007; Tlaxcala-Méndez, De los Santos-Posadas, Hernández-De la Rosa, & López-Ayala, 2016).

The accuracy of the equations depends on the morphological characteristics of the species, since sometimes Smalian's formula provides better estimates (Machado, Pereira, & Ríos, 2003; Marques da Silva-Binoti, Breda-Binoti, Gleriani, & García-Leite, 2009) and sometimes Newton's equation is usually more accurate than Smalian's (Fraver et al., 2007). This can be seen in the work of Akindele and LeMay (2006), who obtained the best volume estimates of tropical trees in Nigeria, Africa, using Newton's formula. Atha, Romero, and Forrest (2005) found no notable differences in estimates with the Smalian and Newton methods, while Biging (1988) had better results with the Newton and Huber equations.

Graphical method

This technique involves measuring diameters at different heights to determine the corresponding cross-sectional areas. These areas are plotted based on the height of volume estimation and a curve joining the points is drawn; subsequently, the curve is measured using a planimeter or computer programs, in order to quantify the area occupied by the solid (Aldana-Pereira, 2008), given by the following formula:

V = K *π4*di2+ e

where,

V

volume (m3)

K

transformation or scale coefficient

di

diameter at a height (m)

e

model error.

Prodan (1961) considers that graphical methods provided the guideline to calculate the regressions analytically and, consequently, the development of the current statistical methods, where the analysis and interpretation of the regression are simpler through the use of computer systems. Logarithmic and arithmetic models can be described from the regressions.

Conventional equation systems

Equation systems allow estimating the volume of segments of interest of the tree, such as total stem volume, branch volume or total tree volume outside and inside bark, which can be at individual tree or stand level (Kitikidou, Milios, & Katsogridakis, 2017). The systems are based on regression models (Atha et al., 2005; Callister, England, & Collins, 2013; Da Cunha & Guimarães-Finger, 2009; Gómez-González et al., 2018; Goussanou et al., 2016; Machado et al., 2003; Mayaka, Eba'a-Atyi, & Momo, 2017) known as conventional equations; these can be linear, non-linear or logarithmic, among others. Non-linear equations are the most effective, as they best describe volume trends (Corral-Rivas & Návar-Chaidez, 2009). In the papers reviewed, it was found that the Schumacher and Hall (1933) equation, followed by Spurr’s (1952), are frequently used in tropical species since they adequately represent the estimated data sets with respect to observed ones (Crecente-Campo, Corral-Rivas, Vargas-Larreta, & Wehenkel, 2014). The models for estimating total tree volume are expressed as follows:

Schumacher and Hall V =b0*db1*hb2+e

Spurr    V =b0*d2* h + e

Cone        V =b0*d2+e

where,

V

volume (m3)

d

diameter at breast height (cm) at 1.30 m above ground level

h

total height (m)

bi

parameters to be estimated

e

model error.

Through simultaneous equations it is possible to estimate the total volume, by mathematically integrating a volume equation and the cone formula, for scaling the branches (Fang & Bailey, 2001; Özçelik & Göçeri, 2015):

V =b0*db1*hb2+b0*d2+ e

Several authors agree that the Schumacher and Hall (1933) function guarantees accurate estimates for different species (Cruz-Cobos, De los Santos-Posadas, & Valdez-Lazalde, 2008; Parresol, Hotvedt, & Cao, 1987; Vargas-Larreta et al., 2017), through ordinary least squares regression fitting techniques and the apparently uncorrelated regression technique, the latter providing significant gains in parameter optimization (Tamarit-Urias, 2013).

Similarly, traditional volume-taper equations have been used, from the most basic (Kozak, Munro, & Smith, 1969) to the most complex, such as segmented models which involve integrating merchantable volume and relative diameter for tropical species (López, Barrios, & Trincado, 2015; Özçelik & Göçeri, 2015; Niño-López, Ramos-Molina, Barrios, & López-Aguirre, 2018).

The Fang, Borders, and Bailey (2000) equation has also been used to estimate volume:

VC=c12hkb1b1ro + I1+I2 + b2-b1r1 + I2b3-b2α1r2-b1-qkbα1I1+I2α2I2 + e

c1=0dα1hα2-kb1b1ro-r1+b2r1-α1r2+b3α1r2

r0=1-hb/hkb1 ; r1=1-p1kb1 ; r2= 1-p2kb2

where,

Vc

merchantable volume (m3)

h

total height (m)

hb

stump height (m)

k

π/40000

q

hi/h

αi, bi, pi

parameters to be estimated

e

model error.

All volume models improve in the estimation of their parameters with the mixed effects fitting technique, adding a bivariate formula with fixed and random effects, which allows accurately describing the stem of individual trees (Bueno-López & Bevilacqua, 2012; Kitikidou et al., 2017). This avoids any anomaly of correlation, multicollinearity and inflation of variances, surpassing previous methods in predictive ability (Fang & Bailey, 2001).

Because of this, Melo and Lizarazo (2017) generated a polynomial-type model as an alternative means of estimating both the merchantable and total volume of the standing tree, at different sections and that is flexible enough to model the volume of individual trees and stands:

px=i=1010k=0 k=i10x-10khih10-kh10*x-1.3-1.310ihdi2+k=010x10kh1.3-10kh*d2+e

where,

p (x)

= polynomial function

d

diameter at breast height (cm) at 1.30 m above ground level

h

total tree height (m)

di

diameter at a height ih/10 (cm)

ih/10

number of sections drawn on the tree (m)

e

model error.

There is another technique for estimating total volume known as volume ratio function, developed by Burkhart (1977), which allows calculating the volume for different values of diameter or height defined in a simpler way than the taper models for tropical species (Barrios, López, & Nieto, 2014; Gilabert & Paci, 2010; Pece, 1994). Ratio functions provide significant gains to parameters (Hernández-Ramos et al., 2017). Due to the conditions of the growth sites, competition, and other environmental factors, a tree with greater taper has less volume than one with lesser taper having the same diameter at breast height (1.30 m) (Kitikidou et al., 2017). Using these expressions, it is possible to generate volume rates or volume tables of one input, two inputs (Guerra, Soudre, & Chota, 2008) and three inputs (diameter at breast height, height and form factor) for various species, preferably commercial (Aldana-Pereira, 2008), although the three-input ones are not frequently used.

The Cao, Burkhart, and Max (1980) and Burkhart (1977) equations have been frequently used and have provided good estimates for Eucalyptus grandis W. Mill ex Maiden, E. pellita F. Muell., E. urophylla S. T. Blake, E. nitens (H. Deane & Maiden) Maiden, Swietenia macrophylla King and Avicennia germinans (L.) L., among others (Hernández-Ramos et al., 2017, 2018). These equations are expressed respectively as follows:

Rh= 1 +b0h-mh+ e

Rd= 1+b0dib1db2+ e

where,

Rh

ratio of volume to height (m3)

Rd

ratio of volume to diameter (m3)

mh

merchantable height (m)

h

total height (m)

d

diameter at breast height (cm) at 1.30 m above ground level

di

diameter at a height (m)

bi

parameter to be estimated

e

model error.

Artificial neural networks

The artificial neural network method allows accurately estimating the total volume through diameter, total height, diameters at different heights and volume in different sections. The method provides reliable estimates as well as linear regression techniques, specifically the Schumacher and Hall (1933) equation that has been used in several studies (Marques da Silva-Binoti et al., 2009; Mena-Frau & Montecinos-Guajardo, 2006); however, in some studies, the Levenberng-Marquardt neural models have outperformed nonlinear equations in terms of mean error and fit index (Özçelik, Diamantopoulou, & Brooks, 2014). The advantage of the method is that it requires few measurements of the diameter at different heights of representative trees, which consequently reduces costs without losing accuracy in estimating the merchantable or total volume outside and inside bark (Marques da Silva-Binoti et al., 2014).

Criteria for the selection of the analyzed techniques

Based on the review, the accuracy of techniques such as the xylometer, Pressler and standing tree volume procedures, as well as dendrometric bodies, rigorous volume estimation and the graphical method, depends on the good use of equipment in the field work, the species, geometric shape of the tree and the personnel trained to analyze the data; these are criteria that guarantee the quality of the information. In the conventional and neural network equations, most researchers selected the best models using the following criteria: the coefficient of determination (R2) or adjusted coefficient of determination (R2adj), which should be close to 1, and the root mean square error (RMSE), which should tend to zero (Guzmán-Santiago et al., 2019). On some occasions they also considered bias, which holds that the average of the residuals should be equal to zero, thus making the estimator centered or unbiased; the Durbin-Watson test, which should be equal to 2 to indicate that there is no autocorrelation; and the Akaike and Bayesian information criteria that allow choosing the model with the lowest value (Del Carmen-García, Castellana, Rapelli, Koegel, & Catalano, 2014).

To reaffirm the selection of the models, some authors prefer to make a graphical analysis of the residuals against the predicted values, since this procedure is considered one of the most efficient ways of evaluating the fit capacity of a model (Martínez-Rodríguez, 2005).

Conclusions

The structures of the equations for estimating volume range from the simplest to the most complex. In this case, since we are dealing with biological material (trees), it is not possible to generate the data of interest accurately in a regression, so there are no better models than others, since each one is fitted to the researcher’s needs. Nevertheless, the xylometer technique is considered the most accurate to estimate volume, since it is used directly; however, the application of this technique is difficult in large logs. On the other hand, the rigorous volume estimation technique is the most used in the tropics to obtain the volume of the individual sections, which are fitted by the conventional or neural network equations to estimate the total volume; the latter generate slightly superior results.

References

Aguilar, R. C., Sequeira, G. A., & Peralta, T. E. (2017). Factor de forma para la Tectona grandis L. f., empresa MLR-Forestal, Siuna, Costa Caribe Norte de Nicaragua. Ciencia e Interculturalidad, 21(2), 74‒84. doi: 10.5377/rci.v21i2.5602 [ Links ]

Akindele, S. O., & LeMay, V. M. (2006). Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management, 226(1), 41‒48. doi: 10.1016/j.foreco.2006.01.022 [ Links ]

Aldana-Pereira, C. E. (2008). Medición forestal. Cuba: Ed. Félix Varela. Retrieved from http://enciclopediaforestal.cubava.cu/180/Links ]

Alvis-Gordo, J. F. (2009). Análisis estructural de un bosque natural localizado en zona rural del municipio de Popayán. Biotecnología en el Sector Agropecuario y Agroindustrial, 7(1), 115‒122. Retrieved from http://www.scielo.org.co/pdf/bsaa/v7n1/v7n1a13.pdfLinks ]

Atha, D. E., Romero, L., & Forrest, T. (2005). Bark volume determination of Bursera simaruba in Belize. Caribbean Journal of Science, 41(4), 843‒848. Retrieved from https://www.researchgate.net/publication/237298331_Bark_Volume_Determination_of_Bursera_simaruba_in_BelizeLinks ]

Baltar, F., & Gorjup, M. T. (2012). Muestreo mixto online: Una aplicación en poblaciones ocultas. Intangible Capital, 8(1), 123‒149. Retrieved from http://hdl.handle.net/2099/12244Links ]

Barrios, A., López, A. M., & Nieto, V. (2014). Predicción de volúmenes comerciales de Eucalyptus grandis a través de modelos de volumen total y de razón. Colombia Forestal, 17(2), 137‒149. Retrieved from http://www.redalyc.org/articulo.oa?id=423939663002Links ]

Biging, G. S. (1988). Estimating the accuracy of volume equations using taper equations of stem profile. Canadian Journal of Forest Research, 18(8), 1002‒1007. doi: 10.1139/x88-153 [ Links ]

Bueno-López, S. W., & Bevilacqua, E. (2012). Nonlinear mixed model approaches to estimating merchantable bole volume for Pinus occidentalis. iForest-Biogeosciences and Forestry, 5(5), 247. doi: 10.3832/ifor0630-005 [ Links ]

Burkhart, H. E. (1977). Cubic-foot volume of loblolly pine to any merchantable top limit. Southern Journal of Applied Forestry, 1(2), 7‒9. doi: 10.1093/sjaf/1.2.7 [ Links ]

Callister, A. N., England, N., & Collins, S. (2013). Predicted genetic gain and realised gain in stand volume of Eucalyptus globulus. Tree Genetics & Genomes, 9(2), 361‒375. doi 10.1007/s11295-012-0558-8 [ Links ]

Cancino-Cancino, J. O. (2012). Dendrometría básica. Chile: Universidad de Concepción. [ Links ]

Cao, Q. V., Burkhart, H. E., & Max, T. A. (1980). Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1), 71‒80. doi: 10.1093/forestscience/26.1.71 [ Links ]

Corral-Rivas, S., & Návar-Cháidez, J. D. (2009). Comparación de técnicas de estimación de volumen fustal total para cinco especies de pino de Durango, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 5‒13. Retrieved from https://www.chapingo.mx/revistas/forestales/contenido.php?seccion=numero&id_revista_numero=39Links ]

Costas, R., Veran, N., Lorán, D., López, L., Fosco, I., & González, J. (2006). Funciones de volumen para especies de bosque secundario de La Reserva Guaraní. Revista de la Facultad de Ciencias Agrarias, 38(2). Retrieved from http://www.redalyc.org/articulo.oa?id=382838559006Links ]

Crecente-Campo, F., Corral-Rivas, J., Vargas-Larreta, B., & Wehenkel, C. (2014). Can random components explain differences in the height-diameter relationship in mixed uneven-aged stands? Annals of Forest Science , 71(1), 51‒70. doi: 10.1007/s13595-013-0332-6 [ Links ]

Cruz-Cobos, F., De los Santos-Posadas, H. M., & Valdez-Lazalde, J. R. (2008). Sistema compatible de ahusamiento-volumen para Pinus cooperi Blanco en Durango, México. Agrociencia, 42(4), 473‒485. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S140531952008000400010&script=sci_arttextLinks ]

Cruz-Cobos, F., Mendía-Santana, R., Jiménez-Flores, A. A., Nájera-Luna, J. A., & Cruz-García, F. (2016). Ecuaciones de volumen para Arbutus spp. (madroño) en la región de Pueblo Nuevo, Durango. Investigación y Ciencia, 24(68), 41‒47. Retrieved from http://www.redalyc.org/articulo.oa?id=67448742006Links ]

Da Cunha, T. A., & Guimarães-Finger, C. A. (2009). Modelo de regresión para estimar el volumen total con corteza de árboles de Pinus taeda L. en el sur de Brasil. Revista Forestal Mesoamericana Kurú, 6(16), 1‒15. Retrieved from http://revistas.tec.ac.cr/index.php/kuru/article/view/400Links ]

De Azevêdo, T. K., Paes, J. B., Calegari, L., & Do Nascimento, J. W. (2014). Relações entre volume e massa da madeira e casca de jurema-preta (Mimosa tenuiflora). Revista Brasileira de Ciências Agrárias, 9(1), 97‒102 Retrieved from http://www.redalyc.org/articulo.oa?id=119030125017Links ]

Del Carmen-García, M., Castellana, N., Rapelli, C., Koegel, L., & Catalano, M. (2014). Criterios de información y predictivos para la selección de un modelo lineal mixto. SaberEs, 6, 61‒76. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=5515546Links ]

Del Rio, M., Montes, F., Cañellas, I., & Montero, G. (2003). Revisión: Índices de diversidad estructural en masas forestales. Investigación Agraria. Sistemas y Recursos Forestales, 12(1), 159‒176. Retrieved from https://www.researchgate.net/profile/Miren_Rio2/publication/28061992Links ]

Diéguez-Aranda, U., Barrio-Anta, M., Castedo-Dorado, F., Ruiz-González, A. D., Álvarez-Taboada, M. F., Álvarez-González, J. G., …Rojo-Alboreca, A. (2003). Dendrometría. Madrid, España: Editorial Mundiprensa. [ Links ]

Diéguez-Aranda, U., Rojo-Alboreca, A., Castedo-Dorado, F., Álvarez-González, J. G., Barrio-Anta, M., Crecente-Campo, F., …Sánchez-Rodríguez, F. (2009). Herramientas silvícolas para la gestión forestal sostenible en Galicia. Galicia, España: Dirección Xeral de Montes, Consellería de Medio Rural. [ Links ]

El-Juhany, L. I., Aref, I. M., & El-Wakeel, A. O. (2002). Evaluation of above-ground biomass and stem volume of three Casuarina species grown in the central region of Saudi Arabia. Emirates Journal of Agriculture Science, 14(1), 08‒13. doi: 10.9755/ejfa.v13i1.4980 [ Links ]

Fang, Z., & Bailey, R. L. (2001). Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science , 47(3), 287‒300. doi: 10.1093/forestscience/47.3.287 [ Links ]

Fang, Z., Borders, B. E., & Bailey, R. L. (2000). Compatible volume taper models for loblolly and slash pine based on system with segmented-stem form factors. Forest Science , 46(1), 1-12. doi: 10.1093/forestscience/46.1.1 [ Links ]

Figueiredo-Filho, A., & Budant-Schaaf, L. (1999). Comparison between predicted volumes estimated by taper equations and true volumes obtained by the water displacement technique (xylometer). Canadian Journal of Forest Research , 29(4), 451‒461. doi: 10.1139/x99-013 [ Links ]

Fraver, S., Ringvall, A., & Jonsson, B. G. (2007). Refining volume estimates of down woody debris. Canadian Journal of Forest Research , 37(3), 627‒633. doi:10.1139/X06-269 [ Links ]

Gilabert, H., & Paci, C. (2010). An assessment of volume-ratio functions for Eucalyptus globulus and E. nitens in Chile. Ciencia e Investigación Agraria, 37(1), 5‒15. doi: 10.7764/rcia.v37i1.180 [ Links ]

Gómez-González, J. P., Domínguez-Domínguez, M., Martínez-Zurimendi, P., & Ramírez-Valverde, G. (2018). Ecuaciones de volumen para estimar la producción maderable de Hevea brasiliensis Müell Arg. en plantaciones de etapas adulta y vejez. Madera y Bosques, 24(2), 2‒18. doi: 10.21829/myb.2018.2421867 [ Links ]

Goussanou, C. A., Guendehou, S., Assogbadjo, A. E., Kaire, M., Sinsin, B., & Cuni-Sánchez, A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica, 50(2), id 1474. doi: 10.14214/sf.1474 [ Links ]

Guariguata, M. R., García-Fernández, C., Nasi, R., Sheil, D., Herrero-Jáuregui, C., Cronkleton, P., ...Ingram, V. (2009). Hacia un manejo múltiple en bosques tropicales: Consideraciones sobre la compatibilidad del manejo de madera y productos forestales no maderables. Indonesia: CIFOR. Retrieved from http://www.cifor.org/publications/pdf_files/Books/BGuariguata0901.pdfLinks ]

Guerra, W., Soudre, M., & Chota, M. (2008). Tabla de volumen comercial de bolaina blanca (Guazuma crinita Mart.) de las plantaciones experimentales de Alexander Von Humboldt, Ucayali, Perú. Folia Amazónica,17(1-2), 47‒58. doi: 10.24841/fa.v17i1-2.266 [ Links ]

Guzmán-Santiago, J. C., Aguirre-Calderón, O. A., González-Tagle, M. A., Treviño-Garza, E. J., Jiménez-Pérez, J., Vargas-Larreta, B., …De los Santos-Posada, H. M. (2019). Relación altura-diámetro para Abies religiosa Kunth Schltdl. & Cham. en el centro y sur de México. Revista Mexicana de Ciencias Forestales, 10(52), 100‒120. doi: 10.29298/rmcf.v10i52.483 [ Links ]

Hazard, J. W., & Berger, J. M. (1972). Volume tables vs. dendrometers for forest surveys. Journal of Forestry, 70(4), 216‒219. doi: 10.1093/jof/70.4.216 [ Links ]

Hernández-Ramos, J., Hernández-Ramos, A., García-Cuevas, X., Tamarit-Urias, J. C., Martínez-Ángel, L., & García-Magaña, J. (2018). Ecuaciones de volumen total y de razón para estimar el volumen comercial de Swietenia macrophylla King. Colombia Forestal , 21(1), 34‒46. Retrieved from http://www.redalyc.org/articulo.oa?id=423954588003Links ]

Hernández-Ramos, J., Santos-Posadas, H. M., Valdéz-Lazalde, J. R., Tamarit-Urias, J. C., Ángeles-Pérez, G., Hernández-Ramos, A., …Peduzzi, A. (2017). Estimación del volumen comercial en plantaciones de Eucalyptus urophylla con modelos de volumen total y de razón. Agrociencia , 51(5), 561‒580. Retrieved from http://www.scielo.org.mx/pdf/agro/v51n5/1405-3195-agro-51-05-00561-en.pdfLinks ]

Kitikidou, K., Milios, E., & Katsogridakis, S. (2017). Meta-analysis for the volume of Pinus sylvestris in Europe. Revista Chapingo Serie Ciencias Forestales y del Ambiente , 23(1), 23‒34. doi: 10.5154/r.rchscfa.2015.11.052 [ Links ]

Kozak, A., Munro, D., & Smith, J. H. (1969). Taper functions and their application in forest inventory. The Forestry Chronicle, 45(4), 278‒283. doi: 10.5558/tfc45278-4 [ Links ]

López, A., Barrios, A., & Trincado, G. (2015). Modelos de perfiles fustales con una estructura de error autorregresiva para plantaciones de Eucalyptus tereticornis en Colombia. Madera y Bosques , 21(2), 73‒88. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712015000200005Links ]

Machado, C., Pereira, A., & Ríos, N. A. (2003). Tabla de volumen para Buchenavia capitata, Vahl. Quebracho, 10, 76‒82. Retrieved from http://www.redalyc.org/articulo.oa?id=48101009Links ]

Marques da Silva-Binoti, M. L., Breda-Binoti, D. H., Gleriani, J. M., & García-Leite, H. (2009). Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto. Revista Árvore, 33(6), 1133‒1139. Retrieved from http://www.redalyc.org/articulo.oa?id=48815855015Links ]

Marques da Silva-Binoti, M. L., Breda-Binoti, D. H., García-Leite, H., Ribeiro-García, S., Ferreira, M., Rode, R., … Araújo-Lopes da Silva, A. (2014). Redes neurais artificiais para estimação do volume de árvores. Revista Árvore , 38(2), 283‒287. Retrieved from http://www.redalyc.org/articulo.oa?id=48831289008Links ]

Martin, A. J. (1984). Testing volume equation accuracy with water displacement techniques. Forest Science , 30(1), 41‒50. doi: 10.1093/forestscience/30.1.41 [ Links ]

Martínez-Rodríguez, E. (2005). Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario Jurídico y Económico Escurialense, 38, 315‒331. [ Links ]

Martínez-Tobón, C. D., Aunta-Duarte, J. E., & Valero-Fandiño, J. A. (2013). Aplicación de datos LiDAR en la estimación del volumen forestal en el parque metropolitano Bosque San Carlos. Ciencia e Ingeniería Neogranadina, 23(1), 1‒21. Retrieved from http://www.redalyc.org/articulo.oa?id=91129721001Links ]

Mayaka, T. B., Eba'a-Atyi, R., & Momo, S. T. (2017). Construction of multispecies allometric equations: Is there a statistical palliative for destructive tree sampling? Journal of Tropical Forest Science , 29(3), 282‒296. doi: 10.26525/jtfs2017.29.3.282296 [ Links ]

Melo, O. R., & Lizarazo, I. (2017). Estimación del volumen de madera en árboles mediante polinomio único de ahusamiento. Colombia Forestal , 20(1), 52‒62. doi: 10.14483/udistrital.jour.colomb.for.2017.1.a05 [ Links ]

Mena-Frau, C., & Montecinos-Guajardo, R. (2006). Comparación de redes neuronales y regresión lineal para estimar productividad de sitio en plantaciones forestales, utilizando geomática. Bosque, 27(1), 35‒43. Retrieved from http://mingaonline.uach.cl/scielo.php? [ Links ]

Michela, J. F., Kees, S. M., & Skoko, J. J. (2018). Coeficiente mórfico para estimación de volumen comercial de Prosopis alba Griseb. en Chaco, Argentina. Multequina: Latin American Journal of Natural Resources, 27, 1‒12. Retrieved from https://www.redalyc.org/articulo.oa?id=42857911002Links ]

Moras, G., & Vallejos, O. S. (2013). Tablas de volumen para árboles individuales de Eucalyptus globulus ssp. globulus cultivados en la región sur de Uruguay. Agrociencia Uruguay, 17(2), 11‒24. Retrieved from http://www.scielo.edu.uy/pdf/agro/v17n2/v17n2a02.pdfLinks ]

Niño-López, G. S., Ramos-Molina, P. A., Barrios, A., & López-Aguirre, A. M. (2018). Modelos compatibles de ahusamiento-volumen para árboles de Gmelina arborea Roxb. en el Alto Magdalena, Colombia. Colombia Forestal , 21(2), 174‒187. doi: 10.14483/2256201X.12249 [ Links ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (1980). Estimación del volumen forestal y predicción del rendimiento con referencia especial a los trópicos: predicción del rendimiento. Italy: Author. Retrieved from http://www.fao.org/3/a-ap354s.pdfLinks ]

Özçelik, R., Diamantopoulou, M. J., & Brooks, J. R. (2014). The use of tree crown variables in over-bark diameter and volume prediction models. iForest-Biogeosciences and Forestry , 7(3), 132‒139. doi: 10.3832/ifor0878-007 [ Links ]

Özçelik, R., & Göçeri, M. F. (2015). Compatible merchantable stem volume and taper equations for Eucalyptus sp. plantations in the Eastern Mediterranean Region of Turkey. Turkish Journal of Agriculture and Forestry, 39(6), 851‒863. doi: 10.3906/tar-1501-27 [ Links ]

Parresol, B. R., Hotvedt, J. E., & Cao, Q. V. (1987). A volume and taper prediction system for bald clonal grouping. Canadian Journal of Forest Research , 17, 250‒259. Retrieved from https://www.fs.usda.gov/treesearch/pubs/1392Links ]

Pece, R. M. (1994). Tabla de volumen comercial para Eucalyptus pellita utilizando el método de la razón volumétrica. Quebracho , 2, 54‒63. Retrieved from http://fcf.unse.edu.ar/archivos/quebracho/q2_07.pdfLinks ]

Prodan, M. (1961). Forstliche Biometrie. Munchen, Bonn, Wien: BLV Verlagsgesellschaft. [ Links ]

Rojas-Gutiérrez, A. M. (1977). Dasometría práctica. Ibagué, Colombia: Universidad de Tolima. [ Links ]

Romahn de la Vega, C. F., & Ramírez-Maldonado, H. (2010). Dendrometría. Retrieved from http://dicifo.chapingo.mx/pdf/publicaciones/dendrometria.pdfLinks ]

Schumacher, F. X., & Hall, F. S. (1933). Logarithmic expression of timber-tree volume. Journal Agriculture Research, 47(9), 719‒734. Retrieved from https://ci.nii.ac.jp/naid/10029733560/Links ]

Spurr, S. H. (1952). Forest inventory. New York, USA: John Wiley and Sons. [ Links ]

Tamarit-Urias, J. C. (2013). Cubicación, crecimiento y rendimiento madera e inventario operativo para Tectona grandis en el sureste de México. Tesis doctoral, Colegio de Postgraduados, Montecillo, Texcoco, México. [ Links ]

Tewari, V. P., Mariswamy, K. M., & Arunkumar, A. N. (2013). Total and merchantable volume equations for Tectona grandis Linn. f. plantations in Karnataka, India. Journal of Sustainable Forestry, 32(3), 213‒229. doi: 10.1080/10549811.2013.762187 [ Links ]

Tlaxcala-Méndez, R. M., De los Santos-Posadas, H. M., Hernández-De la Rosa, P., & López-Ayala, J. L. (2016). Variación del factor de forma y el ahusamiento en procedencias de cedro rojo (Cedrela odorata L.). Agrociencia , 50(1), 89‒15. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952016000100089&lng=es&tlng=esLinks ]

Ugalde, L. A. (1981). Conceptos básicos de dasometría. Turriaba, Costa Rica: CATIE. [ Links ]

Urbano, E., Machado, S. D. A., Figueiredo-Filho, A., Sanquetta, C. R., & Zea-Camaño, J. D. (2018). Modelación del volumen de rodal para especies secundarias en bosques nativos de Mimosa scabrella en la región metropolitana de Curitiba, Paraná, Brasil. Bosque (Valdivia), 39(2), 227‒237. doi: 10.4067/S0717-92002018000200227 [ Links ]

Valencia-Manzo, S., Trujillo-Gómez, S. A., Cornejo-Oviedo, E. H., Flores-López, C., Díaz-Balderas, J. A., & González-López, H. D. (2017). Ecuación de Pressler para estimar volumen de fuste en árboles de Pinus patula Schl. et Cham. var. longepedunculata Look. Foresta Veracruzana, 19(1), 29‒34. Retrieved from http://www.redalyc.org/articulo.oa?id=49752128005Links ]

Vargas-Larreta, B., Corral-Rivas, J., Aguirre-Calderón, O. A., López-Martínez, J. O., De los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., …Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente , 23(3), 437‒455. doi: 10.5154/r.rchscfa.2017.06.040 [ Links ]

Vásquez-Bautista, N., Zamudio-Sánchez, F. J., Alvarado-Segura, A. A., & Romo-Lozano, J. L. (2016). Forest biometric models in Hidalgo, Mexico: State of the art. Revista Chapingo Serie Ciencias Forestales y del Ambiente , 22(3), 351‒367. doi: 10.5154/r.rchscfa.2015.09.043 [ Links ]

Williams, M. S., Cormier, K. L., Briggs, R. G., & Martínez, D. L. (1999). Evaluation of the Barr & Stroud FP15 and Criterion 400 laser dendrometers for measuring upper stem diameters and heights. Forest Science , 45(1), 53‒61. doi: 10.1093/forestscience/45.1.53 [ Links ]

Received: July 31, 2019; Accepted: March 11, 2020

*Corresponding author: oscar.aguirrecl@uanl.edu.mx; tel.: +52 821 212 4251 ext. 112.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License