SciELO - Scientific Electronic Library Online

 
vol.30 número1Modelado espacial y temporal de contaminantes atmosféricos en la Zona Metropolitana de la Ciudad de MéxicoCambios en la diversidad y estructura arbórea de un bosque templado bajo dos tratamientos silvícolas en Durango, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.30 no.1 Chapingo ene./abr. 2024  Epub 03-Dic-2024

https://doi.org/10.5154/r.rchscfa.2022.11.081 

Scientific articles

Landscape and vegetation analysis in an area of wind farms in the northeast of Mexico

José M. Mata-Balderas1  2 
http://orcid.org/0000-0003-4973-4462

Javier Francisco-Santos1  3 
http://orcid.org/0000-0001-6584-2012

Eduardo Treviño-Garza2 
http://orcid.org/0000-0002-8921-857X

Elizabeth Mata-Balderas1  3  * 
http://orcid.org/0000-0003-1486-7759

1Gestión Estratégica y Manejo Ambiental, S. C. (GEMA, S. C.). Calle Gema 1206, Joyas del Pedregal 4° sector. C. P. 66648. Apodaca, Nuevo León, México.

2Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. Carretera Linares-Cd. Victoria km 145. C. P. 67700. Linares, Nuevo León, México.

3Biólogos y Silvicultores Forestales por el Ambiente, A. C. Calle Gema 1206, Joyas del Pedregal 4° sector. C. P. 66648. Apodaca, Nuevo León, México.


Abstract

Introduction:

Land use change due to wind infrastructure establishment can cause ecosystem fragmentation. The result is a new configuration and spatial composition that can be studied by means of landscape and vegetation evaluation.

Objective:

We aimed to characterize the landscape elements in a wind farm area and to recognize the structure and diversity of the fragments identified in the Tamaulipan thornscrub (TT).

Materials and methods:

Land uses were identified using the Normalized Distribution Vegetation Index, whose elements were classified and analyzed using landscape metrics. The plant community preserved in fragments of TT was evaluated by analyzing its structure and tree measurement variables. Diversity and richness indices were calculated, and a Bray-Curtis plot was developed to determine the level of similarity between sites based on species abundance.

Results and discussion:

The multipurpose productive system comprising the study area (14 031.98 ha) included five land uses: agriculture (53.53 %), grassland (25.31 %), TT vegetation (20.63 %), roads (0.51 %) and wind turbines (0.01 %). Fabaceae, Poaceae and Cactaceae families had a greater presence in TT fragments. absolute abundance, canopy cover and average height of tree-shrub stratum was 6 824 individuals∙ha-1, 224.19 m2∙ha-1 and 1.64 m, respectively.

Conclusions:

The spatial configuration and floristic composition of the fragments would facilitate the creation of biological corridors under ecological restoration measures. Floristic composition parameters were higher compared to those reported in other TT conservation areas.

Keywords: floristic composition; wind energy; fragmentation; diversity indexes; Tamaulipan thornscrub.

Resumen

Introducción:

El cambio de uso de suelo por el establecimiento de infraestructura eólica puede causar fragmentación del ecosistema. El resultado es una nueva configuración y composición espacial que puede ser estudiada a través de su evaluación paisajística y vegetal.

Objetivo:

Caracterizar los elementos del paisaje en una zona de parques eólicos y conocer la estructura y diversidad de los fragmentos identificados de matorral espinoso tamaulipeco (MET).

Materiales y métodos:

Se identificaron los usos de suelo mediante el Índice de Vegetación de Distribución Normalizada, cuyos elementos se clasificaron y analizaron a través de métricas del paisaje. Se evaluó la comunidad vegetal conservada en fragmentos del MET, mediante el análisis de su estructura y variables dasométricas. Se calcularon índices de diversidad y riqueza y se generó una gráfica de Bray-Curtis para conocer el nivel de similitud entre sitios con base en la abundancia de especies.

Resultados y discusión:

En el sistema productivo multipropósito que conforma el área de estudio (14 031.98 ha) se encontraron cinco usos de suelo: agricultura (53.53 %), pastizal (25.31 %), vegetación del MET (20.63 %), caminos (0.51 %) y aerogeneradores (0.01 %). Las familias Fabaceae, Poaceae y Cactaceae tuvieron mayor presencia en los fragmentos del MET. La abundancia absoluta, cobertura de copa y altura promedio del estrato arbóreo-arbustivo fue de 6 824 individuos∙ha-1, 224.19 m2∙ha-1 y 1.64 m, respectivamente.

Conclusiones:

La configuración espacial y composición florística de los fragmentos facilitaría la creación de corredores biológicos bajo medidas de restauración ecológica. Los parámetros de composición florística fueron mayores que los señalados en otras áreas de conservación del MET.

Palabras clave: composición florística; energía eólica; fragmentación; índices de diversidad; matorral espinoso tamaulipeco.

Highlights:

  • Agricultural and grassland areas dominate the landscape in the wind farm area.

  • Wind infrastructure covers less than 1 % of the area studied.

  • Preserved fragments of Tamaulipan thornscrub (TT) account for 20.63 %.

  • Fabaceae, Poaceae and Cactaceae families had greater presence in TT fragments.

  • Vegetation fragment configuration favors the creation of biological corridors.

Introduction

Wind power industry development in Mexico has grown significantly in the last decade (Azamar Alonso & García Beltrán, 2021). The states with the highest production include Tamaulipas with 1 177.5 MW installed (Robles, 2017). This area is predominantly home to the Tamaulipas Thornscrub (TT), characterized by its ability to adapt to extreme climate conditions and soil nutrient fixation (Foroughbakhch et al., 2011; González-Rodríguez et al., 2016).

TT's surface area has decreased since the 1980s, mainly due to the extensive practice of livestock and agriculture (Turner & Díaz-Bautista, 2009). Just in the period from 1993 to 2002, 953,000 ha of scrubland were lost due to land use change, being the second most affected ecosystem in Mexico after rainforests (Patiño-Flores et al., 2021).

The distance between wind turbines in wind farms must be at least 5 % of their diameter (Ramírez et al., 2016), so that the wind turbines together form a large area. A common practice to reduce the impact is to install these farms in areas that already have some type of use, usually agricultural (Ecological Society of America [ESA], 2019). However, land use change due to the establishment of wind infrastructure, access roads and operational area can cause additional fragmentation to the ecosystem (Hernández-Pérez et al., 2022). This results in a new spatial configuration that is reflected in the quantity, distance, richness and shape of fragments (also referred to as patches) that make up the land uses (Rodríguez-Echeverry & Leiton, 2021). These changes can be evaluated using landscape analysis methods, such as the classification of satellite images and the calculation of landscape metrics (Altamirano et al., 2012). Satellite images are processed by means of geographic information systems, where information about vegetation cover is obtained by the Normalized Difference Vegetation Index or NDVI (Olivares & López-Beltrán, 2019). Meanwhile, landscape metrics allow obtaining information about the spatial relationships between the fragments that make up the landscape mosaic (Mateucci & Silva, 2005).

Increased fragmentation in vegetation areas reduces the habitat available for the development of species, even more when crops, roads, human settlements or induced vegetation predominate (Reyes et al., 2022). The remaining vegetation cover is a determining factor in the degree of affectation that a wind system has on fauna (Bolívar-Cimé et al., 2016). Therefore, in addition to knowing the composition and configuration of the landscape, it is important to evaluate the plant community distributed in a fragmented system, especially to document changes in the plant structure by identifying species sensitive to these changes.

The objectives of this research were a) to characterize and describe the degree of fragmentation in a wind farm with agricultural activities and, b) to recognize its structure and diversity in the fragments with vegetation use of TT. It is expected that the elements studied will serve as indicators for future studies focused on the creation of biological corridors within productive systems.

Materials and Methods

Study area

The study area covers an area of 14 031.98 ha in a wind production zone in the municipality of Reynosa, Tamaulipas, Mexico. There are 103 generators in the area with a production capacity of 321 MW.

Currently, land tenure is diversified into three private productive activities: wind energy generation, agriculture and livestock (grassland); however, there are still areas conserved with TT vegetation, where livestock has no access. The climate is classified as BS1 (h’) hx’ (García, 2004) which corresponds to a warm semi-dry climate with average annual precipitation ranging between 500 and 700 mm and average annual temperature of 22 °C. The soil types are Castañozem, Vertisol and Xerosol, according to the Instituto Nacional de Estadística y Geografía (INEGI, 2017).

Landscape analysis

Land use was determined using QGIS Desktop (2022) version 3.26.3. The procedure proposed by Sader and Winne (1992), which uses the Normalized Difference Vegetation Index (NDVI), was used to visualize vegetation cover dynamics. NDVI enhances the greenness associated with vegetation by quantifying near red and infrared bands. This process allows the reduction of data volume, but keeps a semi-continuous variable correlated with vegetation biomass and green leaf area index. The Sentinel-2B satellite image dated January 6, 2022 was used for this study. Subsequently, NDVI was generated and geometric and atmospheric corrections were applied. The first, by georeferencing to the Coordinate Reference System WGS84 UTM zone 14 N and the second by using the Semi Automatic Classification Plugin. A supervised classification of the RGB-NDVI image (Red-Green-Blue band correction image) was performed for the identification of land uses. Data was corroborated by field visits, including visual inspections of plot contents in contrast with the software results (Vega-Vela et al., 2017). Also, a direct on-screen digitization was made of the roads and wind turbine areas that make up the wind farms. The product was a map in vector format, in which the area (ha) of each land use was estimated. Based on this information, landscape metrics were calculated to quantify the spatial relationships between land uses. All fragments were grouped according to use category, an alphanumeric identification was assigned to each one and the information was rasterized to be entered into the FRAGSTATS version 4.2 program (McGarigal & Marks, 1995). Wind turbine land use was not included in this analysis as it was not detected in the rasterization process, due to its small percentage of surface area. One metric was calculated at the fragment level (Euclidean distance to nearest neighbor ENN_MN) and four at the class level (number of fragments NP, average fragment area AREA_MN, shape index SHAPE_MN and fractal dimension index FRAC_MN).

Vegetation analysis

In November 2021, the plant community in the elements identified as vegetation fragments of TT was analyzed. We established 30 sampling sites (Figure 1) divided into two strata (Mata-Balderas et al., 2020). The high stratum included shrub and tree vegetation with heights ≥2 m in rectangular plots of 75.0 m2. The low stratum included herbaceous vegetation ranging from 0.30 to 1.99 m in height, within a 1 m2. Species were identified using taxonomic keys and flora catalogs of the area (Correll & Johnston, 1970; Molina-Guerra et al., 2019). Tree measurement variables of total height (h), crown diameter in north-south and east-west directions, and diameter at breast height (D1.30) in woody species were measured, only basal diameter (D0.10) was measured in low species (Alanís et al., 2020).

Figure 1 Vegetation sampling sites in fragments of Tamaulipan Thornscrub in a wind farm area in the municipality of Reynosa, Tamaulipas, Mexico. Source: Esri Map Services (2017)

Data analysis

Abundance, cover and frequency were the floristic composition parameters determined. These were used in their relative form to determine the weighted value known as the Importance Value Index (IVI) (Magurran, 2004; Mueller-Dombois & Ellenberg, 1974). Vegetation alpha diversity was estimated using Shannon-Wiener's diversity index (H’), Margalef's richness index (D mg ) and Simpson's index (D). The first describes how diverse a specific habitat can be, taking into account the number of species present and their number of individuals. The second evaluates the biodiversity of a community, according to the numerical distribution of individuals of the species found. The last refers to dominance, considering whether a community is determined by species with a high abundance value (Cadena-Zamudio et al., 2022; Magurran, 2004; Manzanilla et al., 2020). Beta diversity was evaluated by means of a similarity dendrogram based on species abundance, using the Bray-Curtis ordination model (Whittaker, 1960), generated in the PAST version 4.13 statistical program (Hammer et al., 2001).

Results

Landscape analysis

The multipurpose productive system comprising the study area has five land uses (Figure 2). Agriculture and grassland activities (for livestock) cover the largest area with 53.53 % and 25.31 %, respectively, followed by TT vegetation areas (20.63 %), roads (0.51 %) and wind turbines (0.01 %).

Figure 2 Land uses in a wind farm area in the municipality of Reynosa, Tamaulipas, Mexico. TT: Tamaulipan Thornscrub. 

Regarding landscape metrics calculation, agricultural use had the largest area fragments (3 720.49 ha), followed by grasslands (582.22 ha), TT vegetation areas (429.92 ha) and finally roads (5.06 ha). According to Table 1, for ENN_MN, vegetation fragments had the highest aggregation because they yielded the lowest value (173 m), followed by agriculture fragments (180 m), roads (250 m) and grasslands (462 m). Grasslands similarly had the highest spatial complexity by presenting the value furthest from '1' in the SHAPE_MN metric, contrary to roads which had the closest value. FRAC_MN values vary from 1.04 to 1.08, so, based on their area and perimeter, there is no considerable variation in the degree of complexity between classes. Regarding NP, roads (146) and vegetation fragments (100) showed the highest values, contrary to agricultural (42) and grassland (25)

Table 1 Land use and landscape metrics at class level in a wind farm area in the municipality of Reynosa, Tamaulipas, Mexico. 

Land use Area (ha) Number of fragments AREA_MN (ha) ENN_MN (m) SHAPE_MN FRAC_MN
TT vegetation 2 894.25 100 1.66 173 1.66 1.08
Grassland 3 552.13 25 141.89 462 1.70 1.07
Agriculture 7 513.17 42 179.41 180 1.55 1.04
Roads 71.42 146 1.25 250 1.25 1.04

AREA_MN: average fragment area; ENN_MN: Euclidean distance to nearest neighbor; SHAPE_MN: shape index; FRAC_MN: fractal dimension index. TT: Tamaulipan Thornscrub.

Vegetation analysis

Table 2 shows the 47 species recorded, corresponding to 23 families, regarding the composition of the TT vegetation cover. Fabaceae, Poaceae and Cactaceae showed the highest presence, with eight, six and five species, respectively. In the upper stratum, Celtis pallida Torr. (granjeno), Neltuma glandulosa Torr. (mezquite dulce), Forestieria angustifolia Torr. (panalero) and Ebenopsis ebano (Berland.) Barneby & J. W. Grimes (ebano) had higher abundance, cover and average height. Together, these provided 97.86 % of the 300 % of importance. In the lower stratum, the species of greatest importance were Cenchrus ciliaris L. (zacate buffel; 114.77 %) and Sorghum halepense (L.) Pers. (African canary grass; 76.04 %). Absolute abundance for the high stratum is 6 824 individuals∙ha-1 with a total canopy cover of 224.19 m2∙ha-1 and average height of 1.64 m. In the low stratum, the values of these parameters are at 87 000 individuals∙ha-1, 606 m2∙ha-1 and 0.31 m, respectively.

Table 2 Values of absolute abundance, canopy cover, average height and importance value index (IVI) of the Tamaulipan Thornscrub vegetation cover in a wind farm area in the municipality of Reynosa, Tamaulipas, Mexico. 

Family Scientific name Abundance (individuals∙ha-1) Cover (m2∙ha-1) Average height (m) IVI (%)
Ulmaceae Celtis pallida Torr. 1 351 7.95 2.61 33.04
Fabaceae Neltuma glandulosa (Torr.) Britton & Rose 613 18.29 4.31 27.21
Oleaceae Forestiera angustifolia Torr. 613 7.25 1.98 19.68
Fabaceae Ebenopsis ebano (Berland.) Barneby & J. W. Grimes 324 16.17 4.43 17.93
Rhamnaceae Karwinskia humboldtiana (Willd. ex Schult.) Zucc. 387 4.16 1.23 14.24
Zygophyllaceae Guaiacum angustifolium (Engelm.) A. Gray 364 3.59 0.95 11.79
Boraginaceae Cordia boissieri A. DC. 178 9.06 2.53 10.75
Fabaceae Coursetia axillaris J. M. Coult. & Rose 378 4.65 1.93 9.85
Fabaceae Havardia pallens (Benth.) Britton & Rose 191 8.23 2.51 9.83
Cactaceae Opuntia engelmannii Salm-Dyck ex Engelm. 93 10.59 1.27 9.45
Fabaceae Senegalia greggii (A. Gray) Britton & Rose 18 16.44 3.80 8.34
Cactaceae Leptocereus quadricostatus (Bello) Britton & Rose 89 11.78 2.17 8.05
Fabaceae Vachellia farnesiana (L.) Wight & Arn. 67 8.33 2.10 8.05
Rutaceae Zanthoxylum fagara (L.) Sarg. 160 5.49 1.57 7.78
Fabaceae Senegalia berlandieri (Benth.) Britton & Rose 191 6.87 2.41 7.73
Fabaceae Vachellia rigidula (Benth.) Seigler & Ebinger 156 4.60 1.62 7.31
Rubiaceae Randia aculeata L. 129 3.46 0.99 7.16
Rosaceae Prunus serotina Ehrh. 320 3.44 0.75 6.97
Fabaceae Cercidium macrum I. M. Johnst. 13 13.33 2.73 6.89
Ebenaceae Diospyros texana Scheelee 98 6.61 1.78 6.62
Asparagaceae Yucca treculeana Carriére. 71 4.61 1.28 6.08
Sapotaceae Sideroxylon celastrinum (Kunth) T. D. Penn 138 4.87 1.77 6.06
Verbenaceae Lantana camara L. 151 3.03 1.00 5.43
Solanaceae Lycium berlandieri Dunal. 89 4.24 1.28 5.43
Rhamnaceae Condalia hookeri M. C. Johnst. 36 7.78 2.25 4.74
Solanaceae Capsicum annuum L. 76 3.66 1.17 4.60
Cactaceae Cylindropuntia leptocaulis (DC.) F. M. Knuth 58 4.27 1.23 4.24
Malvaceae Abutilon fruticosum Guill. & Perr. 151 2.78 0.73 4.20
Euphorbiaceae Croton cortesianus Kunth. 58 3.62 0.93 3.96
Simaroubaceae Castela texana (Torr. & A. Gray) Rose 40 4.20 1.42 3.58
Fabaceae Erythrostemon mexicanus (A. Gray.) Gagnon & G. P. Lewis 31 3.62 1.54 3.19
Scrophulariaceae Leucophyllum frutescens (Berland.) I. M. Johnst. 27 3.78 0.95 2.82
Euphorbiaceae Jatropha dioica Sessé 93 0.56 0.74 1.99
Asteraceae Gymnosperma glutinosum (Spreng.) Less. 31 0.89 0.29 1.97
Cactaceae Thelocactus setispinus (Engelm.) E. F. Anderson 9 0.44 0.15 1.07
Verbenaceae Aloysia macrostachya (Torr.) Moldenke 9 1.11 0.30 1.00
Cactaceae Echinocereus enneacanthus Engelm. 27 0.44 0.20 0.96
Poaceae Cenchrus ciliaris L. 47 000 109.93 0.40 114.77
Poaceae Sorghum halepense (L.) Pers. 26 667 95.42 0.45 76.04
Asteraceae Parthenium hysterophorus L. 3 667 85.76 0.28 27.64
Asteraceae Helianthus annuus L. 1 667 90.00 0.90 20.48
Petiveriaceae Rivina humilis L. 1 667 66.67 0.25 14.78
Boraginaceae Heliotropium angiospermum Murray 2 000 34.44 0.15 13.54
Poaceae Chloris virgata P. Durand 333 40.00 0.20 8.84
Poaceae Bouteloua trífida Thurb. ex S. Watson 2 333 23.33 0.05 8.39
Poaceae Cynodon dactylon (L.) Pers. 667 33.33 0.20 8.12
Poaceae Melinis repens (Willd.) 1 000 26.67 0.25 7.41

Alpha diversity yielded a value of 3.18 for Shannon's index, 0.93 for Simpson's index and 6.13 for Margalef's index. Figure 3 shows the dendrogram derived from the beta diversity analysis, which indicates that the sampling sites show average similarity based on plant species abundance. Of the 30 sites evaluated, 15 are grouped above 50 %, but only two are grouped in the highest percentage of similarity with 62 %.

Figure 3 Similarity-dissimilarity dendrogram (Bray-Curtis) resulting from the analysis of beta diversity among the sampling sites of the Tamaulipan Thornscrub vegetation cover, based on species abundance, in a wind farm area. 

Discussion

According to the land use classification, the system in the study area can be classified as agroforestry, particularly as agropastoral, since it combines the presence of woody species with agricultural and livestock practices (Cabrera et al., 2011); however, by including wind farm activities, it has been called a multipurpose system. In this system, the native vegetation of TT is composed of a greater number of smaller, complex and poorly segregated fragments, in contrast to the agricultural and grassland uses that have a less number of fragments but are larger in size. Mateucci and Silva (2005) affirm that less anthropic territories present more complex forms and vice versa. In the present study, agricultural and grassland uses dominate the landscape due to their larger surface area. However, the proximity between vegetation fragments could facilitate the creation of biological corridors with focal species within the ecosystem (Alonso-F et al., 2017), which would require studies to establish.

Regarding the floristic evaluation of the vegetation fragments, the families with the highest number of species were Fabaceae, Poaceae and Cactaceae. Several studies in the region have reported the Fabaceae family as the most representative in several land uses (Alanís-Rodríguez et al., 2021; Jiménez Pérez et al., 2013; Pequeño Ledezma et al., 2021). This is due to its ability to fix nitrogen and withstand the conditions typical of arid zones (Reyna-González et al., 2021). On the other hand, the Poaceae family groups fast-growing non-native species, used for agropastoral activities in the surroundings of the conserved areas (Jiménez Pérez et al., 2013). Meanwhile, the high presence of the Cactaceae family confirms its affinity for arid areas (Mata Balderas et al., 2015). These results coincide with those found by Vargas-Vázquez et al. (2022) in the municipality of Reynosa and with Foroughbakhch et al. (2013) in areas of Tamaulipas, which show a good conservation of these families in the region.

Of the Fabaceae family, N. glandulosa had the highest mean cover and height values and the second place in abundance. Similarly, the cover of N. glandulosa (17.88 m2∙ha-1) was higher compared to that of E. ebano (4.79 m2∙ha-1) in a plantation in the municipality of Rio Bravo (Garcia-Mosqueda et al., 2014) contiguous to that of the present project. In the study by Foroughbakhch et al. (2013), N. glandulosa was the most important in recovery sites in Tamaulipas. This confirms that the conditions recorded in and around the study area are suitable for the establishment of this species.

The four species with the highest IVI (C. pallida, N. glandulosa, F. angustifolia and E. ebano) have been reported in diverse land uses, both in disturbed areas that are in the process of regeneration (Alanís-Rodríguez et al., 2021) and in areas with deep soils, rich in nutrients and moisture (Pequeño-Ledezma et al., 2017). In the present assessment, these species account for almost a third of the total importance for the upper stratum.

Regarding the absolute abundance for all vegetation (6 828 individuals∙ha-1), the amount is above that reported by Mora et al. (2013b) in reference to regeneration and livestock areas. But is similar to the 6 310 ± 523 individuals∙ha-1), recorded by Jiménez Pérez et al. (2013) in a regenerated clear cutting area. The specific richness for the shrubby tree stratum (37) is higher than that reported in other TT areas of between 10 and 28 years of regeneration (Jiménez et al., 2012; Mora et al., 2013a; Reyna-González et al., 2021); however, it is lower than the 55 recorded (mostly shrubby) by Vargas-Vázquez et al. (2022). The diversity (H') and richness (Dmg) indices yield higher values than pristine TT (Valdez et al., 2018), regenerating (Patiño-Flores et al., 2022), post-fire (Graciano-Ávila et al., 2018) and agroforestry (Alanís-Rodríguez et al., 2018; Sarmiento-Muñoz et al., 2019) ecosystems. Similarly, Simpson's index supports high diversity by yielding a value close to 1 (Valdez et al., 2018).

The results of the Bray-Curtis model show the variability of species abundance in the area. The multiple groupings may be a product of taxa adapting to the characteristics of the evaluation sites (Silva-García et al., 2022). Examples of this are the genera Jatropha, Croton, Opuntia and Cylindropuntia which tend to be found mostly on slopes or steep slopes (Foroughbakhch et al., 2013; Reyna-González et al., 2021).

Conclusions

The wind farm area has a set of anthropogenic activities dominated by agriculture and livestock, which is why it has been called a multipurpose system. These activities form fragments of Tamaulipan Thornscrub vegetation that are scarcely modified based on their characteristics. The richness and diversity of this flora presents higher values compared to other ecosystems with better conservation conditions. Thus, characterizing vegetation in this system will allow us to formulate management actions to improve wildlife connectivity within the biological corridors.

Referencias

Alanís-Rodríguez, E. Valdecantos-Dema, A. Canizales-Velázquez, P. A. Chávez-Costa, A. Rubio-Camacho, E. y Mora Olivo, A. (2018). Análisis estructural de un área agroforestal en una proporción del matorral xerófilo del noreste de México. Acta Botanica, 125, 133‒156. 10.21829/abm125.2018.1329 [ Links ]

Alanís, E. Mora, A. y Marroquín, J. S. (2020). Muestreo ecológico de la vegetación. Editorial Universitaria UANL. https://www.researchgate.net/publication/343137042_Muestreo_Ecologico_de_la_vegetacionLinks ]

Alanís-Rodríguez, E. Molina-Guerra, V. Collantes-Chávez-Costa, A. Buendía-Rodríguez, E. Mora-Olivo, A. Sánchez-Castillo, L. y Alcalá-Rojas, A. G. (2021). Structure, composition and carbon stocks of woody plant community in assisted and unassisted ecological succession in a Tamaulipan thornscrub, Mexico. Revista Chilena de Historia Natural, 94(1), 1‒12. 10.1186/s40693-021-00102-6 [ Links ]

Alonso-F, A. M. Finegan, B. y Brenes, C. (2017). Evaluación de la conectividad estructural y funcional en el corredor de conservación Podocarpus-Yacuambi, Ecuador. Caldasia, 39(1), 140‒156. 10.15446/caldasia.v39n1.64324 [ Links ]

Altamirano, A. Miranda, M. y Jiménez, C. (2012). Incertidumbre de los índices de paisaje en el análisis de la estructura espacial. BOSQUE, 33(2), 171‒181. 10.4067/S0717-92002012000200007 [ Links ]

Azamar Alonso, A. y García Beltrán, Y. M. (2021). Diagnosis and risks of the wind energy in Mexico. Revista de Geografía Agrícola, (67), 27‒45. 10.5154/r.rga.2021.67.02 [ Links ]

Bolívar-Cimé, B. B. Bolívar-Cimé, A. Cabrera-Cruz, S. A. Muñoz-Jiménez, O. y Villegas-Patraca, R. (2016). Bats in a tropical wind farm: species composition and importance of the spatial attributes of vegetation cover on bat fatalities. Journal of Mammalogy, 97(4), 1197‒1208. 10.1093/jmammal/gyw069 [ Links ]

Cabrera (2011). Establecimiento de sistemas agroforestales. https://www.conafor.gob.mx/biblioteca/documentos/MANUAL_SISTEMAS_AGROFORESTALES.PDFLinks ]

Cadena-Zamudio, D. A. Flores-Garnica, J. G. Lomelí-Zavala, M. E. y Flores-Rodríguez, A. G. (2022). Does the severity of a forest fire modify the composition, diversity and structure of temperate forests in Jalisco?. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 28(1), 3‒20. 10.5154/r.rchscfa.2020.12 [ Links ]

Correll, D. S. y Johnston, M. C. (1970). Manual of vascular plants of Texas. Texas Research Institute Foundation. [ Links ]

Ecological Society of America (ESA) (2019). Impacts to wildlife of wind energy siting and operation in the United States. https://southcentralclimate.org/wp-content/uploads/2020/02/2019-Wind-turbines-and-wildlife-Issues-in-Ecol.pdfLinks ]

Esri Map Service (2017). World Imagery. Arcgis. https://www.arcgis.com/home/item.html?id=974d45be315c4c87b2ac32be59af9a0bLinks ]

Foroughbakhch, R. Alvarado-Vázquez, M. A. Carrillo, A. Hernández-Piñero, J. L. y Guzmán, M. A. (2013). Diversidad florística de un área dominada por arbustos en el Noreste de México. Phytone, 82(2), 175‒184. https://www.researchgate.net/publication/317537073_Diversidad_floristica_de_un_area_dominada_por_arbustos_en_el_Noreste_de_MexicoLinks ]

Foroughbakhch, R., Hernández-Piñero, J. L., Alvarado-Vázquez, M. A., Carrillo-Parra, A., Macías, C. V. y Estrada, A. R. (2011). Native plants of Northeastern Mexico: Their potential in the restoration of damaged ecosystems. En Marín, L. y Kovač, D. (eds.) Native species: Identification, conservation and restoration (1st ed., vol. 1, pp. 85‒115). Nova Science Publishers. https://www.researchgate.net/publication/236855592_Native_plants_of_northeastern_Mexico_Their_potential_in_the_restoration_of_damaged_ecosystemsLinks ]

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana) (5.ª ed.). Instituto de Geografía, Universidad Nacional Autónoma de México. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83Links ]

García-Mosqueda, G. E. Jiménez-Pérez, J. Aguirre-Calderón, O. A. González-Rodríguez, H. Carrillo-Parra, A. Espinosa-Ramírez, M. y García-García, D. A. (2014). Biomasa de dos especies de matorral en tres densidades de plantación en Tamaulipas, México. Revista Latinoamericana de Recursos Naturales, 10(2), 52‒59. https://revista.itson.edu.mx/index.php/rlrn/article/view/232Links ]

González-Rodríguez, H. Himmelsbach, W. Sarquís-Ramírez, J. I. Cantú-Silva, I. Ramírez-Lozano, R. y López-Hernández, J. M. (2016). Seasonal water relations in four co-existing native shrub species from Northeastern Mexico. Arid Land Research and Management, 30(4), 375‒388. 10.1080/15324982.2015.1133726 [ Links ]

Graciano-Ávila, G. Alanís-Rodríguez, E. Aguirre-Calderón, Ó. A. Rubio-Camacho, E. A. y González-Tagle, M. A. (2018). Estructura y diversidad post-incendio en una zona de matorral espinoso tamaulipeco. Polibotanica, 45(23), 89‒100. 10.18387/polibotanica.45.7 [ Links ]

Hammer, Ø. Harper, D. A. T. y Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontología Electrónica, 4(1), 1‒9. https://palaeo-electronica.org/2001_1/past/past.pdfLinks ]

Hernández-Pérez, E. García-Franco, J. G. Vázquez, G. y Cantellano, E. (2022). Cambio de uso de suelo y fragmentación del paisaje en el centro de Veracruz, México (1989-2015). Madera y Bosques, 28(1), e2812294. 10.21829/myb.2022.2812294 [ Links ]

Instituto Nacional de Geografía y Estadística (INEGI) (2017). Información topográfica carta G14-5 Reynosa escala 1:250 000, serie VI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463836452Links ]

Jiménez Pérez, J. Alanís Rodríguez, E. González Tagle, M. A. Aguirre Calderón, O. A. y Treviño Garza, E. J. (2013). Characterizing regeneration of woody species in areas with different land-history tenure in the tamaulipan thornscrub, Mexico. Southwestern Naturalist, 58(3), 299‒304. 10.1894/0038-4909-58.3.299 [ Links ]

Jiménez, J. Alanís, E. Ruiz, J. L. González, M. A. Yerena, J. I. y Alanís, G. J. (2012). Diversidad de la regeneración leñosa del matorral espinoso tamaulipeco con historial agrícola en el Noreste de México. CIENCIA UANL, 15(58), 66‒71. http://www.uanl.mx/publicacionesLinks ]

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing. http://www.bio-nica.info/Biblioteca/Magurran2004MeasuringBiological.pdfLinks ]

Manzanilla, G. E. Mata, J. M. Treviño, E. Aguirre, O. A. Alanís, E. A. y Yerena, J. I. (2020). Diversidad, estructura y composición florística de bosques templados del sur de Nuevo León. Revista Mexicana de Ciencias Forestales, 11(16), 94‒123. 10.29298/rmcf.v11i61.703 [ Links ]

Mata-Balderas, J. M. Hernández-Cárdenas, S. E. Alanís-Rodríguez, E. y Mora-Olivo, A. (2020). Riqueza, composición y abundancia de especies en una comunidad vegetal ribereña en el río Santa Catarina, Monterrey, Nuevo León. CienciaUAT, 14(2), 6‒20. 10.29059/cienciauat.v14i2.1248 [ Links ]

Mata Balderas, J. M. Treviño Garza, E. J. Jiménez Pérez, J. Aguirre Calderón, Ó. A. Alanís Rodríguez, E. y Mora Olivo, A. (2015). Estructura y composición florística del matorral desértico rosetófilo del noreste de México. CIENCIA UANL, 18(75), 67‒74. http://eprints.uanl.mx/8244/1/Documento10.pdfLinks ]

Matteucci, S. D. y Silva, M. (2005). Selección de métricas de configuración espacial para la regionalización de un territorio antropizado. GeoFocus. International Review of Geographical Information Science and Technology, (5), 180‒202. https://www.geofocus.org/index.php/geofocus/article/view/65Links ]

McGarigal, K. y Marks, B. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. 10.2737/PNW-GTR-351 [ Links ]

Molina-Guerra, V. M. Mora-Olivo, A. Alanís-Rodríguez, E. Soto-Mata, B. y Patiño-Flores, A. M. (2019). Plantas características del matorral espinoso tamaulipeco en México. Editorial Universitaria de la Universidad Autónoma de Nuevo León. https://libros.uat.edu.mx/index.php/librosuat/catalog/view/220/181/532-1Links ]

Mora, C. A. Alanís, E. Jiménez, J. González, M. A. Yerena, J. I. y Cuellar, L. G. (2013). Estructura, composición florística y diversidad del matorral espinoso tamaulipeco, México. Ecología Aplicada, 12(1), 29‒34. http://www.scielo.org.pe/pdf/ecol/v12n1/a04v12n1Links ]

Mora, C. A. Jiménez, J. Alanís, E. Rubio, E. A. Yerena, J. I. y González, M. A. (2013). Efecto de la ganadería en la composición y diversidad arbórea y arbustiva del matorral espinoso tamaulipeco. Revista Mexicana de Ciencias Forestales, 17(4), 124‒137. 10.29298/rmcf.v4i17.426 [ Links ]

Mueller-Dombois, D. y Ellenberg, D. (1974). Aims and methods of vegetation ecology. John Wiley & Sons. https://www.researchgate.net/publication/259466952_Aims_and_Methods_of_Vegetation_EcologyLinks ]

Olivares, B. A. y López-Beltrán, M. A. (2019). Índice de Vegetación de Diferencia Normalizada aplicado al territorio indígena agrícola de Kashaama, Venezuela. Cuadernos de Investigación UNED, 11(2). 10.22458/urj.v11i2.2299 [ Links ]

Patiño-Flores, A. M. Alanís-Rodríguez, E. Jurado, E. González-Rodríguez, H. Aguirre-Calderón, O. A. y Molina-Guerra, V. M. (2021). Estructura y diversidad del matorral espinoso tamaulipeco regenerado posterior a uso pecuario. Polibotánica, 52, 75‒88. 10.18387/polibotanica.52.6 [ Links ]

Patiño-Flores, A. M. Alanís-Rodríguez, E. Molina-Guerra, V. M. Jurado, E. González-Rodríguez, H. Aguirre-Calderón, O. A. y Collantes-Chávez, C. A. (2022). Regeneración natural en un área restaurada del matorral espinoso tamaulipeco del Noreste de México. Revista Ecosistemas y Recursos Agropecuarios, 9(1), 1‒7. 10.19136/era.a9n1.2853 [ Links ]

Pequeño-Ledezma, M. A. Alanís-Rodríguez, E. Jiménez-Pérez, J. Aguirre-Calderón, O. A. González-Tagle, M. A. y Molina-Guerra, V. M. (2017). Análisis estructural de dos áreas del matorral espinoso tamaulipeco del noreste de México. Madera y Bosques, 23(1), 121‒132. 10.21829/myb.2017.2311125 [ Links ]

Pequeño Ledezma, M. Á. Alanís Rodríguez, E. Molina Vera, M. Collantes-Chávez-Costa, A. y Mora-Olivo, A. (2021). Structure and diversity of a shrub Helietta parvifolia (A. Gray ex Hemsl.) Benth. Revista Mexicana de Ciencias Forestales, 12(63), 88‒113. 10.29298/rmcf.v12i63.762 [ Links ]

QGIS Desktop (2022). QGIS. Un Sistema de Información Geográfica libre y de código abierto (versión 3.26.3) . https://download.qgis.org/downloads/Links ]

Ramírez, J. D. Garcés, A. y Arrieta, J. S. (2016). Distribución óptima de turbinas en parques eólicos mediante PSO considerando el efecto sombra. Tecnura, 20(47), 49‒55. 10.14483/udistrital.jour.tecnura.2016.1.a04 [ Links ]

Reyes, C. H. González, L. A. Cevallos, M. Realpe, K. Estrada, E. y Delgado, F. (2022). Fragmentación del paisaje en la cuenca del Río Esmeraldas-Ecuador. Sapienza: International Journal of Interdisciplinary Studies, 3(1), 1227‒1238. 10.51798/sijis.v3i2.301 [ Links ]

Reyna-González, Á. M. Soto-Borrego, P. S. Alanís-Rodríguez, E. Molina-Guerra, V. M. y Collantes-Chávez-Costa, A. (2021). Estructura y diversidad del matorral xerófilo en el noreste de México. Polibotánica, 51(26), 107‒122. 10.18387/polibotanica.51.7 [ Links ]

Robles, F. G. (2017). Impactos a la biodiversidad por parques eólicos en el noreste de México. Revista Política, Globalidad y Ciudadanía, 3(6), 41‒49. 10.29105/pgc3.6-3 [ Links ]

Rodríguez-Echeverry, J. y Leiton, M. (2021). Pérdida y fragmentación de ecosistemas boscosos nativos y su influencia en la diversidad de hábitats en el hotspot Andes tropicales. Revista Mexicana de Biodiversidad, 92, e923449. 10.22201/ib.20078706e.2021.92.3449 [ Links ]

Sader, S. A. y Winne, J. C. (1992). RGB-NDVI Colour composites for visualizing forest change dynamics. International Journal of Remote Sensing, 13(16), 3055‒3067. 10.1080/01431169208904102 [ Links ]

Sarmiento-Muñoz, T. I. Alanís-Rodríguez, E. Mata-Balderas, J. M. y Mora-Olivo, A. (2019). Estructura y diversidad de la vegetación leñosa en un área de matorral espinoso tamaulipeco con actividad ganadera en Nuevo León, México. Revista Ciencia UAT, 14(1), 31‒44. 10.29059/cienciauat.v14i1.1001 [ Links ]

Silva-García, J. E. Aguirre-Calderón, O. A. Alanís-Rodríguez, E. Jurado-Ybarra, E. Jiménez-Pérez, J. Vargas-Larreta, B. y Corral-Rivas, J. J. (2022). Influencia en la altitud y exposición en la estructura y composición de un bosque templado en Durango. Revista Mexicana de Ciencias Forestales, 13(70), 64‒84. 10.29298/rmcf.v13i70.1163 [ Links ]

Turner, E. H. y Díaz-Bautista, A. (2009). Desarrollo e integración del norte de México y el sur de los EUA a partir del análisis de la evolución de las ciudades fronterizas. Análisis Económico, 24(57), 141‒168. https://www.redalyc.org/articulo.oa?id=41312227008Links ]

Valdez, C. G. Guzmán, M. A. Valdés, A. Forougbakhch, R. Alvarado, M. A. y Rocha, A. (2018). Estructura y diversidad de la vegetación en un matorral espinoso prístino de Tamaulipas, México. Revista de Biología Tropical, 66(4), 1674‒1682. https://www.scielo.sa.cr/pdf/rbt/v66n4/0034-7744-rbt-66-04-1674.pdfLinks ]

Vargas-Vázquez, V. A. Sánchez-Rangel, N. I. Vázquez-Reyes, C. J. Martínez-Ávalos, J. G. y Mora-Olivo, A. (2022). Composition and structure of a low semi-thorn shrubland in Northeastern Mexico. Botanical Sciences, 100(3), 748‒758. 10.17129/botsci.2970 [ Links ]

Vega-Vela, V. Muñoz-Robles, C. A. Rodríguez-Luna, E. López-Acosta, J. C. y Serna-Lagunes, R. (2018). Análisis de la fragmentación del paisaje de la Reserva de la Biosfera Los Tuxtlas, Veracruz, México. Ecosistemas y Recursos Agropecuarios, 5(14), 227‒238. 10.19136/era.a5n14.1442 [ Links ]

Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279‒338. 10.2307/19435 [ Links ]

Received: November 03, 2022; Accepted: December 05, 2023

*Corresponding author: elizabeth.mata.balderas@gmail.com; tel.: +52 81 1911 4824.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License