SciELO - Scientific Electronic Library Online

 
vol.13 número2Evaluación del sistema NASA-POWER para estimar la evapotranspiración de referencia en la Región Lagunera, MéxicoRendimiento y calidad de forraje de tres cultivos de secano en camas a cuatro y seis hileras con diferentes métodos de fertilización índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Ingeniería agrícola y biosistemas

versión On-line ISSN 2007-4026versión impresa ISSN 2007-3925

Ing. agric. biosist. vol.13 no.2 Chapingo jul./dic. 2021  Epub 25-Jul-2022

https://doi.org/10.5154/r.inagbi.2021.03.055 

Scientific article

Spatial distribution of soil organic carbon by digital mapping: the case of the Medio Aguanaval river sub-basin

Georgina Pérez-Rodríguez1  * 
http://orcid.org/0000-0002-7194-8750

Armando López-Santos1 
http://orcid.org/0000-0002-2186-433X

Miguel Agustín Velásquez-Valle2 
http://orcid.org/0000-0001-8793-5543

José Villanueva-Díaz3 
http://orcid.org/0000-0001-8211-1203

Jorge Luis García-Rodríguez4 

1Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas. Carretera Gómez Palacio - Ciudad Juárez km 40, Bermejillo, Durango. C. P. 35230, MÉXICO.

2Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Regional de Investigaciones Noreste. Carretera Saltillo-Zacatecas km 8.5, col. Hacienda, Buenavista, Saltillo, Coahuila, C. P. 25315, MÉXICO.

3Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Canal Sacramento km 65, Gómez Palacio, Durango, C. P. 35140, MÉXICO.

4Comisión Nacional de las Zonas Áridas. Carretera a Chapala núm. 655, El Álamo, San Pedro Tlaquepaque, Jalisco, C. P. 45560, MÉXICO.


Abstract

Introduction:

Carbon is found mainly in geological reservoirs, oceans, atmosphere and land. Soil organic carbon (SOC) is determined by the quantity and vertical distribution of vegetation, intrinsic soil properties and climate, but variability is influenced by anthropogenic interference. SOC stocks are not static; modeling their spatial, vertical and horizontal distribution involves the creation of baseline estimates to quantify these stocks.

Objective:

To estimate the magnitude of SOC stocks in the Medio Aguanaval River sub-basin (ScRMA) and to analyze the sensitivity of four interpolation methods to minimize the error of digital mapping for the ScRMA.

Methodology:

The study consisted of five stages: 1) search, download and analysis of soil data, 2) data processing, 3) selection of verification sites, 4) laboratory analysis and 5) processing of data from verification sites.

Results:

SOC values ranged from 9 to 133 t·ha-1, with a mean of 36.31 t·ha-1 and standard deviation of 23.83 t·ha-1. The ordinary exponential Kriging interpolator was the best representation for SOC of the ScRMA based on statistics. The results of the analysis of the verification sites yielded a mean SOC of 24.4 t·ha-1.

Limitations of the study:

Soil profile density for the region and the lack of information on bulk density.

Originality:

The baseline distribution of SOC at the sub-basin level was used to analyze its dynamics.

Conclusions:

The highest concentration of SOC (61 to 129 t·ha-1) was found in the municipalities of Cuencamé and Santa Clara, while the lowest records (10 to 30 t·ha-1) were located in the municipalities of Torreón and Viesca.

Keywords SOC estimation; interpolation; SOC reserves; Geographic Information Systems

Resumen

Introducción:

El carbono se encuentra principalmente en reservas geológicas, océanos, atmósfera y tierra. El carbono orgánico en el suelo (COS) está determinado por la cantidad y distribución vertical de la vegetación, las propiedades intrínsecas del suelo y el clima, pero su variabilidad es influenciada por la interferencia antrópica. Las reservas de COS no son estáticas, la modelación de su distribución espacial, vertical y horizontal requiere la creación de estimaciones de referencia para cuantificar dichas reservas.

Objetivo:

Estimar la magnitud de los almacenes de COS en la subcuenca del río Medio Aguanaval (ScRMA) y analizar la sensibilidad de cuatro métodos de interpolación para minimizar el error del mapeo digital para la ScRMA.

Metodología:

El estudio se realizó en cinco etapas: 1) búsqueda, descarga y análisis de datos edafológicos, 2) procesamiento de datos, 3) selección de sitios de verificación, 4) análisis de laboratorio y 5) procesamiento de datos de sitios de verificación.

Resultados:

Los valores del COS presentaron un rango de 9 a 133 t·ha-1, una media de 36.31 t·ha-1 y una desviación estándar de 23.83 t·ha-1. El interpolador Kriging ordinario exponencial representó mejor el COS de la ScRMA con base en sus estadísticos. Los resultados del análisis de los sitios de verificación arrojaron una media de 24.4 t·ha-1de COS.

Limitaciones del estudio:

La densidad de perfiles edafológicos para la región y el vacío de información sobre la densidad aparente.

Originalidad:

Se empleó la línea base de distribución del COS a nivel subcuenca para analizar su dinámica.

Conclusiones:

En los municipios de Cuencamé y Santa Clara se encontró la mayor concentración de COS (61 a 129 t·ha-1), mientras que los registros más bajos (10 a 30 t·ha-1) se ubicaron en los municipios de Torreón y de Viesca.

Palabras clave estimación de COS; interpolación; reservas de COS; Sistemas de Información Geográfica

Introduction

Carbon (C) on the planet (43 515 ± 10 000 Pg) is found mainly in geological reservoirs (identified as carbon, gas and oil [5 000 to 10 000 Pg]), oceans (87 %, with a predominance of C-inorganic), atmosphere (2 %, mainly as carbon dioxide [CO2]) and land (which includes soil and plant biomass [11 %]). Soil organic carbon (SOC) is estimated to be three times higher (1 500 Pg) than that concentrated in aboveground vegetation (450 Pg) (García-Oliva et al., 2006; Venter et al., 2021; Zhuo-Dong et al., 2021).

It has been extensively reported that SOC is determined by the quantity and vertical distribution of vegetation, intrinsic soil properties, and climate. However, the variability of SOC is influenced by anthropogenic interference, commonly carried out by soil manipulation practices (tillage, fertilization), vegetation modification (clearing, thinning, etc.) and livestock pressure, among others (Jobbagy & Jackson, 2000; García-Oliva et al., 2006; Muñoz et al., 2015; Batjes, 2016; Venter et al., 2021; Zhuo-Dong et al., 2021).

Venter et al. (2021) mention that since the beginning of livestock and agriculture (12 000 years ago), land use changes and overgrazing have caused a loss of 116 Pg of C from the topsoil up to 2 m depth, where the main ecosystems affected are grasslands, savannas and croplands (22, 22 and 21 Pg, respectively). Even when in some areas there is an increase in SOC by appropriate interventions, such as the incorporation of green manures and restrictions on vegetation removal (Parras-Alcántara et al., 2015; Mahajan et al., 2021), net balance to date is negative, because overall losses are estimated at an average of 26 % (Venter et al., 2021).

Because of the importance of SOC in soil functions and its interaction with the plant-atmosphere system, it is now considered as a universal indicator of soil safety and health (McBratney et al., 2014; Mattina et al., 2018; Food and Agriculture Organization of the United Nations [FAO], 2017a). In contrast, SOC loss is an indicator of soil degradation (Loayza et al., 2020; Mahajan et al., 2021), which is consistent with the behavior of moisture, and soil and air temperature (Gómez-Tagle et al., 2003; López-Santos et al., 2008). López-Santos et al. (2008) found that in soils poor in organic matter (< 3 %) and without vegetation protection, the behavior of energy in the topsoil (8 cm depth) is unpredictable, which is manifested in the increase in sensible heat.

In the Target 15.3 of the Sustainable Development Goals (SDGs) (FAO, 2017b), the SOC is considered as an indicator of biodiversity and resilience to climate change; this under the premise of promoting and achieving Land Degradation Neutrality (LDN), which is one of the three indicators considered as “trends in carbon stocks” (Orr et al., 2017; Laban et al., 2018). However, as mentioned above, due to multiple biotic and abiotic factors, including soil type, land use, and climatic conditions (Galicia et al., 2016), SOC stocks are not static, because they are subject to constant cycling among various sinks, in soil, vegetation, ocean, and atmosphere.

From the local, to the global scale, it is complicated to quantify SOC stocks. Therefore, FAO (2017c) compiled statistical methods based on Geographic Information Systems (GIS) to generate spatially distributed digital SOC maps (SOCDM), namely, to assess SOC considering uncertainty. This effort was aimed to support developing countries, such as those located in Latin America, because in several of them a scarcity or, in extreme cases, absence of soil data was detected (Guevara et al., 2018).

Guevara et al. (2018), as part of integration efforts of the SOC world map (http://54.229.242.119/GSOCmap/), elaborated the SOCDM of Latin America with a spatial resolution of 5 x 5 km. These authors used 11 268 estimates (n) from 19 countries, out of the 46 that integrate the region. The largest contribution of soil data (88.1 %) was from Brazil (5 616 n) and Mexico (4 321 n); other countries such as Argentina (231 n), Colombia (166 n) and Venezuela (1.45 n) had a joint contribution of less than 5 %. For this purpose, they used the SCORPAN model previously described by McBratney et al. (2003). Guevara et al. (2018) mention that from that model they combined quantitative and qualitative empirical descriptions to establish the relationship between soils and spatially distributed predictors: Sc = (S,C,O,R,P,A,N) and Sa = f(S,C,O,R,P,A,N); where Sc corresponds to soil classes and Sa can be any soil attribute or attributes (such as SOC), which will depend on the characteristics of soil (S), climate (C), organisms (O), relief (R), parent material (P), time (A) and physical space (N).

However, in the report by Guevara et al. (2018), SOC estimates for Latin America and the Caribbean still present uncertainties reflected in standard deviations above the mean values (Brazil = 3.23 ± 9.18 kg de SOC·m-2). Mexico reports an average SOC storage of 2.56 ± 1.49 kg·m-2 (in a range from 0 to 35.55 kg·m-2), which represents a national average of about 7.68 t·ha-1 of SOC considering a depth of 30 cm. Undoubtedly, these results are a breakthrough, so regional studies could reinforce the global effort from the local (Segura-Castruita et al., 2005), especially for arid and semi-arid regions where C sinks have been underestimated (Montaño et al., 2016).

Therefore, the objectives of the present study were to estimate the magnitude of SOC stocks in the Medio Aguanaval River sub-basin (ScRMA) and to analyze the sensitivity of four interpolation methods to minimize the digital mapping error for the ScRMA.

Materials and methods

Description of the study unit

The ScRMA was considered as the study unit, located in the Mesa del Centro province and in the sub-provinces Sierra and Llanuras del Norte, and Sierras and Lomeríos de Aldama and Río Grande, in an altitudinal range from 1 400 to 2 600 m a. s. l. The ScRMA is part of hydrological region 36, with an area of 8 348 km2 and located in the east of the state of Durango, northwest of the state of Zacatecas and southeast of the state of Coahuila (24.632° N and 103.260° W) (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO], 1998) (Figure 1).

Figure 1 Study Unit: national, regional and sub-basin location of the Medio Aguanaval river. 

The ScRMA includes part of the municipalities of Cuencamé, General Simón Bolívar, Santa Clara and San Juan de Guadalupe in Durango; Juan Aldama and Miguel Auza in Zacatecas, and Torreón and Viesca in Coahuila. The climate in this area is arid, with five subtypes: very arid semi-warm (BWhw), arid semi-warm (BSohw), semiarid temperate (BS1kw), arid temperate (BSokw) and semiarid semi-warm (BS1hw) (García, 1998). There is dominance of scrubland (41 %) and rainfed agriculture, which is practiced in 20 % of the territory (Instituto Nacional de Estadística y Geografía [INEGI], 2016). Precipitation and annual temperature in this area range from 125 to 600 mm and from 16 to 22° C, respectively (Cuervo-Robayo et al., 2014). The ScRMA territory includes 12 main soil groups (MSG) and 39 subgroups, where Phaeozem, with loam or medium texture, stands out in more than 80% of the area (INEGI, 2014a). The presence of topoforms such as mountain ranges, rolling hills, plateaus, plains, valleys and relieves is observed (Lugo-Hubp & Aceves-Quezada, 1992).

Stages of the research

Once the ScRMA was defined, delimited and characterized, the study considered five stages: 1) search, download and analysis of soil data, 2) data processing, 3) selection of verification sites, 4) laboratory analysis and 5) processing of data from verification sites.

Search and download of soil data

Soil data were collected from the national set consisting of 4 418 soil profiles (composed of 14 349 horizons or soil layers) classified by the World Reference Base for Soil Resources (WRB) and adapted by INEGI (2014b) as Series II. This vector set at a scale of 1:250 000 corresponds to historical data for more than 30 years (1970 to 2005), updated to 2010 (https://www.inegi.org.mx/temas/edafologia/#Descargas). From the national set, 40 profiles (0.9 %) were extracted and analyzed in terms of density (n), horizontal (x, y) and vertical (z) distribution. To extract the representative information of the sub-basin, the limit defined by the ScRMA watershed, which is from 0 to 30 cm depth, was considered.

Data processing

The SOC value of the ScRMA was determined based on the procedure described by Bautista et al. (2016), using the Soil & Environment® (S&E) program (Skiu: https://www.actswithscience.com), which allows the calculation of C stocks, as well as related environmental functions (such as soil quality and fertility). This program includes a template, where the information of the selected soil profiles was downloaded. The profile data represented the period from April 1992 to November 2005. The vector file of the profiles does not have data for bulk density (BD), so it was obtained by means of a hydraulic property estimator. For this purpose, the percentage values of clay and sand for each horizon of the profile were entered. Organic matter (OM) was calculated according to the Official Mexican Standards NOM-021-RECNAT-2000 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2002). Soil properties used in the S&E program to calculate CO were volume of thick fragments (%), horizon thickness (dm), bulk density (g·cm-3) and SOC content (%). Equation 1 was used to estimate SOC (Gallegos-Tavera et al., 2014).

COS= horizonte=ihorizonte=nBDi×THi1- CRi100×Ci×100 (1)

where SOC is the organic carbon of the complete soil profile (t·ha-1), BDi is the bulk density of horizon i (g·cm-3), THi is the thickness of horizon i (dm), CRi is the volume of thick fragments of horizon i (%) and C i is the percentage of organic carbon of horizon i (%).

The properties analyzed in the laboratory that are indispensable for working with S&E are C, CIC, Ca, Mg, Na, K and pH (Gallegos & Bautista, 2015). SOC values were obtained, when integrating the template with the necessary data per profile into the program. These values were ordered and, together with the general information of each profile, an Excel database was created. Considering the number of soil profiles according to the surface of the ScRMA, an interpolation of SOC data was carried out with the four geostatistics available in the ArcGIS 10.1 program (IDW, Kriging, Natural Neighbor and Spline), and it was analyzed which of them generated the best interpolation based on their statistics. Finally, a map of the SOC distribution in the ScRMA was created.

Selection of verification sites

By using different thematic layers in ArcGIS 10.1 (such as land use, vegetation, soil types, climates and municipalities), in addition to accessibility, a greater representativeness was considered for the distribution of the SOC estimation verification sites. A total of 4 kg of soil were collected at each site, and unaltered samples were taken using steel cylinders to determine bulk density.

Laboratory analysis

The variables analyzed in the soil from the verification sites were pH (potentiometer), BD (kerosene), texture (Bouyoucos), electrical conductivity (EC, conductivity meter), cation exchange capacity (CEC, titration with NaCl) and organic matter (OM, Walkley and Black). The analyses were carried out in accordance with NOM-021-RECNAT-2000 (SEMARNAT, 2002).

Processing of data from verification sites

SOC was estimated from soil OM, determined by the method proposed by Walkley and Black (1934). The Van Benmelen factor of 1.724 was used for the estimation, which results from the assumption that OM contains 58 % carbon (1/0.58 = 1.724). Subsequently, the estimate of total organic carbon (TOC) was determined from the following equation:

COT (%)=MO (%)1.724 (2)

Finally, the template was filled with the data from the verification sites, as explained in the data processing stage, to obtain the SOC value for each site. The database from the verification sites was built to create a thematic map (raster type) with SOC content based on an interpolation using the ArcGIS 10.1 program.

Results and discussion

SOC values obtained for the ScRMA ranged from 9 to 133 t·ha-1, with a mean value of 36.31 t·ha-1, and a standard deviation of 23.83 t·ha-1, (Table 1). These values were obtained from information of soil profiles with depths of 12 to 30 cm; considered based on previous regional studies for the same depth range, which is where the highest SOC concentrations are found (Burke et al., 1989).

Table 1 Soil organic carbon, location and characterization of soil profiles (1992 to 2005). 

Site SOC (t·ha-1) West longitude North latitude Municipality Type of climate WRB1 classification Elevation (m a. s. l.) Pp (mm) Vegetation Slope
1 28.92 102° 43’ 57.42’’ 25° 00’ 56.50’’ Viesca Very arid, semiwarm Cambisol 1 500 300 Scrubland 3
2 13.53 103° 03’ 28.76’’ 25° 05’ 41.04’’ Viesca Very arid, semiwarm Calcisol 1 450 300 Scrubland 3
3 50.08 102° 50’ 27.44’’ 25° 04’ 35.88’’ Viesca Very arid, semiwarm Calcisol 1 450 300 Scrubland 3
4 20.27 103° 19’ 53.49’’ 24° 55’ 29.31’’ Gral. Simón Bolívar Very arid, semiwarm Calcisol 1 450 300 Scrubland 1
5 31.28 102° 54’ 11.69’’ 24° 54’ 25.27’’ Viesca Very arid, semiwarm Calcisol 1 550 300 Scrubland 1
6 39.23 103° 14’ 08.05’’ 24° 54’ 10.28’’ Gral. Simón Bolívar Very arid, semiwarm Calcisol 1 350 300 Irrigation 1
7 21.98 103° 03’ 14.32’’ 24° 49’ 07.67’’ Torreón Very arid, semiwarm Calcisol 1 450 300 Scrubland 2
8 17.71 102° 53’ 58.21’’ 24° 49’ 26.67’’ Viesca Very arid, semiwarm Calcisol 1 500 300 Scrubland 1
9 42.64 103° 11’ 24.19’’ 24° 45’ 16.90’’ Gral. Simón Bolívar Very arid, semiwarm Kastañozem 1 450 300 Irrigation 1
10 12.64 103° 13’ 51.42’’ 24° 41’ 55.09’’ Gral. Simón Bolívar Arid, semiwarm Calcisol 1 550 300 Irrigation 1
11 53.06 103° 30’ 40.76’’ 24° 33’ 03.28’’ Santa Clara Arid, semiwarm Chernozem 1 800 400 Rainfed 2
12 9.03 103° 33’ 45.44’’ 24° 07’ 43.88’’ Miguel Auza Semiarid, temperate Planosol 2 150 500 Gallery vegetation 2
13 21.24 103° 14’ 52.94’’ 24° 58’ 38.80’’ Torreón Very arid, semiwarm Leptosol 1 325 300 Scrubland 40
14 30.12 103° 25’ 41.33’’ 24° 57’ 23.53’’ Cuencamé Very arid, semiwarm Calcisol 1 470 300 Scrubland 1
15 55.77 103° 06’ 31.95’’ 24° 44’ 07.77’’ Gral. Simón Bolívar Very arid, semiwarm Calcisol 1 470 300 Scrubland 2
16 36.39 103° 19’ 45.77’’ 24° 32’ 02.44’’ Santa Clara Arid, semiwarm Leptosol 1 748 400 Scrubland 2
17 133.72 103° 32’ 46.08’’ 24° 42’ 37.61’’ Cuencamé Arid, temperate Leptosol 2 007 400 Scrubland 30
18 87.48 103° 28’ 56.13’’ 24° 25’ 21.60’’ Santa Clara Arid, semiwarm Vertisol 1 823 400 Grassland 1
19 45.66 103° 11’ 44.63’’ 24° 23’ 08.86’’ Juan Aldama Semiarid, temperate Luvisol 1 946 400 Scrubland 1
20 16.87 103° 38’ 04.23’’ 24° 08’ 42.46’’ Cuencamé Semiarid, temperate Umbrisol 2 105 600 Rainfed 1
21 29.30 103° 35’ 22.82’’ 23° 57’ 30.91’’ Sombrerete Semiarid, temperate Luvisol 2 250 500 Rainfed 1
22 10.83 102° 53’ 00.43’’ 23° 56’ 44.56’’ Gral. Fco. R. Murguía Arid, semiwarm Calcisol 1 843 400 Scrubland 10
23 28.60 103° 31’ 12.49’’ 25° 11’ 53.45’’ Gral. Simón Bolívar Very arid, semiwarm Calcisol 1 250 300 Scrubland 5
24 20.48 103° 08’ 46.07’’ 25° 17’ 34.75’’ Viesca Very arid, semiwarm Calcisol 1 200 200 Scrubland 4
25 12.28 102° 38’ 17.09’’ 24° 39’ 17.18’’ San Juan de Guadalupe Very arid, semiwarm Regosol 1 600 300 Scrubland 2
26 65.85 103° 42’ 20.67’’ 24° 32’ 22.29’’ Cuencamé Semiarid, temperate Chernozem 2 100 500 Rainfed 1
27 41.27 103° 46’ 02.88’’ 24° 23’ 35.07’’ Cuencamé Semiarid, temperate Phaeozem 2 100 500 Irrigation 1
28 25.84 102° 59’ 07.95’’ 24° 22’ 32.92’’ Gral. Fco. R. Murguía Arid, semiwarm Leptosol 1 800 400 Scrubland 15
29 18.58 103° 18’ 14.89’’ 24° 06’ 22.75’’ Miguel Auza Semiarid, temperate Luvisol 2 150 500 Rainfed 1
30 25.12 102° 38’ 47.63’’ 24° 59’ 30.29’’ San Juan de Guadalupe Very arid, semiwarm Calcisol 1 413 300 Scrubland 1
31 13.00 102° 40’ 48.31’’ 24° 42’ 35.30’’ San Juan de Guadalupe Very arid, semiwarm Solonetz 1 526 300 Scrubland 0
32 42.16 102° 43’ 41.64’’ 24° 38’ 09.46’’ San Juan de Guadalupe Very arid, semiwarm Leptosol 1 589 300 Scrubland 50
33 26.69 103° 39’ 37.26’’ 24° 49’ 01.00’’ Cuencamé Arid, semiwarm Leptosol 1 675 400 Scrubland 4
34 63.86 103° 47’ 02.75’’ 24° 44’ 54.21’’ Cuencamé Arid, temperate Phaeozem 1 822 400 Scrubland 20
35 22.89 103° 40’ 12.78’’ 24° 38’ 44.46’’ Cuencamé Arid, temperate Leptosol 1 953 500 Scrubland 15
36 53.55 103° 42’ 39.16’’ 24° 43’ 08.51’’ Cuencamé Arid, semiwarm Phaeozem 1 805 400 Scrubland 30
37 50.17 103° 49’ 50.58’’ 24° 25’ 55.69’’ Cuencamé Semiarid, temperate Phaeozem 2 088 500 Rainfed 1
38 56.67 103° 41’ 16.07’’ 24° 21’ 12.38’’ Cuencamé Semiarid, temperate Phaeozem 2 052 500 Grassland 1
39 47.27 103° 50’ 04.87’’ 24° 15’ 45.29’’ Cuencamé Semiarid, temperate Phaeozem 2 131 600 Rainfed 1
40 30.19 102° 54’ 06.67’’ 24° 16’ 19.65’’ Gral. Fco. R. Murguía Arid, semiwarm Leptosol 1 705 300 Scrubland 25

1WRB = World Reference Base for Soil Resources. Source: Instituto Nacional de Estadística y Geografía (INEGI, 2014a).

SOC concentrations varied in the ScRMA; 84.5 % of its extension values ≤ 50 t·ha-1 were obtained, while 14.5 % of the surface area varied from 51 to 100 t·ha-1, and almost 1 % had concentrations > 100 t·ha-1. The first range of SOC concentrations (10 to 50 t·ha-1) was distributed in 49.80 % of the scrubland area located in the central-northern portion of the sub-basin, specifically northeast of the municipality of Santa Clara, west of San Juan de Guadalupe, south of Viesca, southeast of Torreón and Simón Bolívar, and in a small portion north of Gral. Fco. R. Murguía. 19.63 % of the same concentration occurred in annual rainfed agricultural areas found in the southeastern part of the sub-basin, south of the municipality of Cuencamé, almost in the entirety of Miguel Auza, south of Simón Bolívar and in the center of Juan Aldama. The 11.5% was found in areas of secondary scrubland vegetation, in some parts of the municipalities of Viesca, Torreón, San Juan de Guadalupe and Simón Bolívar. Finally, 10 % occurred in secondary grassland vegetation, in some parts of Juan Aldama, south of Simon Bolivar, Viesca, Cuencamé and Santa Clara. The remaining 9.66% corresponds to land use and vegetation with a distribution of less than 1 % each.

The second range of SOC (51 to 100 t·ha-1) was found in the west of the sub-basin, where areas with secondary grassland vegetation had this concentration in 42.5 % of their surface, especially in the central-eastern part of Cuencamé and central-western part of Santa Clara. The 24.9 % was distributed in areas with annual rainfed agriculture, in the center-west of Santa Clara, and 22.9 % was in scrubland in the north-northwest part of Santa Clara. Finally, the third range (> 100 t·ha-1) was located west of the ScRMA, in areas of grassland and secondary grassland vegetation.

When comparing interpolators of the ArcGIS 10.1 program, it was found that IDW and Kriging had the best interpolation based on the basic statistics of mean and standard deviation (Table 2).

Table 2 Comparison of interpolators to determine soil organic carbon (SOC). 

No. profiles Minimum SOC (t·ha-1) Maximum SOC (t·ha-1) Interpolator Minimum estimated SOC (t·ha-1) Maximum estimated SOC (t·ha-1) Mean (t·ha-1) Standard Deviation
40 9.03 133.72 IDW 9.03 133.72 37.56 15.63
KRIGING 15.35 113.82 38.51 12.72
NATURAL NEIGHBOR 9.48 132.12 39.59 18.09
SPLINE -5.33 156.45 40.93 27.18

In the comparison of the powers of the IDW and Kriging interpolators, it was determined that exponential ordinary Kriging (KO) best represented the SOC values of the ScRMA based on the statistics obtained (Table 3).

Table 3 Comparison between interpolator powers to determine soil organic carbon (SOC). 

Interpolator Power Minimum estimated SOC (t·ha-1) Maximum estimated SOC (t·ha-1) Mean (t·ha-1) Standard Deviation
IDW P1 11 122 37.64 10.81
P2 9 133 37.50 15.58
P3 9 133 37.67 19.28
P4 9 133 37.93 21.67
Kriging Spherical K. O. 15 113 38.51 12.71
Circular K. O. 22 73 37.88 11.12
Exponential K. O. * 10 129 38.17 12.35*
Gaussian K. O. 16 106 38.10 8.67
Linear K. O. 23 65 37.89 10.26
Linear K. U. with linear derivative 16 61 35.07 9.24
Linear K. U. with quadratic derivative 9 101 41.16 16.93

Villatoro et al. (2008) compared IDW and Kriging interpolators, because they are the most used in spatial variation analysis studies, in an area of 2 467 m2 and georeferenced 61 points at a distance of 3.5 m from each other; soil samples were obtained at a depth of 0 to 15 cm at each point. The authors used the GS+ program for Windows for variogram analysis, interpolation and cross-validation. Interpolations were performed with soil pH, Ca, CEC and phosphorus (P) values, and they determined that, although both interpolators had similar performance, Kriging was superior in predicting better the variation of pH, Ca and CEC, while IDW was better with P.

Interpolation was represented in nine classes to better visualize the SOC distribution (Figure 2). It was observed that values higher than 50 t·ha-1 are distributed from the central zone towards the west, belonging, in a larger area, to the state of Durango, where lithosol, xerosol and chernozem soil types are found. This zone is dominated by desert microphyllous and rosetophyllous scrub, natural grassland and secondary natural grassland vegetation, with a rainfall of 400 to 600 mm.

Figure 2 Soil organic carbon (SOC) in the Medio Aguanaval river sub-basin obtained using the Kriging interpolator. 

The lowest SOC concentration is distributed in the south part of Coahuila and the northeast part of Zacatecas. Vela-Correa et al. (2012) reviewed the reported SOC concentrations to have a general reference and be able to classify them into high and low, according to their values. These authors concluded that there is no reference where a general hierarchy of SOC is established, so they considered the limits of the intervals according to the maximum and minimum values of C concentration obtained in the soil analyses.

Segura-Castruita et al. (2005) estimated the SOC content in the surface horizon (0 to 20 cm) of 4 583 soil samples and generated a raster map by interpolation. They found values ranging from 0.2 to 493 t·ha-1, which they divided into five classes. The values corresponding to the sub-basin area ranged from 25 to 50 t·ha-1, which agrees with the results of this study, with a mean of 36 t·ha-1. Similarly, the results agree with a study by FAO (2017a), where they produced a global organic carbon map with one-kilometer resolution using samples obtained at a depth of 0 to 30 cm. In that study, ScRMA presented SOC values of 25 to 40 t·ha-1, and in this study a mean of 24.4 t·ha-1 was obtained in the analysis of ScRMA verification sites (Table 4).

Table 4 Soil organic carbon (SOC) at verification sites (October 2019). 

Site SOC (t·ha-1) West longitude North latitude Municpality Type of climate WRB1 classification Elevation (m a. s. l.) Pp (mm) Vegetation Slope
1 11.00 103° 33’ 09.80’’ 24° 07’ 56.20’’ Miguel Auza Semiarid, temperate Phaeozem 2 156 300 Scrubland vegetation with natural grassland 1
2 21.84 103º 40’ 40.80’’ 24° 12’ 51.60’’ Cuencamé Semiarid, temperate Umbrisol 2 170 300 Scrubland vegetation of natural grassland 1
3 27.35 103° 30’ 38.80’’ 24° 32’ 16.30’’ Cuencamé Semiarid, temperate Chernozem 1 652 300 Rainfed 2
4 11.65 103° 10’ 59.30’’ 24° 37’ 46.00’’ Simón Bolívar Arid, semiwarm Phaeozem 1 664 300 Shurbland 1
5 6.37 103° 33’ 33.80’’ 24° 51’ 59.50’’ Cuencamé Arid, semiwarm Calcisol 1 610 300 Scrubland 1
6 8.92 102° 55’ 42.10’’ 24° 47’ 59.80’’ Simón Bolívar Very arid, semiwarm Calcisol 1 476 300 Veg. Sec. Arb. de matorral 1
7 40.10 103° 19’ 56.50’’ 24° 18’ 32.50’’ Juan Aldama Semiarid, temperate Chernozem 2 023 300 Rainfed 1
8 41.84 103° 11’ 27.30’’ 24° 51’ 38.80’’ Simón Bolívar Very arid, semiwarm Calcisol 1 386 300 Mesquite forest 1
9 50.53 103° 15’ 30.90’’ 24° 57’ 47.10’’ Torreón Very arid, semiwarm Leptosol 1 404 300 Scrubland 3

1WRB = World Reference Base of Soil Resources. Source: Instituto Nacional de Estadística y Geografía (INEGI, 2014a).

It is important to consider that the number of sites sampled for verification was low (nine sites), although these were representative of the different soil types and uses, compared to the 40 sites analyzed from the INEGI soil profiles, where the mean obtained was 36 t·ha-1. Nevertheless, the results obtained with soil sampling in the ScRMA were no different from those reported by both FAO (2017a) and Segura-Castruita et al. (2005). Regarding the precision of the estimates made, the ECM (mean squared error) statistic was calculated for the SOC data of the analyzed profiles and verification sites (23.83 and 16.41 t·ha-1, respectively), and the coefficient of variation for the same data (65.64 and 67.27 %, respectively) (Table 5).

Table 5 Descriptive statistics of soil profiles and verification sites in the Medio Aguanaval River sub-basin (ScRMA). 

Number of sites Mean (t·ha-1) Mean square error (t·ha-1) Coefficient of variation (%)
40 (soil profiles) 36.31 23.83 65.64
9 (verification sites) 24.40 16.41 67.27

The highest concentration of SOC is found in natural grassland areas, annual irrigated and annual rainfed agriculture, and desert microphilous scrubland that belongs to the central part, which corresponds to the state of Durango (1 600 to 2 200 m a. s. l.).

Mondal et al. (2017) estimated the distribution of SOC in varied categories of slope, soil, and land use, and observed that SOC concentration is higher in low areas and for clay soils of lands with agricultural vocation. These authors also reported that SOC stock decreases with greater slope, and that clay has the highest carbon content in soil categories.

SOC information refers mainly to temperate and tropical regions (Segura-Castruita et al., 2005), because arid and semi-arid regions have been poorly studied. Montaño et al. (2016) and Yescas-Coronado et al. (2018) mention that spatio-temporal heterogeneity of these regions is influenced by environmental conditions, plant community type, and land use, which together affect carbon stocks and fluxes.

Several authors indicate that climate, via temperature and precipitation, plays a dominant role in SOC accumulation (Grigal & Ohmann, 1992; Batjes, 1999; Yigini & Panagos, 2016; Batjes, 2016; FAO, 2017c; FAO, 2019). Furthermore, it has been determined that soils of rainforests, mangroves and mountain mesophyll forests contribute more than 100 Mg·ha-1 of CO, while grasslands, desert and thorn forest contribute less than 30 Mg·ha-1 of CO. On the other hand, when relating the main land uses with SOC content, it was established that soils used for intensive livestock have the highest SOC content (> 80.0 Mg·ha-1), followed by forest soils (> 75.0 Mg·ha-1), while irrigated agricultural soils have the lowest amount of this compound (40.8 Mg·ha-1) (Segura-Castruita et al., 2005).

Therefore, low SOC concentrations (10 to 30 t·ha-1) in ScRMA are distributed mainly in the northeastern part of the zone, where the dominant vegetation is scrubland (desert) and secondary scrubland vegetation. Precipitation ranges from 125 to 400 mm, and the climate is very arid and semi-warm. SOC concentrations can be attributed to the low contribution of organic matter to the soil by vegetation and aridity of the area, promoting SOC loss.

Conclusions

ScRMA dominated by semiarid conditions showed an estimated mean value of 36.31 t·ha-1 of SOC. In terms of distribution, the municipalities with the highest SOC concentration were Cuencamé and Santa Clara, while the lowest records were found in Torreón. This interspatial variation depends on climatic and soil variables and the type of management of the area, where the highest SOC content is generated in sites with higher precipitation and soil depth.

The main limitation in this research was the lack of information on apparent density, which affected the precision of SOC reserve estimates. Therefore, and based on the development of this study, it was estimated that at a density of 0.6 % sampling, uncertainty decreased from 23.83 to 16.41 t·ha-1 (ECM) in this heterogeneous ecosystem.

Acknowledgments

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship granted to the first author during her master's degree to carry out the research. The authors also thank the Unidad Regional Universitaria de Zonas Áridas of the Universidad Autónoma Chapingo for the opportunity to pursue graduate studies, and special thanks to the anonymous reviewers for their contribution to this manuscript.

References

Batjes, N. H. (1999). Management options for reducing CO 2concentrations in the atmosphere by increasing carbon sequestration in the soil. International Soil Reference and Information Centre. https://www.isric.org/sites/default/files/NRP410200031.pdfLinks ]

Batjes, N. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61-68. https://doi.org/10.1016/j.geoderma.2016.01.034 [ Links ]

Bautista, F., Gallegos, A., & Pacheco, A. (2016). Análisis de las funciones ambientales de los suelos con datos de perfiles (Soil & Environment). Skiu. https://www.researchgate.net/publication/301221721_Analisis_de_las_funciones_ambientales_de_los_suelos_con_datos_de_perfiles_Soil_EnvironmentLinks ]

Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., & Schimel, D. S. (1989). Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal, 53(3), 800-805. https://doi.org/10.2136/sssaj1989.03615995005300030029x [ Links ]

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (1998). Subcuencas hidrológicas, escala 1: 1,000,000. CONABIO. http://www.conabio.gob.mx/informacion/gis/Links ]

Cuervo-Robayo, A. P., Téllez-Valdés, O., Gómez-Albores, M. A., Venegas-Barrera, C. S., Manjarrez, J., & Martínez-Meyer, E. (2014). Temperatura media anual en México (1910-2009), escala: 1:1, 000,000. CONABIO. http://geoportal.conabio.gob.mx/metadatos/doc/html/tman13gw.htmlLinks ]

Galicia, L., Gamboa-Cáceres, A. M., Cram, S., Chávez-Vergara, B., Peña-Ramírez, V., Saynes, V., & Siebe, C. (2016). Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoamericana, 34(1), 1-29. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000100001&lng=es&tlng=esLinks ]

Gallegos, A., & Bautista, F. (2015). “Soils and Environment” un software para evaluar las funciones ambientales de los suelos. In: Paz, F., Wong, J., & Torres, A. R. (Eds), Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a 2015 (pp. 236-243). Programa Mexicano del Carbono en colaboración con el Colegio de Postgraduados, la Universidad Autónoma Chapingo y el Instituto Tecnológico y de Estudios Superiores de Monterrey. https://www.researchgate.net/publication/301650937_Serie_Sintesis_Nacionales_ESTADO_ACTUAL_DEL_CONOCIMIENTO_DEL_CICLO_DEL_CARBONO_Y_SUS_INTERACCIONES_EN_MEXICO_SINTESIS_A_2015Links ]

Gallegos-Tavera, Á., Bautista, F., & Álvarez, O. (2014). Software para la evaluación de las funciones ambientales de los suelos (Assofu). Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 20(1), 237-249. https://doi.org/10.5154.r.rchscfa.2012.11.060 [ Links ]

García, E. (CONABIO). (1998). ‘Climas’ (clasificación de Köppen, modificado por García), escala 1:1,000,000, México. CONABIO. http://geoportal.conabio.gob.mx/metadatos/doc/html/clima1mgw.htmlLinks ]

García-Oliva, F., Hernández, G., & Gallardo-Lancho, J. F. (2006). Comparison of ecosystem C pools in three forests in Spain and Latin America. Annals of Forest Science, 63(1), 519-523. https://doi.org/10.1051/forest:2006034 [ Links ]

Gómez-Tagle, C. A., Chávez-Huerta, Y., Morales-Manilla, L. M., Díaz-Fernández, E., Gómez-Tagle, A. F., & Zepeda-Castro, H. (2003). Predicción espacial de carbono orgánico edáfico superficial en zonas forestales mediante análisis digital de terreno y SIG: uso de la radiación solar potencial. Foresta Veracruzana, 5(2), 49-55. [ Links ]

Grigal, D. F., & Ohmann, L. F. (1992). Carbon storage in upland forests of the Lake States. Soil Science Society of America Journal , 56(3), 935-943. https://doi.org/10.2136/sssaj1992.03615995005600030042x [ Links ]

Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar-Duarte, Y., Arellano-Hernández, C., Arévalo, G., Arroyo-Cruz, C. E., Bolivar, A., Vargas, R. (2018). No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America. Soil, 4(3), 173-193. https://doi.org/10.5194/soil-4-173-2018 [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2014a). Conjunto de datos vectoriales edafológicos. Serie II (Continuo Nacional), escala: 1:250,000. INEGI. http://geoportal.conabio.gob.mx/descargas/mapas/imagen/96/eda250s2gwLinks ]

Instituto Nacional de Estadística y Geografía (INEGI). (2014b). Conjunto de datos vectoriales de perfiles de suelo. Serie II (Continuo Nacional), escala: 1:250,000. INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2016). Conjunto de datos vectoriales de uso de suelo y vegetación. Serie VI (Capa Unión), escala 1: 250,000. INEGI. http://geoportal.conabio.gob.mx/descargas/mapas/imagen/96/usv250s6gwLinks ]

Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 [ Links ]

Laban, P., Metternicht, G., & Davies, J. (2018). Biodiversidad de suelos y carbono orgánico en suelos: cómo mantener vivas las tierras áridas. IUCN. https://doi.org/10.2305/IUCN.CH.2018.03.es [ Links ]

Loayza, V., Sevilla, V., Olivera, C., Guevara, M., Olmedo, G., Vargas, R., Oyonarte, C., & Jiménez, W. (2020). Mapeo digital de carbono orgánico en suelos de Ecuador. Ecosistemas, 29(2), 1852. https://doi.org/10.7818/ECOS.1852 [ Links ]

López-Santos, A., Zermeño-González, A., Cadena-Zapata, M., Gil-Marín, J. A., Cornejo-Oviedo, E., & Ríos-Camey, M. S. (2008). Impacto de la labranza en el flujo energético de un suelo arcilloso. Terra Latinoamericana , 26(3), 203-213. https://www.redalyc.org/articulo.oa?id=57313050002 [ Links ]

Lugo-Hubp, J., & Aceves-Quezada, F. (1992). El relieve como atractivo natural. Tomo II. Atlas Nacional de México (1990-1992). Instituto de Geografía, UNAM. http://geoportal.conabio.gob.mx/descargas/mapas/imagen/96/reatn4mgwLinks ]

Mahajan, G. R., Das, B., Manivannan, S., Manjunath, B. L., Verma, R. R., Desai, S., Kulkarni, R. M., Latare, A. M., Sale, R., Murgaonkar, D., Patel, K. P., Morajikar, S., Desai, A., Barnes, N., & Mulla, H. (2021). Soil and water conservation measures improve soil carbon sequestration and soil quality under cashews. International Journal of Sediment Research, 36(2), 190-206. https://doi.org/10.1016/j.ijsrc.2020.07.009 [ Links ]

Mattina, D., Erdogan, H. E., Wheeler, I., Crossman, N. D., Cumani, R., & Minelli, S. (2018). Default data: methods and interpretation. A guidance document for the 2018 UNCCD reporting. United Nations Convention to Combat Desertification (UNCCD). https://prais.unccd.int/sites/default/files/helper_documents/3-DD_guidance_EN.pdfLinks ]

McBratney, A. B., Mendonça-Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma , 117(1-2), 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4 [ Links ]

McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma , 213, 203-213. https://doi.org/10.1016/j.geoderma.2013.08.013 [ Links ]

Mondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S., & Mukhopadhyay, A. (2017). Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, 20(1), 61-70. http://dx.doi.org/10.1016/j.ejrs.2016.06.004 [ Links ]

Montaño, N. M., Ayala, F., Bullock, S. H., Briones, O., García-Oliva, F., García-Sánchez, R., Maya, Y., Perroni, Y., Siebe, C., Tapia-Torres, Y., Troyo, E., & Yépez, E. (2016). Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: Síntesis y perspectivas. Terra Latinoamericana , 34(1), 39-59. https://www.redalyc.org/articulo.oa?id=57344471003Links ]

Muñoz, M. A., Faz, A., & Mermut, A. R. (2015). Soil carbon reservoirs at high-altitude ecosystems in the Andean Plateau. In: Öztürk, M., Hakeem, K. R., Faridah-Hanum, I., & Efe, R. (Eds.), Climate change impacts on high-altitude ecosystems (pp. 135-153). Springer International Publishing. https://doi.org/10.1007/978-3-319-12859-7_4 [ Links ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2017a). GSP Guidelines for sharing national data/information to compile a Global Soil Organic Carbon (GSOC) map. Pillar 4 Working Group. http://www.fao.org/3/bp164e/bp164e.pdfLinks ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2017b). Liberación del potencial del carbono orgánico del suelo. Documento de resultados. FAO. [ Links ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2017c). Soil Organic Carbon: the hidden potential. FAO. http://www.fao.org/3/I6937EN/i6937en.pdfLinks ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2019). Recarbonization of global soils. FAO. [ Links ]

Orr, B. J., Cowie, A. L., Castillo, S. V., Chasek, P., Crossman, N. D., Erlewein, A., Louwagie, G., Maron, M., Metternicht, G. I., Minelli, S., Tengberg, A. E., Walter, S., & Welton, S. (2017). Scientific conceptual framework for land degradation neutrality. A report of the science-policy interface. United Nations Convention to Combat Desertification (UNCCD). [ Links ]

Parras-Alcántara, L., Lozano-García, B., Brevik, E. C., & Cerdá, A. (2015). Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219-228. http://dx.doi.org/10.1016/j.jenvman.2015.03.039 [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. SEMARNAT. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdfLinks ]

Segura-Castruita, M. A., Sánchez-Guzmán, P., Ortiz-Solorio, C. A., & Gutiérrez-Castorena, M. C. (2005). Carbono orgánico de los suelos de México. Terra Latinoamericana , 23(1), 21-28. https://www.redalyc.org/articulo.oa?id=57323103Links ]

Vela-Correa, G., López-Blanco, J., & Rodríguez-Gamiño, M. L. (2012). Niveles de carbono orgánico total en el Suelo de Conservación del Distrito Federal, centro de México. Investigaciones Geográficas, Boletín del Instituto de Geografía, 77, 18-30. http://www.scielo.org.mx/pdf/igeo/n77/n77a3.pdfLinks ]

Venter, S. Z., Hawkins, H. J., Cramer, M. D., & Mills, A. J. (2021). Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South Africa. Science of the Total Environment, 771, 145384. https://doi.org/10.1016/j.scitotenv.2021.145384 [ Links ]

Villatoro, M., Henríquez, C., & Sancho, F. (2008). Comparación de los interpoladores IDW y Kriging en la variación espacial de pH, Ca, CICE y P del suelo. Agronomía Costarricense, 32(1), 95-105. https://www.mag.go.cr/rev_agr/v32n01-095.pdfLinks ]

Walkley, A., & Black, A. (1934). An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003 [ Links ]

Yescas-Coronado, P., Álvarez-Reyna, V. P., Segura-Castruita, M. A., García-Carrillo, M., Hernández-Hernández, V., & González-Cervantes, G. (2018). Variabilidad espacial del carbono orgánico e inorgánico del suelo en la Comarca Lagunera, México. Boletín de la Sociedad Geológica Mexicana, 70(3), 591-610. https://doi.org/10.18268/bsgm2018v70n3a2 [ Links ]

Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment , 557-558, 838-850. http://dx.doi.org/10.1016/j.scitotenv.2016.03.085 [ Links ]

Zhuo-Dong, J., Qiu-Bing, W., Brye, K. R., Adhikari, K., Fu-Jun, S., Zhong-Xiu, S., Si, C., & Owens, P. R. (2021). Quantifying organic carbon stocks using a stereological profile imaging method to account for rock fragments in stony soils. Geoderma , 385, 114837. https://doi.org/10.1016/j.geoderma.2020.114837 [ Links ]

Received: March 19, 2021; Accepted: August 20, 2021

*Corresponding author: giopr30@gmail.com, tel. 712 234 9780, 712 247 4531.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License