SciELO - Scientific Electronic Library Online

 
vol.97 número3The future of Botanical Sciences. A reflection on the 75th anniversary of Botanical SciencesDiez especies nativas para uso potencial en la Bioingeniería de suelos en el noreste de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.97 no.3 México jul./sep. 2019

https://doi.org/10.17129/botsci.2202 

Review

The genus Agave in agroforestry systems of Mexico

El género Agave en los sistemas agroforestales de México

Ignacio Torres-García1 

Francisco Javier Rendón-Sandoval2 

José Blancas3  2 

Ana Isabel Moreno-Calles1  * 

1 Laboratorio de Estudios Transdisciplinarios Ambientales. Escuela Nacional de Estudios Superiores Unidad Morelia (ENES Morelia). Universidad Nacional Autónoma de México, Michoacán, México.

2 Laboratorio de Manejo y Evolución de Recursos Genéticos, Instituto de Investigaciones en ecosistemas y Sustentabilidad (IIES). Universidad Nacional Autónoma de México, Michoacán, México.

3 Centro de Investigaciones en Biodiversidad y Conservación. Universidad Autónoma del Estado de Morelos, México.


Abstract:

Background:

The genus Agave L. is recognized for its wide distribution in Mexican ecosystems. Species have been described as multipurpose as part of agroforestry systems (AFS). There has not been a systematized, detailed analysis about its richness in AFS nor their ecological, economic and cultural relevance.

Questions:

What is the Agave richness in Mexican AFS? What is their ecological, agronomical, economic and cultural relevance? What are the risks and perspectives for strengthening their role in AFS?

Species studied:

31 Agave species in Mexican AFS.

Study site and dates:

AFS throughout Mexican territory. January to august 2018.

Methods:

Systematization of published information, scientific reports, repositories, and our fieldwork, was performed. The data base “The genus Agave in AFS of Mexico” was created, containing information about Agave richness in AFS, ecological, economic and cultural relevance, as well as the current and future perspectives of the AFS they are included in.

Results:

We recorded 31 species with 22 uses that were part of AFS practices (hedgerows, boundaries and live fences), in homegardens, terraces and agroforests in temperate, semiarid and sub-humid regions, managed by 12 cultural groups. The main benefits of agaves are soil retention, infiltration of water and satisfaction of socio-economic and cultural needs. The decrease of multipurpose species and functions was observed in relation with the commercialization of mezcal.

Conclusions:

There has been ample recognition of AFS as settings for conservation and use of Agave, as well as the importance of the knowledge and management practices associated to agave species in AFS.

Keywords: Agrobiodiversity; conservation; exploitation; multipurpose species; mezcal; agaves

Resumen:

Antecedentes:

El género Agave L. es reconocido por su amplia distribución en ecosistemas mexicanos y arraigo nacional. Descritos como especies multipropósito en sistemas agroforestales (SAF). No obstante, su importancia biocultural, hace falta aún un análisis sistematizado y detallado sobre la riqueza y relevancia del grupo en SAF mexicanos.

Preguntas:

¿Cuál es la riqueza del género Agave en SAF mexicanos?, ¿Cuál es la relevancia ecológica, agrícola, económica y cultural de estos taxa? ¿Cuáles son los riesgos y perspectivas del manejo de este grupo en SAF?

Especies en estudio:

31 especies del género en SAF mexicanos.

Sitio de estudio y fechas:

Se revisaron sistemas agroforestales del territorio de México. Enero a agosto de 2018.

Métodos:

Se integró información publicada, repositorios y registros de trabajo de campo, construyendo la base de datos “El género Agave en SAF de México” que sintetiza la riqueza de especies y relevancia en los SAF, así como las perspectivas para su manejo.

Resultados:

Se registraron 31 especies con 22 usos, en prácticas agroforestales (franjas, linderos y cercas vivas) en huertos, terrazas, milpas y agrobosques en ambientes templados, semiáridos y subhúmedos, manejados por 12 grupos culturales. Los beneficios principales son reducción de la erosión e infiltración de agua y la satisfacción de necesidades socioeconómicas y culturales. Es notoria la disminución de las especies y la función multipropósito de éstas en SAF asociados con la comercialización de mezcal.

Conclusiones:

Los SAF son relevantes escenarios de conservación y aprovechamiento del género, así como del conocimiento y prácticas locales asociadas a los beneficios.

Palabras clave: Agrobiodiversidad; aprovechamiento; conservación; especies multipropósito; magueyes; mezcales

Since prehistoric times, diverse forms of agroforestry management of the landscapes have been practiced in Mexico, these include cultivation of nearly 200 native species of crops and the incipient management of a broad spectrum of wild species of plants, which complement diets and fulfill the needs of the societies that maintain them (Casas et al. 1996, 1997a, Moreno-Calles et al. 2013, 2016a, 2016b). In modern times, and particularly after the second half of the 20th century, the global dominant tendency has been to simplify these systems into intensive, technical monocultures, unchaining multiple negative socio-environmental impacts in the process. Among these impacts are the loss of Traditional Ecological Knowledge (TEK) and agrobiodiversity, and a high dependence on toxic agrochemicals (Altieri 2009, Altieri & Toledo 2011, Barkin & Suárez 1982, Emanuelli et al. 2009, Holt-Gimenez & Patel 2009, Godfray et al. 2010, Torres & Rojas 2015). An expression of this process in Mexico are the intensified agave plantations of the haciendas pulqueras during the 19th and part of the 20th centuries, as well as plantations associated to the growing agave spirits industry of tequila and mezcal, particularly since the end of the 20th century and up to the present (Ramírez-Rodríguez 2004, Valenzuela-Zapata & Macías-Macías 2014).

The genus Agave L. has been a very important group of resources for Mesoamerican and Aridoamerican cultures since prehistoric times (MacNeish 1967). Many ancient uses have prevailed in rural and peri-urban communities, among the most important food, construction, cordage, garments, fermented beverages, medicine, soil control and ceremonial uses can be mentioned. These resources have been crucial for the life and development of societies within the Mexican territory (Colunga-GarcíaMarín et al. 2007, 2017, Gentry 1982). Popularity of Agave spirits has increased in the last 30 years, both within national territory as well as abroad (Consejo Regulador del Mezcal 2015, Consejo Regulador del Tequila 2019, Delgado-Lemus et al. 2014a, Delgado-Lemus et al. 2014b, Torres-García et al. 2013, Torres-García et al. 2015a and b). The high demand of the tequila industry for raw materials has been characterized, among many socio-environmental injustices, by the devastation of hundreds of thousands of original forests, mainly in five Mexican states, for establishing intensive monocultures of A. tequilana (Bowen & Zapata 2009, Herrera-Pérez et al. 2017, Trejo-Salazar et al. 2016, Valenzuela-Zapata & Macías-Macías 2014). Since 1995, the expansion of these intensive monocultures has resulted in social conflicts and environmental problems, among them the loss of biodiversity and ecosystem benefits, the increasing pollution of soils and water, due to the large quantities of agrochemicals used in these plantations (Gil-Vega et al. 2001, Trejo et al. 2018). Pressure from this industry maintains these territories, where a single species predominates, dependent on the use of external inputs, to create what we have conceptualized as “blue deserts” sensuAltieri (2009).

Recently, new approaches have emerged from agroecology, which see Agroforestry Systems (AFS) as alternatives to the problems related to the production and conservation of biodiversity. In the last three decades there has been an increase in publications about the importance of agroforestry systems in the conservation of wild and cultivated species and their diversity. These publications also delve into environmental benefits, TEK, and sociocultural practices related to the management of AFS (Casas et al. 1996, 1997a, 1997b, Altieri 1999, Jose 2009, Blancas et al. 2010, Moreno-Calles et al. 2013, Moreno-Calles et al. 2016a, 2016b, Moreno-Calles et al. 2019, Vallejo-Ramos et al. 2018, Vallejo et al. 2019). Several research findings have registered the role that this type of agroecosystems have for subsistence, the economy and cultural identity of the peoples that practice and conserve them (Alcorn 1984, Nair 1985, Casas et al. 1994, Nair et al. 2008, Moreno-Calles et al. 2010, Jose et al. 2012, Somarriba et al. 2012, Moreno-Calles et al. 2013. Within the high diversity of wild and domesticated plant elements that are conserved, managed and utilized in these systems, magueyes, mezcales or agaves, as they may be called, are a group of resources with strong presence and a long relationship with the cultures of Mexico (Colunga-GarcíaMarín et al. 2007, Colunga-GarcíaMarín et al. 2017).

Agaves have in the Mexican territory the scenario with the highest species´ richness in the world, and also a wide distribution (García-Mendoza 2004). The majority of species fulfill multiple purposes, such as the satisfaction of primary and secondary needs, products directly consumed by households or exchanged by other products and constitute one of the main elements in the economy of families and communities of maguey managers (Delgado-Lemus et al. 2014b, Torres-García et al. 2015a, Torres-García et al. 2015b). Nevertheless, there is a need for an in-depth analysis of the information available, as well as of the experience amassed regarding the relationship between agroforestry systems and the genus Agave in Mexico. Such information is of high national priority, for it would help establish the basis to maintain, develop, and manage systems capable of giving the support needed for maintaining the balance between productive and human wellbeing purposes, biodiversity conservation, and environmental benefits. This study was performed in order to answer the following questions: What is the richness of Agave spp. in Mexican AFS?, What is the ecological, agronomical, and cultural relevance of taxa belonging to this genus in the AFS that host them?, What are the management perspectives for this group within AFS? The general objective of our research was to analyze the richness and relevance of the genus Agave in agroforestry systems in Mexico.

Materials and methods

Information available on agaves in AFS was systematized through the construction of the database “El género Agave en Sistemas Agroforestales de México” (The genus Agave in Agroforestry Systems of Mexico) which includes information about the species and the relevant characteristics of the systems that host them, considering: 1) a description of the systems that host agaves, product of our own research; 2) an archive of the literature that is part of the database “Sistemas Agroforestales de México” (http://red-sam.org/index.php/lista-de-publicaciones-sobre-sistemas-agroforestales/) and a typology of these systems developed by Moreno-Calles et al. (2013, 2016b); and 3), an update of the searches of specialized studies on the subject in the Web of Science, Science Direct, Google Scholar databases, and ProQuest Dissertations & Theses, as well as TesiUNAM repositories. The keywords included in the search were: agave/maguey + agroforestería, agave/maguey + agroforestal, agave/maguey + sistemas agrícolas tradicionales, agroecosistemas + agave/maguey (agave/maguey + agroforestry, agave/maguey + agroforestal, agave/maguey + traditional agricultural systems, agroecosystems+ agave/maguey). These searches were also carried out with the terms in English. This update focused on a search from 2012 to the present. The review of 146 records included in 75 studies integrated information regarding the role that each species plays in the hosting system, considering the following fields: a) scientific name (taking as a reference http://www.theplantlist.org), b) common name, c) type of agroforestry system (sensuMoreno-Calles et al. 2013), d) other systems where the species can be found with different management intensities, e) cultural group that manages the system, f) locality, state, g) agroforestry practice (sensuMoreno-Calles et al. 2011), h) ecological aspects and interactions, i) uses, j) ecological status/management (sensuBlancas et al. 2010), k) economic value, l) socio-cultural importance, m) density/intensity/dominance, n) evidence of domestication (sensuColunga-GarcíaMarín et al. 2017, Figueredo-Urbina et al. 2017, Urbina et al. 2018).

Results

Agave species present in agroforestry systems in Mexico. Based on the information from the current research and the studies reviewed (75), 31 species and 4 intraspecific variants of the genus Agave were registered in agroforestry systems; 29 records specified the presence of agaves identifying only the genus. The species with the highest number of records is Agave salmiana Otto ex Salm Dyck, which included references to the variety A. salmiana var. ferox (K.Kock) Gentry and the subspecies A. salmiana subsp. crassispina (Trel.) Gentry, with 22 records in total, followed by A. fourcroydes Lem., which was registered 14 times. Other species registered, in descending order of frequency are: A. angustifolia Haw., A. americana L., A. americana var. marginata Trel. in L.H.Bailey, A. tequilana F.A.C. Weber, A. marmorata Roezl., A. cupreata Trel. & A. Berger, A. sisalana Perrine, A. atrovirens Karw., A. mapisaga Trel. in L.H.Bailey, A. lechuguilla Torr., A. potatorum Zucc., A. scaposa Gentry, A. karwinskii Zucc., A. striata Zucc, A. striata subsp. falcata (Engelm.) Gentry, A. triangularis Jacobi, A. angustiarum Trel., A. asperrima Jacobi, A. rhodacantha Trel., A. promontorii Trel., A. peacockii Croucher, A. macroacantha Zucc., A. murpheyi F.Gibson, A. maximiliana Baker, A. inaequidens K.Koch, A. aff. weberi J.F. Cels ex J.Poiss., A. deserti Engelm, A. kerchovei Lem., A. cerulata Trel, A. celsii Hook. and A. aurea Brandegee (see Figure 1 and Appendix 1).

Figure 1 Species and number of studies that mention agave as part of an agroforestry system. *: Agave triangularis, A. angustiarum, A. asperrima, A. rhodacantha, A. promontori, A. peacockii, A. macroacantha, A. murpheyi, A. maximiliana, A. inaequidens, A. aff. weberi, A. deserti, A. kerchovei, A. cerulata, A. celsii, and A. aurea with only one report. 

Traditional agroforestry systems. Homegardens.- This is a type of agroforestry system generally found next to or very near the houses of the families that manage them. With an ancient history, which is crucial among the traditional production systems managed by household units in rural peasant zones. It is characterized by its high richness of native and exotic species diversity, and by its high complexity and structural variation (Ruenes-Morales & Montañez 2016). Such abundance and heterogeneity determine the existence of microhabitats that allow the conservation and use of the genetic resources necessary for the self-sufficiency and incomes of the family’s members, mainly women (Moreno-Calles et al. 2016a)

This system was the most common among the studies reviewed. Agave species were identified in 57 studies (13 species), of which A. fourcroydes was the most common with ten records; A. angustifolia with seven: A. americana with six; A. tequilana and A. sisalana five; A. salmiana four; A. atrovirens and A. marmorata two, and A. angustiarum, A. lechuguilla, A. macroacantha, and A. striata with one record each. Eleven records only specified the genus level. The cultural groups mentioned in these studies as managers of agave in their homegardens were the Maya of the state of Yucatan, Campeche, and Quintana Roo (22 homegardens) (Herrera-Castro 1994, Poot-Pool 2008, Cahuich-Campos 2012, Mariaca-Méndez 2012, Poot-Pool et al. 2012); Mestizo people from the states of Puebla, Chiapas, Nayarit, Tabasco, Mexico (13 homegardens) (Stienen 1990, Ruenes-Morales 1993, Tamayo-Ortega 1995, Gaytán-Ávila et al. 2001, Blanckaert et al. 2004, Pagaza-Calderón 2008, Rosales et al. 2008, Hernández-Soto 2009, Gómez-García 2011, Torres-Díaz 2011); the Nahua of Puebla (nine); the Chontal of Tabasco (four); the Tzotzil/Tzeltal from Chiapas (three) (Gutiérrez-Miranda 2003, Guerrero-Peñuelas 2007, Pérezgrovas-Garza 2011); the Mazahua of the State of Mexico (one); the Zapotec from Oaxaca (one) and the Totonac of Puebla (one).

A) Structural role of Agaves in homegardens.- Within these agroforestry systems agave density is mostly low, and may vary from one to dozens of individuals. The agaves within this system play different structural roles, such as that of blocking the passage of cattle or people, parting from agroforestry practices such as live fences or hedges, protecting the integrity of the homegarden and limiting the area that is considered as belonging to that family (Ffolliott 1998). Agaves can be found along the borders or places where they do not represent an obstacle for moving around the homegarden, given that these often grow to a considerable size, sometimes occupying from 1 to 3 m2 or more, while homegardens usually cover relatively small areas (between 100 and 500 m2), compared to other AFS in Mexico (1-4 ha). It is possible to find isolated individuals at the center of the homegarden (see Figure 2) or as part of vegetation islands.

Figure 2 Agave species and general management strategies in agroforestry systems. A) Metepantle in the municipality of Zacualtipán, Hidalgo (Photo: G. Álvarez), B) A. americana in a family homegarden in the municipality of Tlahuiltoltepec, Oaxaca (Photo: A.I. Moreno-Calles), C) A. triangularis and A. marmorata as part of a live fence in a AFS in a semiarid zone in Zapotitlán de las Salinas, Puebla. (Photo: I. Torres-García), D) Live fences and island of A. rhodacantha in an agrosilvopastoral system in Zapotitlán de Vadillo, Jalisco. (Photo: I. Torres-García). 

B) Ecological-functional role of Agaves in homegardens.- Agaves retain soil and humidity, promoting the infiltration of water into the ground. When they are allowed to flowering, they act as attractors of melliferous species (bees) and beneficial nectarivorous species (birds, bats, and other small mammals) both necessary to increase the productivity and fructification of other important species that compose the system, such as fruiting trees. Similarly, they are the habitat for animal species such as reptiles (mainly small lizards and snakes, see Figure 3), which control insect plagues and rodents inside the system.

Figure 3 Ecological interactions of agave in agroforestry systems. A) Anolis nebulosus in Agave cupreata, municipality of Tzitzio, Michoacán (Photo: I. Torres-García), B) Icterus wagleri feeding on an inflorescence of A. cupreata in the municipality of Tzitzio (Photo: C. Ojeda), C) Leptonycteris sp. Feeding on the inflorescences of A. cupreata in the Tzitzio municipality (Photo: I. Torres-García), D) Aegiale hesperiaris in A. scaposa in the municipality of Caltepec, Puebla (Photo: M. A. Negrellos-Balderas) and E) Sceloporus sp. in A. angustifolia in Zapotitlán de Vadillo (Photo: I. Torres-García). 

C) Utilitarian attributes of Agaves in homegardens.- In total 16 use categories were reported, eight have two or more records, being the most mentioned the ornamental, followed by medicinal, edible, and obtaining of fiber as the most important (see Figure 4 and Appendix 1). The majority of the Agave species registered have mainly an ornamental use with an aesthetic role in the system; there are other important uses as well, such as the medicinal and edible uses, given their immediate availability and accessibility as a constant element of homegardens. In Mayan homegardens flowering stalks and fibers are used as materials for constructing ka´anche, a sort of traditional seed-bed or elevated horticultural pots characteristic of this region, used for the production of vegetables. Some uses represent an economic incomen this category it is possible to include the commercialization of pulque, fiber extraction, processing and commercialization of crafts such as necklaces and rosaries, as well as articles of common use such as morrales (bags) and mecapales (a sort of rope implement made of agave fiber that is used to carry bulks on the back and which is borne on the forehead). In this system, it is possible to find the presence of species that have been cultivated and selected for a long time, and evident domestication syndromes are present, such as gigantism of the leaves, fibers and the whole individual, as well as a high concentration of carbohydrates. Species such as A. fourcroydes, A. angustifolia, and A. tequilana are part of a complex of species for which there is information about their domestication processes and the relationship with their wild relatives.

Figure 4 Main uses of agave in agroforestry and agroforest systems. A) Agave triangularis being used to delimit a plot (Photo: I. Torres-García), B) Condachos, Aegiale hesperiaris, roasting on a grill, municipality of Caltepec, Puebla (Photo: M.A. Negrellos-Balderas), C) Agave marmorata used as a live fence, municipality of Zapotitlán de las Salinas, Puebla, D) Walls of traditional housing made with inflorescences of A. scaposa, Municipality of Concepción Buenavista, Oaxaca, E) Goat barbacoa baked using leaves of A. salmiana var. ferox, municipality of Concepción Buenavista, Oaxaca, F) Distillation of mezcal made with A. cupreata in the municipality of Tzitzio, Michoacán (Photos: I. Torres-García). 

D) Management. Those individuals that are established and maintained in homegardens, in the case of domesticated species are mostly transplanted from adjacent homegardens or from shoots of individuals that have flowered. Due to their monocarpic reproduction, agaves die after flowering and are then reproduced through stoloniferous or bulbil shoots. In the case of wild species, individuals come from the adjacent ecosystems, and are cultivated primarily through transplanting the complete juvenile individuals that are of interest to people. The transplant location depends on the design of each homegarden and the function that transplanted agaves have as part of the system.

Agroforestry terraces.- This AFS is embankment-based structure located on the slopes of hills and mountains has contributed to its archeological identification in several zones of the country (Moreno-Calles et al. 2013, 2016b, and Gonzáles-Jácome 2016). The architecture of this system allows the conservation of soil and water trough of the roots of the useful trees and agaves, perennial bushes, and others, growing in board terraces allowing intensive annual and perennial management crops.

This system was mentioned in 21 of the studies reviewed in which five species are mentioned; among them, Agave salmiana was the most frequently referred to followed by A. americana A. atrovirens, A. salmiana var. ferox, and A. mapisaga. Seven studies identified the agaves only at the genus level, eight focused on the study of metepantles or terraces with agaves from the historic or prehistoric point of view, presenting palynological evidence, archeological evidence (as instruments to extract aguamiel), and archaeobotanical evidence (as remains of roasting pits with agave fibers associated with this type of agroforestry system in various parts of the country). Places such as the Teotihuacan Valley, Ixtapalapa, and Ixtacuixtla in Tlaxcala in central Mexico, but also in places in the north of Mexico, such as Parras de la Fuente, in Coahuila, La Quemada, in Zacatecas, and Cerro Juanaqueña in Chihuahua, are all places with a record of this agroforestry practice, all of them importantly including the presence of agaves. Through their roots, agaves confer stability to the terraces, which were usually established on slopes highly susceptible to erosion. This system was practiced in areas that were under high demographic pressure. Such was the case of the Aztec settlement in the Valley of Mexico, in which thousands of people lived before the arrival of the Spaniards. One of the explanations for how this human settlement survived highlights the intensive establishment of this system.

A) Structural role of agaves in agroforestry terraces.- Depending on their extension, terraces can host hundreds or thousands of individuals which are generally planted in lines following the level curves. Among the functions of agaves are, first of all, the limits created by the succulent and armed rosettes, which at the same time intercept and diminish the effect of rain on soil, allowing in this way the infiltration of water into the ground. Adding on to these effects, there is the strong hold of superficial roots (see Figure 2), which contribute to the effective prevention of erosion and to the conservation of the architecture of terraces.

B) Ecological-functional role of agaves in agroforestry terraces.- Some species of Agave in these systems are hosts to larvae of some lepidopteran species. These larvae have specialized to hatch, feed, grow, and find refuge on the tissues of agaves and depend completely on their existence to complete their life cycle. These larvae have been used as food by many cultures. In agaves other animals such as rodents, lagomorphs, and some reptiles also find shelter and when agaves bloom, they provide food to several insect, bat and bird species. The flowering stalks are perching and nesting sites for many bird species (see Figure 3). Some species defecate plant propagules that could be incorporated to the system.

C) Utilitarian attributes of agaves in agroforestry terraces.- These systems integrate the cultivation of diverse grains that are sown in the terrace structure under the shelter of agaves, therefore this structural component is at the same time a source of multiple resources. Regarding this issue the most important uses reported were aguamiel and fermented beverage (pulque), edible, fuel and provision of edible insects the most important ones (Figure 4) (Blanton 1972, Martínez-Saldaña et al. 1993, Hard et al. 1999, Martínez-Saldaña 2007, Borejsza et al. 2008). In the past, large metepantle extensions were linked to great civilizations. The gathering of aguamiel in these systems represented a source of water in those relatively semiarid zones of the Mexican Plateau, as well as a source of food with high nutritional content. Moreover, the flowering stalks were elements for construction, while the thorns and teeth were employed to produce sharp instruments for sewing and performing rituals. The fibers were used to spin and sew textiles, the leaves for construction of roofs in the manner of tiles and when dry, these same leaves could be used as fuel for cooking food. Such was the versatility and importance of this resource that the plant was worshipped and even deified in the Aztec worldview. In contemporary times, the gathering of aguamiel and pulque for commercialization has radically diminished since the second half of the past century (Álvarez-Ríos 2015). Nevertheless, currently these systems can be found in large extensions within the country in the states of Tlaxcala and Hidalgo, where resources such as aguamiel and pulque are collected, as well as edible insects for direct consumption by households and for commercialization. Another activity that characterizes this region is the use of agave leaves to prepare barbacoa de borrego (sheep barbecue), being sheep, a traditional animal managed in this area. The barbacoa is prepared in a pit oven in which the meat is covered with agave leaves, which serve as insulation from the direct heat of the ashes and give this regional dish a special taste.

D) Management.- The multiple individuals of agave that integrate this AFS have been obtained, selected and propagated asexually, through transplanting of stoloniferous shoots of the mother plants that were used and whose lifecycle has come to an end. This type of management is practiced in the case of domesticated species and their varieties: exchange of plants of other regions with similar management is performed by inhabitants with the intention of incorporating variants with different attributes. In the case of wild species, juvenile individuals may be transplanted from the surrounding ecosystems or may be tolerated at the moment of removing vegetation in order to cultivate other crops, and also transplanted in the same field to form the contention lines that form the terraces.

Agroforestry systems in semiarid zones: Melgas, apantles and coaxustles in the Tehuacán Valley, Puebla.- This type of AFS was recorded in 7 studies and included the presence of species like Agave salmiana var. ferox, A. scaposa, A. marmorata, and A. potatorum, with at least 9 use categories (see Appendix 1. It is in the semiarid zones of the Tehuacán-Cuicatlán Biosphere Reserve, which is inhabited by communities of Popolocan and Nahuatl ascent. All Agave species mentioned grow wild in the ecosystems within community territory. In these agroecosystems, a considerable number of individuals from species that form part of native forests are tolerated, promoted and/or protected due to the different benefits that can be obtained from them, agaves being the most precious elements.

Within these systems, agaves have the main function of limiting plots of land and constitute live fences to prevent the passage of cattle into the milpa (Figure 2). Agave potatorum (papalometl) and A. marmorata (pitzometl) are used in the community to produce alcoholic beverages like mezcal and pulque which have in recent years diminished due to extraction of individuals from populations of these species. Therefore, the authorities of the Biosphere Reserve have intervened to influence the communitarian authorities so as to establish a prohibition of extraction/felling of A. potatorum. Available literature reports that in some AFS of the Tehuacán Valley there exist the necessary conditions for this species to grow, given the species needs for nursing plants to germinate and establishment (Rangel-Landa et al. 2015). It is within these systems where various species with different nursing qualities can be found, such as diverse bush species that are tolerated as part of agroforestry practices. These systems are also propitious spaces for seed dispersal by animals. The existence of proper conditions is very important for the conservation of these delicate interactions. Wild and cultivated agave extraction for mezcal production and sale has high cultural importance in this community, for it is not only consumed in patronal fests, but also as a remedy or stimulant for the hard labor in the fields. There is high demand for mezcal produced in this locality, and it has already a regional market, which means economic incomes for the families that produce it (Torres-García 2009, Moreno-Calles & Casas 2010, Torres-García et al. 2013, Delgado-Lemus et al. 2014a, Torres-García et al. 2015b). Agave marmorata is employed to make cough syrup, pulque and mezcal, the flowering scapes are used in Easter to adorn churches, houses, and streets, as well as for making bird nests in houses; flowers are also consumed (the flower buds are called cacayas) and leaves are used as fuel (mezontete). Another singular species in these ASF is A. scaposa, a common species that is generally found as part of agroforestry practices like hedgerows and live fences, with the main purpose of retaining soil. This species has the highest abundance dominance in milpa-chichipera ASF. Also, its floral scapes are highly appreciated for house construction due to a scarcity of trees with straight trunks (Figure 4). In San Luis Atolotitlán, there exist rules that establish that in order to cut a flowering stalk, it needs to have blossomed and freed its seed, allowing for its natural regeneration, considering the biotic interactions as well that occur in the flower, which is visited by multiple nectarivorous species of insects, birds, and bats. It is also very important for the culinary culture of this community, since it is the habitat of a highly appreciated edible insect called condacho, of the species Aegiale hesperiaris Walker. These larvae can be found in the inner part of the succulent base of the leaves of this agave, and to extract them it is necessary to cut the leaves with much care so as not to harm the larvae. In this process agaves, which are in general those that have not blossomed, may be harmed, causing their death. Given these risks, rules were established by the community, allowing for the extraction of these larvae only one or two days in the year in the month of June (Figure 3 and 4) (Moreno-Calles & Casas 2010, Moreno-Calles et al. 2011, Moreno-Calles et al. 2016a).

Newly established agroforestry systems. Agrosilvopastoral systems and agaves in Jalisco.- On the foothills of the Nevado de Colima and the Volcán de Fuego in the Zapotitlán de Vadillo municipality in the community with the same name, it is possible to find some experiences of integrated management of mezcal agaves. This region continues a tradition of more than 300 years in the production of mezcal, tuxca or mezcal wine, spirits based on the fermentation of two species, one wild Agave angustifolia and the other with incipient domestication A. rhodacantha. In the beginning of the past century mezcal production in the zone was sustained by the extraction of wild agave populations in the tropical dry forest of the region, mainly A. angustifolia. It was during the 1990´s that these wild populations began to diminish. Considering this fact many families began to select plants with attributes desired for mezcal production and took them from wild habitats to cultivate them in their agricultural systems. A particular experience in Zapotitlán de Vadillo is that of one family that has developed an integral cultivation system that alternates around 14 wild varieties of A. angustifolia with corn, bean, squash, and other annual products, as well as with other forest elements that have been tolerated within parcels, such as pitayas (Stenocereus queretaroensis (F.A.C.Weber Buxb) which provide edible fruits, mezquites (Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C.Johnst., species whose sweet pods are used as forage or for human consumption, among other uses and huamúchiles (Pithecellobium dulce (Roxb.) Benth.), which are trees that provide shade to people and cattle (Figure 2). These areas are also used by goats that feed on the multiple weeds and forage that grows in this system. Of the two agave species present in this system, around 14 varieties of A. angustifolia, have been identified as having been obtained from the wild, and reproduced in this system through stoloniferous shoots, and transplanted in lines of only one variety (Vargas-Ponce et al. 2007, Vargas-Ponce et al. 2009). There are two varieties of A. rhodacantha identified by people, who mention that they are only known as cultivated varieties, and these have evidence of domestication, mainly due to the size of individuals, the length of their leaves and the use that they had in past times for fiber provision. Their traditional names also evidence their use, because they are commonly known as ixtero verde (ixte or ixtle is another way of naming the fibers that come from Agave) and ixtero amarillo. Seven use categories have been registered for this species, the most important being mezcal production, followed by their use as live fences, food, condiment for barbacoa, medicinal, fiber and as a fermented drink (see Appendix 1). Currently, mezcal production in this region depends mainly in the production of agaves from agricultural lands that were established as a response to the shortage in the past. The production of mezcal wine or tuxca in this region is also a cultural activity of economic importance that has prevailed for many generations and in recent years, has reached commercialization channels at the local and national levels.

Agave agroforests in western Mexico.- This type of management has been observed and documented for species such as A. cupreata, A. inaequidens, and A. maximiliana. Although these are multipurpose species, they are currently used mainly for the preparing of spirits from mezcal and raicilla in Michoacán and Jalisco, respectively. This type of management has evolved in recent years. Spirit producers and managers of these species remark that mezcal in Michoacán and raicilla in Jalisco have been produced for at least 300 years. However, these species only started to be reproduced and cultivated in the past 15 to 20 years through sexual propagules, the only effective form of reproduction for species of the Crenatae group. The main reason why people started growing this crop was as a response to market pressure which caused the decrease in wild populations, as well as the growth in the number of producers in these zones.

In the case of Agave cupreata in the state of Michoacán, the cultivation of this species began approximately 20 years ago, mainly in the municipalities of Madero, Charo, Tzitzio, and Morelia. Cultivation of A. cupreata in this region was a reaction to pressure over the resource, which was used for making mezcal, and this activity determined a critical decrease of its wild populations. Experimentation with plant production in nurseries through seed sowing, started in the municipality of Madero. The tendency was to establish monocultures, similarly to A. tequilana; however, there are other cases in the region principally in Tzitzio and Charo, where A. cupreata is spread through agroforestry practices, through seeds in rustic nurseries. The main purpose of the plants grown in these nurseries is to reforest through plantations with a very high density of agaves, in places found on the transition between oak-pine forests and tropical dry forest, where relicts populations of these species can be found, and can be taken as a sign of the ideal habitat for production of this agave species. In these forest areas clearings of bushy species take place and some tree species have been tolerated, such as tepehuajes (Lysiloma spp.), papelillos and copales (Bursera spp.), anonas (Annona sp.), palo dulce (Eysenhardtia polystachya (Ortega) Sarg.), and palms (Brahea pimo Becc.) among others (Figure 5). Cattle are also allowed to feed in these systems, having the care of letting cattle feed where agaves already have a proper age, size, and configuration that allow it to resist being stepped-on by cattle. Although the predominant use in of A. cupreata in Michoacán in the present is the production and marketing of mezcal, nine other categories of use have been registered (see Appendix 1). In order of importance these are: as food, medicinal uses of the baked or grilled stem, the use of flowers as attractors for deer hunting, as live fences, ornamental, and ceremonial uses, and as a diversity of instruments and utensils (nests for little parrots, seats, thorns to take out splinters, caps for bottles). The bagasse that remains from mezcal production is used as a biofertilizer. Another highly demanded use is the commercialization of juvenile plants for the establishment of plantations to make mezcal, and the commercialization of seed, a product that can cost between US$210 and US$263 ($4000 and $5000 Mexican pesos) per kilo.

Figure 5 Agave agroforests. A, B) Agave cupreata agroforests in the municipality of Tzitzio and Charo, Michoacán, C) Agroforests of A. maximiliana in the municipality of Mascota, Jalisco, D) Agroforests of A. inaequidens in the municipality of Queréndaro, Michoacán (Photos: I. Torres-García). 

Agave inaequidens has a similar history. In the municipalities of Indaparapeo and Queréndaro -with around 40 maguey managers and mezcal producers- around 20 years ago producers began to establish monocultures of agave as a response to the shortage of wild agave due to a faster extraction-to-regeneration rate, following the production tendency of tequila maguey. Nevertheless, there exist wild populations managed in situ which are reforested with individuals produced in rustic nurseries. Several management practices contribute to the conservation of this species. Among these practices it is possible to find the tolerance of agaves when clearing the underbrush in forest patches of pine-oak and pine-fir, the protection or promotion of specific individuals when transplanting to sites with better conditions for growth, and the dispersion of seeds by scattering on favorable sites for germination -in total 10 types of in situ management practices (Figure 5). A total of 16 use categories and 34 specific uses have been registered for this species of which the most important by order of mention is the making of mezcal, which has had a boom in the past 10 years (see Appendix 1). However, to a lesser extent it also has edible and medicinal uses, it is used as insulation and as condiment for making barbacoa, as veterinary medicine, for the extraction of aguamiel and pulque, as live fences, forage, construction material, fiber extraction, sale of juvenile agave, erosion control, as bait to attract deer for hunting, for ornamental uses, and as utensils (Torres-García et al. 2015a).

In the case of Agave maximiliana in the region of Mascota, Jalisco, registries mention that 15 years ago the rates of extraction of wild populations of this species determined its critical decrease, promoting the establishment of commercial monocultures in deforested areas and abandoned agricultural lands. Some managers have established agroforests with agaves such as the ones mentioned above; these sites result from the clearing of forests and the planting of juvenile agave that have been grown in rustic nurseries in pine-oak forest zones (Figure 5). Inhabitants recognize the incidence of frost in the zone, a fact that affects species found in open areas with no canopy cover. It is in these areas that inhabitants have established this crop, trying to reproduce the natural conditions of the populations that grow under tree canopy in order to keep them from frost. For this species, 11 use categories have been registered, of which the most important is the making and marketing of raicilla, (a spirit that is going through a market boom) followed by uses as medicine, fuel, forage, marketing, and bartering, as fertilizer, as ornament, as insulation and condiment, as a fermented drink, to retain soil and as bait for deer hunting (Huerta-Galván 2018).

Agave agroforest management in Guerrero. In the Mountain region of Chilapa, Guerrero, there exists a management experience that has been developing for many years. This experience has been the fruit of the interaction between the community of Nahuatl mezcal producers of Acateyahualco, Guerrero and the non-governmental organization GEA A.C. (Grupo de Estudios Ambientales y Sociales). GEA has nearly 20 years carrying out arduous participatory action research that has had a positive impact in the community´s management of their territory and its natural resources. This community has developed an important management strategy, based on ecological information generated through demographic studies of the local wild Agave cupreata populations, which integrates the biological and reproductive dimension of this species in the design and application of annual systematic monitoring schemes. Indicators regarding the structure of wild agave populations are analyzed in community assemblies. In this way, the community decides how many mature agaves can be extracted based on the harvest thresholds established in the demographic models; that is harvesting that does not alter the recruitment rates in order to allow for population equilibrium. This monitoring scheme allows maguey to be harvested in a period of one year, and it specifies that it can only be processed by the community of Acateyahualco to satisfy its demand of mezcal. At the same time, the community practices a rotation system of the extraction sites, by establishing different stands within natural vegetation, where they carry extraction and monitoring. This extraction model implies that the sites where extraction happens must be shifted over time in order to assure that natural regeneration of the species happens in its natural habitat, allowing individuals to naturally blossom and disperse their seeds. They also have a systematized management of the cattle that grazes on this territory. The management of cattle assures seed production, dispersion, and establishment of new agave generations, at the same time that pollination processes are promoted. On one hand, the restriction of cattle to enter plots where mezcal seeds are germinating protects these seeds from being eaten. On the other hand, this restriction allows tender inflorescences to blossom in order to let pollination processes occur. When seeds germinate and there are seedlings on the fields, cattle may step over these seedlings, so the entrance of cattle into these stands during these susceptible stages is restricted. This species is mainly pollinized by bats of the genus Leptonycteris and given that this agave does not produce stoloniferous shoots, seeds are the only way it can reproduce. This is an example of community management of a collective resource through a very interesting collaboration between Academia, NGOs and rural communities to sustainably manage natural resources, ecosystems and territories (Illsley et al. 2007, Martin et al. 2011, Illsley et al. 2018). Forest areas next to this community are being conserved for being the natural habitat of Agave cupreata. This action contributes significantly to the conservation of diversity of accompanying species and ecosystem benefits that are determinant to the quality of life of the community. Mezcal is a very important part of local and regional culture: it is consumed in patronal fests and is one of the few cultural activities that determine a tangible economic income for the inhabitants of this community.

Discussion

In total, our study identified 31 species of Agave (of the 210 described, according to García-Mendoza et al. 2019), within traditional AFS and newly established AFS in Mexico; that is, 11 percent of total Agave richness. However, these are preliminary and surely underestimated data, for the research efforts have to the present focused on specific regions and ethnic groups, leaving out others that also have an important history of AFS and agave management. Moreover, adding to this bias in the regions and ethnic groups studied, the lack of studies regarding AFS and agaves is also because studies that concentrate on these topics are only very recently gaining importance and being performed (Moreno-Calles et al. 2016b). Other problems also limit the analysis efforts of this study, such as the lack of studies that identify agaves to the species level. An explanation for this can be that Agave species are hardly collected to be put in a herbarium, or that the sampling does not always coincide with the presence of floral structures, and above all, that the preparation of herbarium samples requires dedication and specialized techniques, or that species under agroforestry management are not of interest to wider groups of researchers. The lack of herbarium material makes it difficult to identify species, moreover when these are domesticated cultivars.

Agave are indisputably one of the most important groups of resources for the survival and development of Aridoamerican and Mesoamerican cultures. Just as Gentry (1982) reported in his works dedicated to this group of plants, focusing on the symbiosis Agave-human, the present study also reports this symbiosis, which is reflected in the multiple utilitarian, cultural, evolutionary and socioeconomic expressions studied. Magueyes, agaves, mezcales, lechuguillas, among others (Agave spp.), have an elevated number of uses (22) at the local level compared to other plant species. Agaves are a crucial part of the lives of the communities, providing nutrition, energy production, construction, making of medicinal remedies, as well as an important base for the generation of economic resources needed in a rural context. It is of interest that in Figure 6 these species have a greater number of uses in agroforestry milpas, family homegardens and terraces in comparison to agroforests destined to produce mezcal. This tendency is worrisome because it not only represents the loss of ecological and biocultural richness, it also represents the loss of the multiple functions of these species as they are integrated into global emerging markets, as is the case for mezcal, edible insects or the so-called superfoods markets, as in the case of agave syrup. This situation poses a dilemma about the production models where the satisfaction of local rural necessities (food, health, housing, fuel, preservation of soil and water) competes with the global urban “necessities” like recreation with alcoholic beverages or alternative nutrition through so-called “superfoods”. Many species show clear signs of domestication and the archaeobotanical, paleontological, historic, and contemporary and actual evidences suggest a long history of their importance within agricultural, forest and agroforestry systems. According to our work, 12 of the 64 existing cultural groups present in the territory (Boege 2008) have incorporated and maintained agaves in ethnoagroforestry systems and various mestizo groups also use these elements as part of their management systems. It is possible that due to the wide distribution of this genus of plants in Mexico many more cultures use them in their agri-food systems.

Figure 6 Comparison of the percentages of mentions of the registered use categories in this study for agave present in various agroforestry systems. For comparison purposes they were separated into: a) use categories with the highest number of mentions, b) use categories with the least number of mentions. 

Homegardens represent one of the oldest, and most intimate agroforestry management systems, given that in general they are adjacent to houses and they play many roles, from aesthetics, ornamental and utilitarian purposes, such as serving as food and medicine. González-Jácome (2009), determined that homegardens are living laboratories where selection processes and hybridization processes may have taken place, for it is in these places where species with disjunctive distributions found and coincided with each other. These AFS are generally vast in diversity and surely, processes like the ones mentioned above took place in these places. In this context, one of the species most documented for the Mexican Southeast is Agave fourcroydes, species that is recognized as the product of the domestication of A. angustifola (Colunga-GarcíaMarín & May-Pat 1997, Colunga-GarcíaMarín & Zizumbo-Villarreal 2004).

Terraces like homegardens, are systems with an ancient history in several regions and cultures in our country. There is palynological and archaeological evidence of this extensive practice related to the development of some highly populated Mesoamerican cultures (Blanton 1972, Evans 1990, Trombold & Israde-Alcantara 2005, Borejsza et al. 2008). Nevertheless, the extension and use of this type of system has diminished at a significant and accelerated rate since the last half of the 20th century. The main reason for this is the decay in the consumption of pulque in a number of places in Mexico, but mainly in Mexico City (Álvarez-Ríos 2015). The theft of the cuticle of the maguey pulquero leaves for the making of mixiotes also discourages managers of this species (Moreno-Calles et al. 2016b).

The existence of a gradient of management applied to different species of Agave registered in agroforestry systems is evident. This gradient can be observed from in situ to ex situ management (Casas et al. 2007, Blancas et al. 2010), which also expresses a complexity gradient. In situ management; in the case of community forest management, no reforestation nor complex manipulation actions are performed; the work is already strategic, since it incorporates ecological techniques appropriated by inhabitants, and a decision-making process through the community assembly, to decide the extraction rates based on models. Under this management regime, the forest is not radically impacted, only when mature individuals are harvested, and while transporting them to the places where mezcal is produced. In agroforests, there is an impact directed mainly at the understory vegetation in order to establish agave produced in nurseries, which implies greater effort and planning, besides harvesting. Ex situ management: it is in homegardens and terraces where managers apply a greater complexity of management practices, since these are environments with a high presence of domesticated and cultivated species. These places also count with several tolerated wild species, as well as wild elements that have been either transplanted, tolerated or promoted, from adjacent natural systems into these agroforestry systems. The presence of these tolerated or promoted wild species in homegardens and terraces also implies the accompanying development of agricultural labors and the maintenance of lines or borders of agave within these systems.

Challenges and perspectives in the management of Agave in AFS in Mexico. The loss of Agave species and the abandonment of these agroforestry systems is a phenomenon related to multiple factors, some of them associated to migration and transculturation. The collective TEK of communities has suffered losses, and above all the loss of the practice of this knowledge. Another determining factor for the abandonment in the use of agave, mainly the fibers, a very important use in the past centuries, has been caused by the production of cordage by the hydrocarbon industry, polyethylene, etc. This industry came to displace the making of cordage made with agave in practically the entire Mexican territory and determined the fall of a very important economic activity for the Yucatán peninsula in the past century. However, the preservation of Agave fourcroydes in family homegardens is an example of how cultures treasure resources, those same resources that may have been displaced by market tendencies and which are maintained and managed in these environments due to utilitarian and aesthetic reasons, although at a smaller scale, but fulfilling biocultural and ecological functions in the present.

The crisis of distilled spirits in Mexico, the market tendencies and the boom in mezcal demand are determining the establishment of monocultures, which are systems that in the long term become dependent on agrotoxics, and determine many biological, environmental and sociocultural losses. The establishment of new agroforestry and forest management forms described in this study are alternatives to produce raw material for this industry. They also promote the conservation of part or the whole of biodiversity of the ecosystems where they are found. At the same time, all this biodiversity represents an opportunity for designing future strategies for management and conservation of such valuable genetic resources. The market tendencies could recognize -through labeling and publicity- those spirits that come from these types of management.

The recognition, valuation and promotion of this important group of resources within these management systems, beyond the production of spirits, is very important in the effort to guarantee the availability of the different types of foods and raw materials for productive activities. As well as considering the sub-products that are disposed of in the production of spirits, such as leaves, bagasses, and vinasses. The leaves are left in the fields were harvesting of the agave heads occur, bagasses are the fibers that are disposed after distillation (Martínez-Gutiérrez et al. 2015) and vinasses are acidic liquids that are also disposed, mainly to water bodies, after distillation (Robles-González et al. 2012). These sub-products which represent a development potential in agriculture, food, and pharmaceuticals and an alternative to complement the economy of producers (López-Romero et al. 2018). Likewise, it is important to guarantee the preservation of important elements of the identity of the communities and cultural groups that host this diversity.

Agroforestry systems are spaces where wild and agricultural diversity coexist (Casas et al. 1997a, Moreno-Calles et al. 2013), and in Mexico, agaves are very important components of these systems. Commonly, Mesoamerican agaves constitute complexes of wild and domesticated taxa whose identity also represents a constant scientific challenge. In this way, including agaves in the agricultural or forest component is frequently very difficult. Domesticated agaves are part of the agricultural component, while wild agave is part of the forest component. This definition, the lack of research and the difficulty in identifying agave and their wild or domesticated status make it difficult to arrive at conclusions. This first approach allows to identify: (1) the structural, functional and cultural importance of Agave in agroforestry systems, (2) the importance of such spaces for the conservation of these species (wild and domesticated) and agave varieties, ergo, their role in in situ conservation of these genetic resources, (3) the need to do in-depth research about the composition of these systems and the related links to agave management, (4) the importance of going in-depth into the management techniques for agave in these systems as a basis to take advantage of the techniques developed traditionally in conservation programs in forests and agroforestry systems, (5) the value of studying these systems as referents of their value in the conservation of biodiversity and of biocultural heritage.

Acknowledgements

We thank the Dirección General de Asuntos del Personal Académico (DGAPA) for the postdoctoral scholarship awarded to the first author. We also thank the Consejo de Ciencia y Tecnología (CONACYT) and Red Temática de Sistemas Agroforestales de México (RedSAM) Project 293348 and la Red de Productos Forestales No Maderables (RED-PFNM), project 293914, for the support provided to this research. To the National Autonomous University of Mexico (UNAM) for the academic and technical support and for the resources received through the DGAPA PAPIIT IN200417 and IN206217, the DGAPA PAPIME PE209517 projects.

Literature cited

Aguilar J, Illsley C, Marielle C. 2003. Los sistemas agrícolas de maíz y sus procesos técnicos. In: Esteva G, Marielle C. Sin maíz no hay país. Consejo Nacional para las Culturas Populares: México, D.F. 83-122 [ Links ]

Aguilar-Støen M, Moe SR, Camargo-Ricalde SL. 2009. Home gardens sustain crop diversity and improve farm resilience in Candelaria Loxicha, Oaxaca, Mexico. Human Ecology 37: 55-77. DOI: https://doi.org/10.1007/s10745-008-9197-y [ Links ]

Alcorn JB. 1984. Huastec Mayan ethnobotany. University of Texas Press, Austin Texas. ISBN-0292715439; 978-0292715431 [ Links ]

Altieri MA. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment 74: 19-31. DOI: https://doi.org/10.1016/S0167-8809(99)00028-6 [ Links ]

Altieri MA. 2009. Green deserts: Monocultures and their impacts on biodiversity. In: Emanuelli MS. Jons J, Monsalve S, Eds. Red Sugar, Green Deserts: Latin American Report on Monocultures and Violations of the Human Rights to Adequate Food and Housing, to Water, to Land and to Territory. Sweden: FIAN International, pp. 67-76. ISBN: 9197718831; 978-9197718837 [ Links ]

Altieri MA, Merrick L. 1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany 41: 86-96. https://www.jstor.org/stable/4254942Links ]

Altieri MA, Toledo VM. 2011. The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants. Journal of Peasant Studies 38: 587-612. DOI: https://doi.org/10.1080/03066150.2011.582947 [ Links ]

Altieri MA, Trujillo J. 1987. The agroecology of corn production in Tlaxcala, Mexico. Human ecology 15: 189-220. DOI: https://doi.org/10.1007/BF00888380 [ Links ]

Álvarez-Lugo MA. 1997. Estudio etnobotánico de las plantas medicinales presentes en los huertos familiares en la comunidad de Balzapote Veracruz. BSc Thesis, Universidad Nacional Autónoma de México. México DF, 117 pp. [ Links ]

Álvarez-Ríos GD. 2015. Del maguey al vaso: El manejo del pulque en las pulquerías del Distrito Federal y en las localidades abastecedoras. BSc Thesis, Universidad Nacional Autónoma de México. Morelia, Michoacán, 135 pp. [ Links ]

Arriaga L, Rodríguez-Estrella R. 1997. Los Oasis de la Península de Baja California, México. Centro de Investigaciones Biológicas del Noroeste, La Paz, BCS, México. ISBN: 9686837155 [ Links ]

Barkin D, Suarez B. 1982. Fin de la autosuficiencia alimentaria. Universidad de Texas: Centro de Ecodesarrollo. 9684293178, 978-9684-293175 [ Links ]

Bautista-Tolentino M, López-Ortíz S, Pérez-Hernández P, Vargas-Mendoza M, Gallardo-López F, Gómez-Merino FC. 2011. Sistemas agro y silvopastoriles en la comunidad El Limón, municipio de Paso de Ovejas, Veracruz, México. Tropical and Subtropical Agroecosystems 14: 63-76. [ Links ]

Blancas J, Casas A, Lira R, Caballero J. 2009. Traditional Management and Morphological Patterns of Myrtillocactus schenckii (Cactaceae) in the Tehuacán Valley, Central Mexico. Economic Botany 63: 375. DOI: https://doi.org/10.1007/s12231-009-9095-2 [ Links ]

Blancas J, Casas A, Rangel-Landa S, Moreno-Calles AI, Torres I, Pérez-Negrón E, Solís L, Delgado-Lemus A, Parra F, Arellanes Y, Caballero J, Cortés L, Lira R, Dávila P. 2010. Plant Management in the Tehuacán-Cuicatlán Valley Mexico. Economic Botany 64: 287-302. DOI: https://doi.org/10.1007/s12231-010-9133-0 [ Links ]

Blanckaert I, Swennen RL, Paredes-Flores M, Rosas-López R, Lira-Saade R. 2004. Floristic composition, plant uses and management practices in homegardens of San Rafael Coxcatlán, Mexico Valley of Tehuacán-Cuicatlán. Journal of Arid Environments 57: 39-62. DOI: https://doi.org/10.1016/S0140-1963(03)00100-9 [ Links ]

Blanton RE. 1972. Prehispanic Adaptation in the Ixtapalapa Region, Mexico. Science 175: 1317-1326. DOI: https://doi.org/10.1126/science.175.4028.1317 [ Links ]

Boege E. 2008. El patrimonio biocultural de los pueblos indígenas de México: hacia la conservación in situ de la biodiversidad y agrodiversidad en los territorios indígenas. México DF: Instituto Nacional de Antropología e Historia-Comisión Nacional para el Desarrollo de los Pueblos Indígenas. ISBN: 978-968-03-0385-4 [ Links ]

Borejsza A, Rodríguez-López I, Frederick CD, Bateman MD. 2008. Agricultural slope management and soil erosion at La Laguna. Journal of Archaeological Science 35: 1854-1866. DOI: https://doi.org/10.1016/j.jas.2007.11.024 [ Links ]

Bowen S, Zapata AV. 2009. Geographical indications, terroir, and socioeconomic and ecological sustainability: the case of Tequila. Journal of Rural Studies 25: 108-119. DOI: https://doi.org/10.1016/j.jrurstud.2008.07.003 [ Links ]

Cahuich-Campos DR. 2012. La calidad de vida y el huerto familiar, desde la percepción ambiental de las familias de X-Mejía, Hopelchén, Campeche. PhD. Thesis, El Colegio de la Frontera Sur. Lerma, Campeche, 254 pp. [ Links ]

Campos-Salas N, Casas A, Moreno-Calles AI, Vallejo M. 2016. Plant management in agroforestry systems of rosetophyllous forests in the Tehuacán Valley, Mexico. Economic Botany 70: 254. DOI: https://doi.org/10.1007/s12231-016-9352-0 [ Links ]

Casas A, Viveros JL, Caballero J. 1994. Etnobotánica mixteca: sociedad, cultura y recursos naturales en la Montaña de Guerrero. México: Instituto Nacional Indigenista/Consejo Nacional para la Cultura y las Artes. ISBN: 968-29-6421-0 [ Links ]

Casas A, Vázquez MC, Viveros JL, Caballero J. 1996. Plant management among the Nahua and the Mixtec of the Balsas river basin: an ethnobotanical approach to the study of plant domestication. Human Ecology 24: 455-478. DOI: https://doi.org/10.1007/BF02168862 [ Links ]

Casas A, Caballero J, Mapes C, Zárate S. 1997a. Manejo de la vegetación, domesticación de plantas y origen de la agricultura en Mesoamérica. Boletín de la Sociedad Botánica de México 61: 31-47. DOI: https://doi.org/10.17129/botsci.1537 [ Links ]

Casas A, Pickersgill B, Caballero J, Valiente-Banuet A. 1997b. Ethnobotany and domestication in xoconochtli Stenocereus stellatus (Cactaceae) in the Tehuacán Valley and La Mixteca Baja, Mexico. Economic Botany 51: 279-292. DOI: https://doi.org/10.1007/BF02862097 [ Links ]

Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. 2007. In situ management and domestication of plants in Mesoamerica. Annals of Botany 100: 1101-1115. DOI: https://doi.org/10.1093/aob/mcm126 [ Links ]

Casas A, Valiente-Banuet AViveros J L, Dávila P, Lira R, Cortés L, Medina R, Rodríguez-Arévalo I. 2001. Plant resources of the Tehuacán-Cuicatlán Valley, México. Economic Botany. 55: 129-166. DOI: https://doi.org/10.1007/BF02864551 [ Links ]

Caso-Barrera L, Aliphat-Fernández M. 2006. Cacao, vanilla and annatto: three production and exchange systems in the Southern Maya lowlands, XVI-XVII centuries. Journal of Latin American Geography 5: 29-52. https://www.jstor.org/stable/25765138Links ]

Chavero EL, Roces MEA. 1988. Ethnobotany in a tropical-humid region: the home gardens of Balzapote, Veracruz, Mexico. Journal of Ethnobiology 8: 45-79. [ Links ]

Colunga-GarcíaMarín P, May-Pat F. 1997. Morphological variation of henequen (Agave fourcroydes, Agavaceae) germplasm and its wild ancestor (A. angustifolia) under uniform growth conditions: diversity and domestication. American Journal of Botany 84: 1449-1465. [ Links ]

Colunga-GarcíaMarín P, Larqué-Saavedra A, Eguiarte L, Largué SA, Zizumbo-Villarreal D. 2007. En lo ancestral hay futuro: del tequila, los mezcales y otros agaves. Mérida: Centro de Investigación Científica de Yucatán, AC. Consejo Nacional de Ciencia y Tecnología-Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 978-968-6532-18-0 [ Links ]

Colunga-GarcíaMarín P, Torres-García I, Casas A, Figueredo-Urbina CJ, Rangel-Landa S, Delgado-Lemus A, Vargas O, Cabrera-Toledo D, Aguirre-Dugua, Eguiarte L, Zizumbo-Villarreal D, Carrillo-Galván G. 2017. Los agaves y las prácticas mesoamericanas de aprovechamiento, manejo y domesticación. In: Casas A, Torres-Guevara J, Parra F, Eds. Domesticación en el Continente Americano Vol 2. Lima: Universidad Nacional Autónoma de México-Universidad Nacional Agraria de La Molina, pp. 273-308. [ Links ]

Colunga-GarcíaMarín P, Zizumbo-Villarreal D. 2004. Domestication of plants in Maya Lowlands. Economic Botany 58: 101-110. [ Links ]

Consejo Regulador del Mezcal. 2015. Informe estadístico. < http://www.crm.org.mx/PDF/INF_ACTIVIDADES/INFORME2017.pdf > (accessed March 19, 2019). [ Links ]

Consejo Regulador del Tequila. 2019. Información estadística. < http://www.crt.org.mx/EstadisticasCRTweb > (accessed March 25, 2019) [ Links ]

Delgado-Lemus A, Casas A, Téllez O. 2014a. Distribution, abundance and traditional management of Agave potatorum Zucc. in the Tehuacán Valley, Mexico: bases for sustainable use of non-timber forest products. Journal of Ethnobiology and Ethnomedicine 10: 63. DOI: https://doi.org/10.1186/1746-4269-10-63 [ Links ]

Delgado-Lemus A, Torres I, Blancas J, Casas A. 2014b. Vulnerability and risk management of Agave species in the Tehuacán Valley, México. Journal of Ethnobiology and Ethnomedicine 10: 53. DOI: https://doi.org/10.1186/1746-4269-10-53 [ Links ]

De Luna-Valadez B, Macías-Rodríguez FJ, Esparza-Frausto G, León-Esparza E, Tarango-Arámbula LA, Méndez-Gallegos SJ. 2013. Recolección de insectos comestibles en Pinos Zacatecas: descripción y análisis de la actividad. Agroproductividad 6: 5. [ Links ]

Emanuelli MS, Jonsén J, Monsalve-Suárez S. 2009. Red sugar, green deserts. Sweden: FIAN International. ISBN 978-91-977188-3-7 [ Links ]

Esparza-Frausto G, Macías-Rodríguez FJ, Martínez-Salvador M, Jiménez-Guevara MA, Méndez-Gallegos SDJ. 2008. Insectos comestibles asociados a las magueyeras en el ejido Tolosa, Pinos, Zacatecas, México. Agrociencia 42: 243-252. [ Links ]

Evans S. 1990. The Productivity of Maguey Terrace Agriculture in Central Mexico during the Aztec Period. Latin American Antiquity 1: 117-132. DOI: https://doi.org/10.2307/971983 [ Links ]

Ffolliott PF. 1998. Multiple Benefits of Arid Land Agroforestry Home Gardens and Riparian Ecosystems. In: Josiah SJ. Ed. North American Conference on Enterprise Development Through Agroforestry. Tucson: University of Arizona. [ Links ]

Figueredo-Urbina CJ, Casas A, Torres-García I. 2017. Morphological and genetic divergence between Agave inaequidens, A. cupreata and the domesticated A. hookeri. Analysis of their evolutionary relationships. PLOS ONE 12: e0187260. DOI: https://doi.org/10.1371/journal.pone.0187260 [ Links ]

García-deMiguel J. 2000. Etnobotánica Maya: Origen y evolución de los Huertos Familiares de la Península de Yucatán, México. PhD. Thesis, Universidad de Córdoba, 247 pp. [ Links ]

García-Mendoza AJ. 2004. Agaváceas. In: García-Mendoza AJ, Ordoñez MJ, Briones-Salas M, Eds. Biodiversidad de Oaxaca. Ciudad de México: Instituto de Biología-Universidad Nacional Autónoma de México-Fondo Oaxaqueño para la Conservación de la Naturaleza-World Wildlife Fund, pp. 159-160. ISBN: 9703220452 [ Links ]

García-Mendoza AJ, Franco-Martínez IS, Sandoval-Gutiérrez D. 2019. Cuatro especies nuevas de Agave (Asparagaceae, Agavoideae) del sur de México. Acta Botanica Mexicana 126: 1-18. DOI: https://doi.org/10.21829/abm126.2019.1461 [ Links ]

Gaytán-Ávila C, Vibrans H, Navarro-Garza H, Jiménez-Velázquez M. 2001. Manejo de huertos familiares periurbanos de San Miguel Tlaixpan, Texcoco, Estado de México. Boletín de la Sociedad Botánica de México 69: 39-62. DOI: https://doi.org/10.17129/botsci.1646 [ Links ]

Gentry HS. 1982. Agaves of continental North America. Tucson: University of Arizona Press. ISBN-10: 0816523959; 978-0816523955 [ Links ]

Gómez-García E, Sol-Sánchez A, García López E, Pérez Vázquez A. 2016. Valor de uso de la flora del Ejido Sinaloa 1a sección, Cárdenas, Tabasco, México. Revista Mexicana de Ciencias Agrícolas. 14: 2683-2694 [ Links ]

Guerrero-Peñuelas AG. 2007. El impacto de la migración en el manejo de solares campesinos, caso de estudio La Purísima Concepción Mayorazgo, San Felipe del Progreso, Estado de México Investigaciones Geográficas, Boletín del Instituto de Geografía 63: 105-124. [ Links ]

Gil-Vega K, González-Chavira MG, Martínez-de la Vega OM, Simpson J, Vandemark G. 2001. Analysis of genetic diversity in Agave tequilana var. Azul using RAPD markers. Euphytica 119: 335-341. DOI: https://doi.org/10.1023/A:1017553107303 [ Links ]

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food Security: The Challenge of Feeding 9 Billion People. Science 327: 812-818. DOI: https://doi.org/10.1126/science.1185383 [ Links ]

Gómez-García E. 2011. Etnobotánica del ejido Sinaloa 1ra Sección, Cárdenas Tabasco, México. MSc. Thesis, Colegio de Postgraduados. H. Cárdenas, Tabasco. 82 pp. [ Links ]

Gonzáles-Jácome A. 2009. El maíz como producto cultural desde los tiempos antiguos. In: Morales-Valderrama C, Rodríguez-Lazcano C. Eds. Desgranando una Mazorca. Orígenes y Etnografía de los Maíces Nativos. Suplemento 52, Instituto Nacional de Antropología e Historia pp. 40-67. [ Links ]

Gonzáles-Jácome A. 2016. Sistemas agrícolas en orografías complejas: Las terrazas de Tlaxcala. In: Moreno-Calles AI, Casas A, Toledo VM, Vallejo-Ramos M. Eds. Etnoagroforestería en México. Morelia: Universidad Nacional Autónoma de México-Escuela Nacional de Estudios Superiores-Instituto de Investigaciones en Ecosistemas y Sustentabilidad. ISBN 978-607-01-8641-4 [ Links ]

Gutiérrez-Miranda LD. 2003. Etnobotánica de huertos familiares o solares en el poblado de Gabriel Esquinca, Chiapas. BSc. Thesis, Universidad Nacional Autónoma de México. México, DF, 114 pp. [ Links ]

Hard RJ, Zapata JE, Moses BIZ, Roney JR. 1999. Terrace Construction in Northern Chihuahua, Mexico: 1150 B.C and Modern Experiments. Journal of Field Archaeology 26: 129-146. DOI: https://doi.org/10.1179/jfa.1999.26.2.129 [ Links ]

Hernández-Roldan E, Tarango-Arámbula LA, Ugalde-Lezama S, Hernández-Juárez A, Cortez-Romero C, Cruz-Miranda Y, Morales-Flores FJ. 2017. Hábitat y densidad de nidos de la hormiga escamolera (Liometopum apiculatum Mayr) en una UMA de Zacatecas, México. Agroproductividad 10: 10-18 [ Links ]

Hernández-Soto D. 2009. Estudio de huertos familiares en el municipio de Coxcatlán, Puebla. BSc. Thesis, Universidad Nacional Autónoma de México. Los Reyes Iztacala, Estado de México. 92 pp. [ Links ]

Herrera-Pérez L, Valtierra-Pacheco E, Ocampo-Fletes I, Tornero-Campante MA, Hernández-Plascencia JA, Rodríguez-Macías R. 2017. Ecological practices in Agave tequilana Weber under two culture systems in Tequila, Jalisco. Revista Mexicana de Ciencias Agrícolas 18: 1-14. [ Links ]

Herrera-Castro ND. 1994. Los huertos familiares en el oriente de Yucatán. MSc. Thesis, Universidad Autónoma de Yucatán. Mérida, Yucatán. ISBN: 9686843272 [ Links ]

Holt-Gimenez E, Patel R. 2009. Food Rebellions: Crisis and the Hunger for Justice. Cape Town: Pambazuka Press. ISBN: 978-0-935028-34-8 [ Links ]

Huerta-Galván OF. 2018. Uso y manejo de Agave maximiliana: producción de Raicilla en el municipio de Mascota, Jalisco. BSc. Thesis, Universidad de Guadalajara. Zapopan, Jalisco. 76 pp. [ Links ]

Hunter R. 2009. Positionality, Perception, and Possibility in Mexico's Valle del Mezquital. Journal of Latin American Geography 8: 49-69. http://www.jstor.org/stable/25765262Links ]

Illsley C, Vega E, Pisanty I, Tlacotempa A, García P, Morales P, River G, García J, Jímenez V, Castro F, Calzada M. 2007. Maguey papalote: hacia el manejo campesino sustentable de un recurso colectivo en el trópico seco de Guerrero, México. In: Colunga-GarcíaMarín P, Eguiarte L, Largué SA, Zizumbo-Villarreal D, Eds. En lo Ancestral hay Futuro: del Tequila, los Mezcales y otros Agaves. Mérida: Centro de Investigación Científica de Yucatán, AC, pp. 319-338. ISBN: 978-968-6532-18-0 [ Links ]

Illsley C, Torres-García I, Hernández-López JJ, Morales-Moreno P, Varela-Álvarez R, Ibañez-Couch I, Nava-Xinol H. 2018. Manual de manejo campesino de magueyes mezcaleros forestales. México: Grupo de Estudios Ambientales AC. ISBN: 978-607-95925-1- 6 [ Links ]

Jose S, Gold MA, Garrett HE. 2012. The future of temperate agroforestry in United States. In: Nair PKR, Garrity D, Eds. Agroforestry the Future of Global Land Use, Advances in Agroforestry 9. Dordrecht: Springer, pp. 217-245. DOI: https://doi.org/10.1007/978-94-007-4676-3_14 [ Links ]

Jose S, . 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems 76: 1-10. DOI: https://doi.org/10.1007/s10457-009-9229-7 [ Links ]

Kass DCL, Somarriba E. 1999. Traditional fallows in Latin America. Agroforestry Systems 47: 13. DOI: https://doi.org/10.1023/A:1006243903174 [ Links ]

Larios C, Casas A, Vallejo M, Moreno-Calles AI, Blancas J. 2013. Plant management and biodiversity conservation in Náhuatl homegardens of the Tehuacán Valley, Mexico. Journal of ethnobiology and ethnomedicine 9: 74. DOI: https://doi.org/10.1186/1746-4269-9-74 [ Links ]

LaRochelle S. 2003. Common property and Traditional Ecological Knowledge: Biodiversity Conservation in the sierra Taraumara. MSc. Thesis, University of Manitoba. Winipeg, Canada. 120 pp. [ Links ]

Loredo C, Beltrán S, Sarreón JL, Domínguez CM. 2005. Prácticas mecánicas para el control de la erosión hídrica. Prácticas para la conservación de suelo y agua en zonas áridas y semiáridas, INIFAP-CIRNE-Campo Experimental San Luis, Libro técnico. [ Links ]

López-Romero JC, Ayala-Zavala JF, González-Aguilar GA, Peña-Ramos EA and González-Ríos H. 2018. Biological activities of Agave by-products and their possible applications in food and pharmaceuticals. Journal of the Science of Food and Agriculture 98: 2461-2474. DOI: https://doi.org/10.1002/jsfa.8738 [ Links ]

López-Yáñez L. 1990. Cercos vivos en zonas áridas (Agrosilvicultura en el desierto chihuahuense). BSc. Thesis, Universidad Autónoma Chapingo. Chapingo, México 194 pp. [ Links ]

MacNeish RS. 1967. A summary of the subsistence. In: Byers, DS. ed. The prehistory of the Tehuacán Valley. Volume one: Environment and subsistence. University of Texas Press. Austin, Texas. pp: 290-331. [ Links ]

Magdaleno-Miranda L, García-Moya E, Valdéz-Hernández JI, delaCruz-Isidro V. 2005. Evaluación del sistema agroforestal “árboles en terrenos de cultivo”, en Vicente Guerrero, Tlaxcala, México. Revista Fitotecnia Mexicana. [ Links ]

Mariaca-Méndez R. 2012. El huerto familiar del sureste de México. Villahermosa: Secretaría de Recursos Naturales y Protección Ambiental del Estado de Tabasco-El Colegio de la Frontera Sur. ISBN: 9786077637684 [ Links ]

Martin MP, Peters CM, Palmer MI, Illsley C. 2011. Effect of habitat and grazing on the regeneration of wild Agave cupreata in Guerrero, Mexico. Forest Ecology and Management 262: 1443-1451. DOI: https://doi.org/10.1016/j.foreco.2011.06.045 [ Links ]

Martínez-Gutiérrez GA, Ortiz-Hernández YD, Aquino-Bolaños T, Bautista-Cruz A, López-Cruz JY. 2015. Properties of Agave angustifolia Haw. bagasse before and after its composting. Comunicata Scientiae 6: 418-429. DOI: https://doi.org/10.14295/CS.v6i4.800 [ Links ]

Martínez-Palacios A, Morales-García JL, Guillén-Rodríguez S. 2015. Aspectos sobre manejo y conservación de Agaves mezcaleros en Michoacán. Universidad Michoacana de San Nicolás de Hidalgo, Secretaría de Agricultura, ganadería, desarrollo Rural, Pesca y Alimentación, Consejo Estatal de Ciencia, Tecnología e Innovación. 176 p. ISBN: 978-607-811-643-0 [ Links ]

Martínez-Saldaña T, Romero-Contreras AT. 1993. La colonización agrícola Tlaxcalteca del norte de México. In: Navarro-Garza H, Colin JP, Milleville P. eds. Sistemas de Producción y Desarrollo Agrícola. Texcoco: Colegio de Postgraduados, pp. 297-304. ISBN 968-839-161-1 [ Links ]

Martínez-Saldaña T. 2007. El uso del riego ancestral en la agricultura contemporanea, el caso de los sistemas de riego en el árido mexicano, Conference paper. Modernización de riegos y uso de tecnologías de la información, organizado por Redes de Riegos CYTED y PROCISUR, y Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia [ Links ]

Moreno-Calles AI, Casas A, Blancas J, Torres I, Masera O, Caballero J, García-Barrios L, Pérez-Negrón E, Rangel-Landa S. 2010. Agroforestry systems and biodiversity conservation in arid zones: the case of the Tehuacán Valley, Central México. Agroforestry Systems 80: 315-331. DOI: https://doi.org/10.1007/s10457-010-9349-0 [ Links ]

Moreno-Calles AI, Casas A. 2010. Agroforestry systems: restoration of semiarid zones in the Tehuacán Valley, Central Mexico. Ecological Restoration 28: 361-368. DOI: https://doi.org/10.3368/er.28.3.361 [ Links ]

Moreno-Calles AI, Casas A, García-Frapolli E, Torres-García I. 2011. Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: their management and role in people’s subsistence. Agroforestry Systems 84: 207-226. DOI: https://doi.org/10.1007/s10457-011-9460-x [ Links ]

Moreno-Calles AI, Casas A, Rivera-Romero A, Romero-Bautista YA, Rangel-Landa S, Fisher-Ortíz RA, Alvarado-Ramos F, Vallejo-Ramos M, Santos-Fita D. 2016a. Ethnoagroforestry: integration of biocultural diversity for food sovereignty in Mexico. Journal of Ethnobiology and Ethnomedicine 12: 54. DOI: https://doi.org/10.1186/s13002-016-0127-6 [ Links ]

Moreno-Calles AI, Casas A, Toledo VM, Vallejo M. 2016b. Etnoagroforestería en México. Morelia: Universidad Nacional Autónoma de México-Escuela Nacional de Estudios Superiores - Instituto de Investigaciones en Ecosistemas y Sustentabilidad. ISBN: 9786070281648 [ Links ]

Moreno-Calles AI, Toledo VM, Casas A. 2013. Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Botanical Sciences 91: 375-398. DOI: https://doi.org/10.17129/botsci.419 [ Links ]

Moreno-Calles AI, Soto-Pinto ML, Cariño-Olvera MM, Palma-García JM, Moctezuma-Pérez S, Rosales-Adame JJ, Montañez-Escalante PI, Sosa-Fernández VJ, Ruenes-Morales MR. 2019. Los Sistemas Agroforestales de México: Formación, Investigación y Acciones Emergentes. Consejo Nacional de Ciencia y Tecnología-Universidad Nacional Autónoma de México. [ Links ]

Nabhan GP, Garcia J, Routson R, Routson K, Carintilde M. 2010. Desert oases as genetic refugia of heritage crops: persistence of forgotten fruits in the mission orchards of Baja California, Mexico. International Journal of Biodiversity and Conservation 2: 56-69. DOI: 10.5897/IJBC [ Links ]

Nabhan GP, Rea AM, Reichhardt KL, Mellink E, Hutchinson CF. 1982. Papago influences on habitat and biotic diversity: Quitovac oasis ethnoecology. Journal of Ethnobiology 2:2, 124-143. [ Links ]

Nair PKR. 1985. Classification of agroforestry systems. Agroforestry Systems 3: 97-128. DOI: https://doi.org/10.1007/BF00122638 [ Links ]

Nair PKR, Gordon AM, Mosqueda-Losada MR. 2008. Agroforestry. In: Jorgensen SE, Fath B, eds. Encyclopedia of Ecology. Elsevier. ISBN: 978-0-08-045405-4 [ Links ]

Pagaza-Calderón EM. 2008. Efecto de la urbanización y el cambio cultural en la estructura florística de los huertos familiares y su papel en la conservación de especies silvestres. Un estudio de caso en Tlacuilotepec, Puebla. MSc. Thesis, Universidad Nacional Autónoma de México. México, DF. 110 pp. [ Links ]

Patrick LL. 1977. A cultural geography of the use of seasonally dry, sloping terrain: the metepantli crop terraces of Central Mexico. PhD. Thesis. University of Pittsburgh. 298 pp. [ Links ]

Peñuelas-Guerrero AG. 2007. El impacto de la migración en el manejo de solares campesinos, caso de estudio La Purísima Concepción Mayorazgo, San Felipe del Progreso, Estado de México. Boletín Del Instituto de Geografía 63: 105-124. [ Links ]

Pérez-Botho B, Jiménez-Velázquez MA, Sánchez-Escudero J, García-Cué JL, Muratalla-Lúa A. 2015. Agricultura tradicional en El Botho, Alto Mezquital, estado de Hidalgo. Revista mexicana de ciencias agrícolas 6: 1215-1227. [ Links ]

Pérezgrovas-Garza R. 2011. El traspatio como elemento del sistema de vida en Aguacatenango, Chiapas. In: Pérezgrovas-Garza R, Rodríguez Galván G, Zaragoza-Martínez L, Eds. El traspatio Iberoamericano, Experiencias y Reflexiones en Argentina, Bolivia, España, México y Uruguay. Tuxtla Gutiérrez: Universidad Autónoma de Chiapas. ISBN: 978-607-8207-06-0 [ Links ]

Pérez-Sánchez JM. 2012. Ambiente, agricultura y cultura: las terrazas de Ixtacuixtla, Tlaxcala. PhD Thesis. Universidad Iberoamericana. México DF. 192 pp. [ Links ]

Poot-Pool WS, van der Wal H, Flores JS, Pat-Fernández JM, Esparza-Olguín L. 2012. Composición y estructura de huertos familiares y medios de vida de productores en Pomuch, Campeche. In: Flores JS, Ed. Los huertos familiares en Mesoamérica. Mérida: Universidad Autónoma de Yucatán, pp. 39-68. ISBN: 9786070060151 [ Links ]

Poot-Pool SW. 2008. Arquitectura, estructura y composición específica de solares y medios de vida de productores de mayores y menores capitales en Pomuch, Campeche. MSc. Thesis, El Colegio de la Frontera Sur. Villahermosa, Tabasco. 112 pp. [ Links ]

Puig H. 1994. Agroforestry in Mexico: Can the past be a guarantee for the future? Experientia 50: 621. DOI: https://doi.org/10.1007/BF01952861 [ Links ]

Rangel-Landa S, Casas A, Dávila P. 2015. Facilitation of Agave potatorum: An ecological approach for assisted population recovery. Forest Ecology and Management 347: 57-74. DOI: https://doi.org/10.1016/j.foreco.2015.03.003 [ Links ]

Ramírez-Rodríguez R. 2004. El maguey y el pulque: Memoria y Tradición convertidas en Historia 1884-1993. BSc. Thesis, Benemérita Universidad Autónoma de Puebla. Puebla, Puebla. 378 pp. [ Links ]

Reynoso-Santos R, López-Báez W, López-Luna A, Ruíz-Corral JA, Castro-Mendoza I, Cadena-Iñiguez P, Valenzuela-Núñez LM, Camas-Gómez R. 2016. Áreas potenciales para el cultivo del agave (Agave americana L.) en la meseta Comiteca, Chiapas. Agroproductividad 9: 56-61. [ Links ]

Rico-Gray V, Chemás A, Mandujano S. 1991. Uses of tropical deciduous forest species by the Yucatecan Maya. Agroforestry Systems 14:149. DOI: https://doi.org/10.1007/BF00045730 [ Links ]

Robles-González V, Galíndez-Mayer J, Rinderknecht-Seijas N, Poggi-Varaldo HM. 2012. Treatment of mezcal vinasses: A review. Journal of Biotechnology 157: 524-546. DOI: https://doi.org/10.1016/j.jbiotec.2011.09.006 [ Links ]

Rosales JJ, Cevallos J, Vázquez JM, Hernández F. 2008. La diversidad de sistemas agroforestales en el Sur y Costa Sur de Jalisco. In: Palma-García JM, Sanginés-García L, Eds. IV Reunión Nacional sobre Sistemas Agro y Silvopastoriles “Estrategias Ambientalmente Amigables”. Colima: Universidad de Colima. [ Links ]

Ruenes-Morales MR. 1993. Estudio de los huertos familiares en los ejidos El Ahuacate y Adolfo López Mateos de la Sierra de San Juan, Nayarit. MSc. Thesis, Universidad Nacional Autónoma de México. México DF. 144 pp. [ Links ]

Ruenes-Morales MR, Montañez PI. 2016. Comprensión de la diversidad biocultural de los huertos de la península de Yucatán. In: Moreno-Calles AI, Casas A, Toledo VM, Vallejo M. eds. Etnoagroforestería en México. Morelia: Universidad Nacional Autónoma de México-Escuela Nacional de Estudios Superiores-Instituto de Investigaciones en Ecosistemas y Sustentabilidad. ISBN 978-607-01-8641-4 [ Links ]

Russo L. 1990. Agroforestry in the northern Mexican drylands: A case study from Durango. MSc. Thesis. The University of Arizona. 73 pp. https://repository.arizona.edu/handle/10150/144631Links ]

Somarriba E, Beer J, Alegre-Orihuela J, Andrade H, Cerda R, DeClerck F, Campos J. 2012. Mainstreaming agroforestry in Latin America. In: Nair PKR, Garrity D, Eds. Agroforestry the Future of Global Land Use, Advances in Agroforestry 9. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-94-007-4676-3 [ Links ]

Stienen H. 1990. The agroforestry potential of combined production systems in north-eastern Mexico. Agroforestry Systems 11: 45-69. DOI: https://doi.org/10.1007/BF00122811 [ Links ]

Tamayo-Ortega V. 1995. Estudio de los huertos familiares con un sistema agroforestal en la comunidad de Comacalco, Tabasco. MSc. Thesis, Universidad Nacional Autónoma de México. Los Reyes Iztacala, Estado de México. 119 pp. [ Links ]

Torres-Díaz P. 2011. Sustentabilidad de huertos familiares en la comunidad de Tziscao, La Trinitaria, Chiapas. MSc. Thesis. Colegio de Postgraduados. San Cristóbal de las Casas, Chiapas. 87 [ Links ]

Torres F, Rojas A. 2015. Política económica y política social en México: desequilibrio y saldos. Problemas del Desarrollo 46: 41-66. DOI: https://doi.org/10.1016/j.rpd.2015.06.001 [ Links ]

Torres-García I. 2009. Dinámica poblacional de dos morfos de Agave potatorum Zucc. en el Valle de Tehuacán-Cuicatlán: bases para su manejo sustentable. MSc. Thesis, Universidad Nacional Autónoma de México. Morelia, Michoacán. 78 pp. [ Links ]

Torres-García I, Blancas J, León A, Casas A. 2015a. TEK, local perceptions of risk and diversity of management practices of Agave inaequidens in Michoacán, Mexico. Journal of Ethnobiology and Ethnomedicine 11: 61. DOI: https://doi.org/10.1186/s13002-015-0043-1 [ Links ]

Torres-García I, Casas A, Vega E, Martínez-Ramos M, Delgado-Lemus A. 2015b. Population dynamics and sustainable management of mezcal agaves in central Mexico: Agave potatorum in the Tehuacán-Cuicatlán Valley. Economic Botany 69: 26-41. DOI: https://doi.org/10.1007/s12231-014-9295-2 [ Links ]

Torres I, Casas A, Delgado-Lemus A, Rangel-Landa S. 2013. Aprovechamiento, demografía y establecimiento de Agave potatorum en el Valle de Tehuacán, México: aportes ecológicos y etnobiológicos para su manejo sustentable. Zonas Áridas 15: 92-109. [ Links ]

Trejo L, Limones V, Peña G, Scheinvar E, Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-GarcíaMarín P. 2018. Genetic variation and relationships among agaves related to the production of Tequila and Mezcal in Jalisco. Industrial Crops and Products 125: 140-149. DOI: https://doi.org/10.1016/j.indcrop.2018.08.072 [ Links ]

Trejo-Salazar R-E, Eguiarte LE, Suro-Piñera D, Medellín RA. 2016. Save our bats, save our Tequila: industry and science join forces to help bats and agaves. Natural Areas Journal 36: 523-530. DOI: https://doi.org/10.3375/043.036.0417 [ Links ]

Trombold CD, Israde-Alcantara I. 2005. Paleoenvironment and plant cultivation on terraces at La Quemada, Zacatecas, Mexico: the pollen, phytolith and diatom evidence. Journal of Archaeological Science 32: 341-353. DOI: https://doi.org/10.1016/j.jas.2004.10.005 [ Links ]

Urbina CJF, Casas A, Martínez-Díaz Y, Santos-Zea L, Gutiérrez-Uribe JA. 2018. Domestication and saponins contents in a gradient of management intensity of agaves: Agave cupreata, A. inaequidens and A. hookeri in central Mexico. Genetic Resources and Crop Evolution 65: 1133-1146. DOI: https://doi.org/10.1007/s10722-017-0601-6 [ Links ]

Valenzuela-Zapata AG, Macías-Macías A. 2014. La indicación geográfica Tequila: lecciones de la primera denominación de origen mexicana. Comisión Nacional para el Conocimiento y uso de la Biodiversidad. México DF. ISBN: 978-607-8328-09-3. [ Links ]

Vallejo M, Casas A, Pérez-Negrón E, Moreno-Calles AI, Hernández-Ordoñez O, Tellez O, Dávila P. 2015. Agroforestry systems of the lowland alluvial valleys of the Tehuacán-Cuicatlán Biosphere Reserve: an evaluation of their biocultural capacity. Journal of Ethnobiology and Ethnomedicine 11: 8. DOI: https://doi.org/10.1186/1746-4269-11-8 [ Links ]

Vallejo M, Ramírez MI, Reyes-González A, López-Sánchez JG, Casas A. 2019. Agroforestry Systems of the Tehuacán-Cuicatlán Valley: Land Use for Biocultural Diversity Conservation. Land 8: 24. DOI: https://doi.org/10.3390/land8020024 [ Links ]

Vallejo-Ramos M, Ramírez I, Casas A, Reyes-González A, López-Sánchez JG. 2018. Cambios en la distribución de sistemas agroforestales en el paisaje del Valle de Tehuacán-Cuicatlán, México. Ecosistemas 27: 96-105. DOI: https://dx.doi.org/10.7818/ECOS.1501 [ Links ]

van Dijk VM, Casas A, Moreno-Calles AI. 2017. Semiarid ethnoagroforestry management: Tajos in the Sierra Gorda, Guanajuato, Mexico. Journal of Ethnobiology and Ethnomedicine 13: 34. DOI: https://doi.org/10.1186/s13002-017-0162-y [ Links ]

Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-GarcíaMarín P. 2007. In situ diversity and maintanenace of traditional Agave landraces used in spirits production in West-Central Mexico. Economic Botany 61: 362. DOI: https://doi.org/10.1663/0013-0001(2007)61[362:ISDA MO]2.0.CO;2 [ Links ]

Vargas-Ponce O, Zizumbo-Villarreal D, Martínez-Castillo J, Coello-Coello JColunga-GarcíaMarín P. 2009. Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: a comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana. American Journal of Botany 96: 448-457. DOI: https://doi.org/10.3732/ajb.0800176 [ Links ]

Xochitiotzin-Hernández M. 2005. Prácticas agroforestales presentes en los diferentes sistemas de producción agrícola en el estado de Tlaxcala. MSc. Thesis, Universidad Autónoma Chapingo. Chapingo, México. 161 pp. [ Links ]

Zuria I, Gates JE. 2006. Vegetated field margins in Mexico: their history, structure and function, and management. Human Ecology 34: 53. DOI: https://doi.org/10.1007/s10745-005-9002-0 [ Links ]

1Associated editor: José Arturo de Nova Vazquez.

Appendix 1

Agave species present in agroforestry systems in Mexico (S/R no record). 

Agave species Common name Type of AFS Cultural Group Locality State Agroforestry practices Uses Author/year
A. americana var. marginata maguey pinto Homegarden Nahua Coyomeapan Puebla crop Ornamental Larios et al. 2013
A. americana maguey Homegarden Maya Yucatán Mariaca-Méndez 2012
A. americana maguey Homegarden Maya Quintana Roo Mariaca-Méndez 2012
A. americana Metepantle Otomí (Hñähñú) El Botho, found in the Alto Mezquital region Hidalgo terraces Edible, fuel, aguamiel Pérez-Botho et al. 2015
A. americana maguey manso Metepantle Ixtacuixtla Tlaxcala terraces, hedges Gathering of gusano blanco and chinicuil, soil retention, aguamiel, pulque, construction fiber (iscapul) Pérez-Sánchez 2012
A. americana Homegarden Maya Pomuch, Mpio Hecelchakán Campeche Ornamental Poot-Pool et al. 2012
A. americana maguey Comitán Chiapas Distilled spirits Reynoso-Santos et al. 2016
A. americana maguey Homegarden Mestizo Adolfo López Mateos and el Ahuacate Nayarit Edible and live fence Ruenes-Morales 1993
A. americana maguey, mexcaltenechtly Homegarden Coyomeapan Puebla crop Edible Larios et al. 2013
A. angustiarum cacaya Homegarden Mestizo/Nahua Coxcatlán Puebla homegarden Edible flowers Hernández-Soto 2009
A. angustifolia ixtle Agrosilvopastoral Mestizo El Limón, Paso de Ovejas municipality Veracruz hedges Possibly live fence Bautista-Tolentino et al. 2011
A. angustifolia agave Homegarden Mestizo Ejido Sinaloa 1ra Sección, Cárdenas Tabasco Ornamental, to hang clothes Gómez-García et al. 2016
A. angustifolia ki Homegarden Maya X-uilub, Municipio de Valladolid Yucatán homegarden Utensil, medicinal, fiber Herrera-Castro 1994
A. angustifolia Homegarden Tsotsil/Tseltal Chiapas Ornamental Mariaca-Méndez 2012
A. angustifolia Homegarden Chontal Tabasco Craft making (necklesses and rosaries), Construction, Domestic uses (soap), ornamental, tools, insecticide, medicinal Mariaca-Méndez 2012
A. angustifolia Homegarden Maya Yucatán Mariaca-Méndez 2012
A. angustifolia Homegarden Maya Quintana Roo Mariaca-Méndez 2012
A. angustifolia Homegarden Maya Campeche Mariaca-Méndez 2012
A. angustifolia Temperate zones Tlaxcala Xochitiotzin-Hernández 2005
A. angustifolia lineño many varieties Agrosilvopastoral Mestizo Zapotitlán de Vadillo Jalisco agriculture mixed, milpa-agave pitayas-mezquite Distilled spirits (mezcal), food, live fence, construction, forage, medicine, ornamental, ritual (mezcal) Vargas-Ponce et al. 2009
A. angustifolia Arid zones México recently crops, before they were extracted wild Altieri & Merrick 1987
A. asperrima maguey Arid zones Chihuahua desert Chihuahua Live fence Live fence, forage, medicine, pest control, aesthetic value López-Yáñez 1990
A. atrovirens Homegarden Mestizo San Miguel Tlaixpan, Texcoco Estado de México Drink, medicinal Gaytán-Ávila et al. 2001
A. atrovirens maguey pulquero Temperate zones Tlaxcala hedges Pulque Xochitiotzin-Hernández 2005
A. atrovirens Metepantle Tlaxcaltecas (Nahua) Tlaxcala Martínez-Saldaña & Romero-Contreras 1993
A. atrovirens Metepantle Mexica (Nahua) Valle de Teotihuacán México terraces Food, aguamiel, pulque, fibers (textiles), live fence, fuel, fertilizer, medicinal, construction, forage Evans 1990
A. atrovirens Homegarden Mestizo, Totonac and Nahua Tlacuilotepec Puebla Ornamental Pagaza-Calderón 2008
A. aurea Arid zones San Ignacio, El Pilar Baja California Arriaga & Rodríguez-Estrella 1997
A. cerulata Arid zones San Ignacio Baja California Arriaga & Rodríguez-Estrella 1997
A. convallis jabalí Managed forests,agroforests Zapotec San Dionisio Ocotepec Oaxaca This study
A. cupreata maguey mezcalero / yaave ndishi Long fallow Mixtec Alcozauca Guerrero Fibers Casas et al. 1994
A. cupreata papalote Managed forests, agroforests Nahuatl Zitlatla, Ahuacuotzingo, Chilapa Guerrero Mezcal Illsley et al. 2007
A. cupreata papalote Managed forests, agroforests Nahuatl Zitlatla, Ahuacuotzingo, Chilapa Guerrero Mezcal Illsley et al. 2007
A. cupreata papalote Managed forests, agroforests Nahuatl Zitlatla, Ahuacuotzingo, Chilapa Guerrero Mezcal Illsley et al. 2007
A. cupreata chino Managed forests, agroforests Mestizo Tzitzio Michoacán greenhouses and reforestation in wild sites where agave populations already existed Mezcal, food This study
A. cupreata chino Agrosilvopastoril Mestizo Tzitzio Michoacán Agave crops with forest elements and cattle Mezcal, food Martínez-Palacios et al. 2015
A. desertii ´a´ud / agave del desierto Arid zones Papago Quitovac Sonora Edible, fiber Nabhan et al. 1982
A. fourcroydes henequén verde / kij Homegarden Maya X-Mejía, Hopelchén Campeche Medicinal Cahuich-Campos 2012
A. fourcroydes sisal Long fallow Maya Guatemala Caso-Barrera & Aliphat-Fernández 2006
A. fourcroydes henequén Homegarden Maya Temax Yucatán homegarden Fibers García-deMiguel 2000
A. fourcroydes ki, ch´eelem Homegarden Maya X-uilub, Municipio de Valladolid Yucatán homegarden Utensils, medicinal, fibers Herrera-Castro 1994
A. fourcroydes henequén Long fallow Mestizo Ciudad Victoria Tamaulipas Long fallow Fibers Kass & Somarriba 1999
A. fourcroydes henequén Homegarden Maya Yucatán Mariaca-Méndez 2012
A. fourcroydes Henequén Homegarden Maya Quintana Roo Mariaca-Méndez 2012
A. fourcroydes henequén Homegarden Maya Campeche Mariaca-Méndez 2012
A. fourcroydes henequén Homegarden Maya Campeche Ornamental, medicinal Mariaca-Méndez 2012
A. fourcroydes henequén Homegarden Maya Pomuch, Mpio Hecelchakán Campeche Medicinal Poot-Pool 2008
A. fourcroydes henequén Arid zones Huastec SLP, Veracruz Fibers Puig 1994
A. fourcroydes Homegarden Maya Tixcacaltuyub y Tixpeual Yucatán Medicinal, apiculture, fibers and live fence Rico-Gray et al. 1991
A. fourcroydes Tamaulipas, Nuevo León and Coahuila Stienen 1990
A. fourcroydes henequén Homegardens Mestizo ejido de Tziscao, La Trinitaria Chiapas Ornamental Torres-Díaz 2011
A. inaequidens maguey alto, bruto Managed forests, agroforests Mestizo Queréndaro, Indaparapeo Michoacán greenhouses and reforestations in wild sites where agave populations already existed Distilled beverages, edible, medicinal, construction, medicinal, veterinary, forage, aguamiel, pulque, ornamental, fiber, hunting, bird nests, soil retention Torres-García et al. 2015a
A. karwinskii cachitún Arid zones Mestizo Zapotitlán Salinas Puebla hedges and limits To limit plots Moreno-Calles et al. 2013
A. karwinskii Arid zones Valles Centrales Oaxaca hedges and live fences Mezcal, live fences, food This study
A. lechuguilla lechuguilla Homegarden Noroeste de México homegarden Fibers Ffolliott 1998
A. lechuguilla lechuguilla Otomí (Hñähñú) El Botho, located in the Alto Mezquital region Hidalgo Fibers Pérez-Botho et al. 2015
A. lechuguilla lechuguilla Silvopastoril Mestizo Peñón Blanco Durango Fibers, forage (flores) Russo 1990
A. lechuguilla lechuguilla Arid zones Chihuahuan desert Chihuahua hedges Live fences, crop protection López-Yáñez 1990
A. macroacantha cacaya or rabo de león Homegarden Mestizo/Nahua Coxcatlán Puebla homegarden Edible flowers Hernández-Soto 2009
A. mapisaga maguey pulquero Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla lines to prevent erosion, live fences, terraces Soil control, aguamiel and pulque Moreno-Calles et al. 2013
A. mapisaga maguey, xayametl Metepantle La Malinche Tlaxcala terraces Edible, aguamiel, pulque, distilled spirits, extraction of edible insects, medicinal, construction, fuel, live fences, as a perch, ceremonial, religious Patrick 1977
A. mapisaga maguey Arid zones Chihuahuan desert Chihuahua live fence Live fence, aguamiel and pulque, forage, medicinal, pest control, aesthetic value López-Yáñez 1990
A. marmorata pitzometl Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla hedges, vegetation islands, terraces Mezcal, food, live fence, fuel Moreno-Calles et al. 2011
A. marmorata pichomel Homegardens Mestizo, Nahuatl San Rafael Coxcatlán Puebla Edible, medicinal Blanckaert et al. 2004
A. marmorata Homegardens Mestizo/Nahuatl Coxcatlán Puebla homegarden Ornamental Hernández-Soto 2009
A. marmorata pitzometl, pichomel Arid zones Mestizo Zapotitlán Salinas Puebla hedges and lines To limit plots, medicinal, ceremonial, construction, utensils, soil retention, live fence, aguamiel and pulque Moreno-Calles et al. 2013
A. marmorata Arid zones Mestizo, Nahuatl Zapotitlán Salinas, Quiotepec Puebla y Oaxaca metepantles, apantles Vallejo et al. 2015
A. marmorata tepeztate Managed forests, agroforests Zapotec San Dionisio Ocotepec Oaxaca forest management Mezcal This study
A. maximiliana lechuguilla Managed forests, agroforests Mestizo Mascota Jalisco greenhouses and reforestation in wild forest sites where there existed agave populations Distilled spirits (raicilla), edible, medicinal, forage, barbacoa, sale and barter, ornamental, fermented drink, soil retention, bait, fertilizer Huerta-Galván 2018
A. mitis magueyito Homegarden Coyomeapan Puebla crop Ornamental Larios et al. 2013
A. murpheyi maguey Arid zones Papago Quitovac Sonora Edible, fiber Nabhan et al. 1982
A. peacockii maguey ixtlero Arid zones indigenous and Mestizo several Puebla, Oaxaca diverse Casas et al. 2001
A. potatorum papalometl Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla hedges, vegetation isles Mezcal, food Moreno-Calles et al. 2011
A. potatorum papalometl Arid zones Indigenous and Mestizo various Puebla, Oaxaca diverse Casas et al. 2001
A. potatorum tobalá Managed forests, agroforests Zapotec San Dionisio Ocotepec Oaxaca This study
A. promontorii Arid zones San Bartolo, Punta San Pedro, Boca de la Sierra Baja California Arriaga & Rodríguez-Estrella 1997
A. rhodacantha ixtero, amarillo and verde Agrosilvopastoral Mestizo Zapotitlán de Vadillo Jalisco mixed agricultura, milpa-agave pitayas-mezquite Distilled spirits (mezcal), food, live fences, Construction, forage, medicinal ornate, ritual (mezcal), fibers Vargas-Ponce et al. 2007
A. salmiana pulquero Arid zones hedges, vegetation lines Pulque, live fence Campos-Salas et al. 2016
A. salmiana Homegarden Mestizos/Nahuatl Coxcatlán Puebla homegardens Ornamental Hernández-Soto 2009
A. salmiana maguey Homegarden Maya Campeche Ornamental Mariaca-Méndez 2012
A. salmiana maguey Metepantle Mestizo Vicente Guerrero Tlaxcala hedges and lines Pulque Magdaleno-Miranda et al. 2005
A. salmiana Metepantle Tlaxcaltecas (Nahuatl) Tlaxcala Martínez-Saldaña & Romero-Contreras 1993
A. salmiana ametl Metepantle La Malinche Tlaxcala terraces Edible, aguamiel, pulque, distilled spirits, edible insect extraction, medicinal, construction, fuel, live fence, perch, ceremonial religious uses Patrick 1977
A. salmiana Metepantle Vicente Guerrero Tlaxcala Magdaleno-Miranda et al. 2005
A. salmiana Metepantle Mestizo, Nahuatl Zapotitlán Salinas, Quiotepec Puebla and Oaxaca metepantles, apantles Vallejo et al. 2015
A. salmiana mexcali, pulquero Homegarden Coyomeapan Puebla crop Edible, pulque Larios et al. 2013
A. salmiana maguey Arid zones Chihuahuan desert Chihuahua live fence Live fences, aguamiel and pulque, forage, medicinal, pest control, aesthetic value López-Yáñez 1990
A. salmiana maguey Metepantle Mexica (Nahuatl) Ixtapalapa México terraces Pulque, edible, soil retention, fibers Blanton 1972
A. salmiana pulquero Arid zones hedges, vegetation lines Pulque, live fence Campos-Salas et al. 2016
A. salmiana maguey Homegarden Mestizo, Nahuatl San Rafael Coxcatlán Puebla Edible Blanckaert et al. 2004
A. salmiana var. crassispina maguey Arid zones Chihuahuan desert Chihuahua live fence Live fence, forage, medicinal, pest control, aesthetic value López-Yáñez 1990
A. salmiana var. crassispina maguey criollo Managed forests, agroforests Mestizo Pinos Zacatecas Mezcal, insects (gusano blanco, gusano rojo, escamoles) De Luna-Valadez et al. 2013
A. salmiana var. crassispina maguey verde Arid zones Mestizo Pinos Zacatecas Mezcal, forage and collection of edible insects, (gusano blanco, gusano rojo and escamoles) Esparza-Frausto et al. 2008
A. salmiana var. crassispina Arid zones Mestizo “El Milagro” Municipio Villa González Ortega Zacatecas Collection of edible insects, escamoles Hernández-Roldán et al. 2017
A. salmiana var. ferox xilometl, tlilmetl, prieto corriente or criollo Metepantle La Malinche Tlaxcala terraces Edible, aguamiel, pulque, distilled spirits, collection of edible insects, medicinal, construction, fuel, live fence, perch, ceremonial, religious Patrick 1977
A. salmiana var. ferox de puya Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla hedges, vegetation islands, terraces Forage, fuel, live fence, construction Moreno-Calles et al. 2011
A. salmiana var. ferox de puya Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla hedges, vegetation islands Forage, fuel, live fence, construction Blancas et al. 2009
A. salmiana var. ferox maguey de puya Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla lines to prevent erosion, live fences, terraces Construction, fuel, forage, to limit plots, live fence Moreno-Calles et al. 2013
A. scaposa de potrero Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla hedges, vegetation islands Construction, Edible insects, fuel, forage, to limit plots, live fence Moreno-Calles et al. 2011
A. scaposa maguey de potrero Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla hedges and lines To limit plots, collection of edible insects Moreno-Calles et al. 2011
A. scaposa maguey de potrero Arid zones Mestizo San Luis Atolotitlán, Caltepec Puebla lines to prevent erosion, live fence, terraces Construction, condachos habitat, fuel, forage, to limit plots, live fence, edible flowers Moreno-Calles et al. 2011
A. sisalana maguey de ixtle Homegarden Mestizo/Tsotsil Gabriel Esquinca Municipio de San Fernando Chiapas homegarden Ornamental, fibers Gutiérrez-Miranda 2003
A. sisalana henequén Homegarden Chontal Tabasco Ornamental Mariaca-Méndez 2012
A. sisalana agave Homegarden Maya Yucatán Mariaca-Méndez 2012
A. sisalana henequén pequeño Homegarden Maya Campeche Ornamental, fibers Mariaca-Méndez 2012
A. sisalana henequén Homegarden Maya Chontal Comalcalco Tabasco Tamayo-Ortega 1995
A. sp. flor de maguey Homegarden Coyomeapan Puebla crop Ornamental, edible Larios et al. 2013
A. sp. maguey Homegarden Balzapote Veracruz Ornamental Chavero & Roces 1988
A. sp. maguey Metepantle México crop Surface runoff control, humidity retention Loredo et al. 2001
A. sp. Homegarden Mestizos/Nahuatl Coxcatlán Puebla homegardens Ornamental Hernández-Soto 2009
A. sp. maguey Metepantle precolombine/actual Valle del Mezquital Hidalgo terraces Hunter 2009
A. sp. maguey Long fallow Mestizo Not specified, it mentions the North of Mexico region North México long fallow Food Kass & Somarriba 1999
A. sp. henequén Homegarden Maya Yucatán Fibers Mariaca-Méndez 2012
A. sp. maguey verde Homegarden Chontal Tabasco Condiment, ornamental, medicinal Mariaca-Méndez 2012
A. sp. maguey Metepantle Parras de la Fuente Coahuila Martínez-Saldaña 2007
A. sp. maguey Homegarden Tzeltal Aguacatenango Chiapas Ornamental Perez-Grovas 2011
A. sp. Homegarden Maya Tixcacaltuyub y Tixpeual Yucatán Medicinal, apiculture, fibers Rico-Gray et al. 1991
A. sp. mesagoli Temperate zones Rarámuri Basíhuare, Municipio de Guachochi Chihuahua Edible (heart and quiote), the juice is added to tesgüino LaRochelle 2003
A. sp. chawí Rarámuri Basíhuare, Municipio de Guachochi Chihuahua Edible (heart), juice is added to tesgüino LaRochelle 2003
A. sp. Homegarden Tamaulipas, Nuevo León and Coahuila Live fence, fuel Stienen 1990
A. sp. Metepantle Mestizo, Nahuatl Zapotitlán Salinas, Quiotepec Puebla y Oaxaca metepantles, apantles Vallejo et al. 2015
A. sp. maguey Temperate zones Tlaxcala Live fence Xochitiotzin-Hernández 2005
A. sp. Arid zones El Bajío central México hedges Live fence Zuria & Gates 2006
A. sp. Homegarden Zapotec Loxicha, Oaxaca Oaxaca Edible, ornamental Aguilar-Støen et al. 2009
A. sp. México Terraces Aguilar et al. 2003
A. sp. Homegarden Balzapote Veracruz homegardens Medicinal, veterinary medicine Álvarez-Lugo 1997
A. sp. maguey and pulquero Homegarden Mazahua La Purísima Concepción Mayorazgo, San Felipe del Progreso Estado de México solar Fuel, live fence, pulque extraction for family consumptionor for sale Guerrero-Peñuelas 2007
A. sp. maguey aviludo Metepantle Ixtacuixtla Tlaxcala terraces, hedges To gather gusano blanco and chinicuil, soil retention, aguamiel, pulque, fibers construction (iscapul) Pérez-Sánchez 2012
A. sp. Metepantle Colonial origin la Laguna Tlaxcala terraces Pulque, soil retention Borejsza et al. 2008
A. sp. Metepantle prehistoric Cerro Juanaqueña Chihuahua terraces Hard et al. 1999
A. spp. maguey/mezcal Arid zones Mestizo Baja California Nabhan et al. 2010
A. spp. Agrosilvopastoral Mestizo Peñón Blanco Durango Live fence Russo 1990
A. spp. Metepantle La Quemada Zacatecas terraces Food, aguamiel Trombold & Israde-Alcantara 2005
A. spp. Arid zones Nahuatl and Mestizo Chilapa-Centro Montaña de Guerrero Guerrero cropping and application of organic fertilizer, reforestation and fencing of the spring with maguey Mezcal, soil retention, infiltration Aguilar et al. 2003
A. spp. Metepantle Tlaxcala hedge plantation, terraces Terraces, to limit plots Altieri &Trujillo 1987
A. striata Homegarden Tamaulipas, Nuevo León and Coahuila Live fence, fibers Stienen 1990
A. striata subsb. falcata maguey Arid zones Chihuahuan desert Chihuahua live fence Live fence, forage, medicinal, pest control, aesthetic value López-Yáñez 1990
A. tequilana agave azul tequilero Homegarden Maya Campeche Ornamental Mariaca-Mendéz 2012
A. tequilana agave azul Agrosilvopastoral Jalisco Tequila Rosales et al. 2008
A. tequilana agave azul Homegarden Jalisco Tequila Rosales et al. 2008
A. tequilana tequila Homegarden Maya Yucatán Mariaca-Méndez 2012
A. tequilana tequila Homegarden Maya Quintana Roo Mariaca-Méndez 2012
A. tequilana tequila Homegarden Maya Campeche Mariaca-Méndez 2012
A. tequilana var. azul azul Agrosilvopastoral Mestizo Tequila Jalisco Tequila, sale of maguey plants Herrera-Pérez et al. 2017
A. triangularis tunecho Arid zones Indigenous and mestizos various Puebla, Oaxaca diverse Live fence Casas et al. 2001
A. weberi maguey manso Arid zones Xichu, sierra gorda Guanajuato slash and burn Aguamiel, fibers van Dijk et al. 2017

Received: February 01, 2019; Accepted: May 29, 2019

* Corresponding author: Ana Isabel Moreno-Calles, e-mail: isabel_moreno@enesmorelia.unam.mx.

Author contribution: ITG: Coordination, design of the research, sampling, systematization and interpretation of information, writing and revision of manuscript. AIMC: Conception, coordination, design of the research, writing and revision of manuscript. AC: Research design, writing and revision of manuscript. JB: Research design, writing and revision of manuscript. FJRS: Sampling and systematization of information, writing and revision of manuscript.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License