Lentibulariaceae is a family of carnivorous plants that includes the genera Genlisea A.St.-Hil. with 30 species, Pinguicula L. with 110 species, and Utricularia L. with 271 species. Pinguicula is distinguished by the presence of true roots, leaves grouped in a basal rosette, and bractless peduncles with a terminal flower (Casper 1966). Based on morphological characters, Casper (1966) divided Pinguicula into P. subg. Isoloba Barnhart, P. subg. Pinguicula L., and P. subg. Temnoceras Barnhart. Pinguicula subg. Isoloba includes species with actinomorphic corollas, subequal lobes, white to white-purplish corolla, and trichomes arranged in three rows inside the corolla tube. In contrast, P. subg. Pinguicula harbors species with bilabiate, blue or violet corollas, and with the tube trichomes dispersed. Finally, P. subg. Temnoceras includes species with whitish bilabiate corollas, crenate or cleft apex lobes, the lobes of the upper lip shorter than the lower, and the tube trichomes arranged in three rows.
Pinguicula grows in Eurasia, the Americas, and the Caribbean islands (Shimai et al. 2021). All three subgenera are represented in Mexico, where 53 species have been recorded, 45 of which are endemics (López-Pérez et al. 2024). In addition, in Mexico, the species of Pinguicula grows almost exclusively in the mountain chains. Due to the large number of species and high endemism, Mexico represents a center of diversity for the group.
The Trans-Mexican Volcanic Belt morphotectonic province (TMVB) crosses central Mexico from east to west between the 18° 30’ N and 21° 30’ N parallels. It includes, at least partially, the states of Colima, Guanajuato, Hidalgo, Jalisco, Mexico, Mexico City, Michoacán, Morelos, Nayarit, Puebla, Querétaro, Tlaxcala, and Veracruz (Ferrusquía-Villafranca 2007). The TMVB includes mountain ranges, volcanic structures, and intermountain plateaus at different elevations ranging from Cerro San Juan in Nayarit to the Sierra de Chiconquiaco in Veracruz (Gámez et al. 2012). The province is divided into the Eastern, Central and Western sectors (Ferrusquía-Villafranca et al. 2007, Ferrari et al. 2012) and merges three major mountain ranges. The Eastern sector meets the Sierra Madre Oriental and the Sierra Madre del Sur. Whereas the Western sector connects with the Sierra Madre Occidental and the Sierra Madre del Sur. Whereby, the TMVB represents the nucleus of the Mexican Transition Zone (MTZ; Halffter & Morrone 2017).
Ferrari et al. (2012) described the TMVB formation in four episodes. The first episode showed a volcanic arc during the Early and Mid Miocene (~20-10 Ma), followed by a pulse of mafic volcanism during the Late Miocene (~11-7 Ma). Then, between the Late Miocene and Early Pliocene (7.5-3 Ma), a silicic and bimodal episode was recorded. Lastly, an arc from the Late Pliocene to the Holocene (2.5 Ma-present) is observed (Gómez-Tuena et al. 2005, Ferrari et al. 2012). The TMVB displays the most recent orogenic processes with volcanism still active (Gámez et al. 2012) and its uplift has favored the biogeographic transition, speciation, and persistence of several taxa, such as the tribe Tigridieae B. M. Kittel (Munguía-Lino et al. 2015), Solanum L. sect. Petota Dumort (Murillo-Pérez et al. 2022), the genera Cosmos Cav. and Lycianthes (Dunal) Hassl. (Vargas-Amado et al. 2013, Anguiano-Constante et al. 2018), and populations of Nolina parviflora Hemsl. (Ruiz-Sanchez & Specht 2013).
During a systematic study of Pinguicula in México, we collected material in the Eastern sector of the TMVB, which did not correspond with any previously known species. Here, we propose it as a new and endemic species. In addition, we analyzed the species richness distribution of Pinguicula along this province. The extreme sectors of the TMVB are the confluence of the three major mountain ranges. We expect that the species richness will be unevenly distributed.
Materials and methods
Taxonomic treatment. We examined the specimens of Pinguicula from the IBUG, IEB, and MEXU herbaria (herbarium acronyms per Thiers 2023). For the new species, the morphological description was accomplished based on fresh material and herbarium specimens. The terminology followed Casper (1966), Moreno (1984), and Zamudio (2001). We used the infrageneric classification proposed by Casper (1966). The color of the structures was designated in accordance with the RHS Colour Chart (Royal Horticultural Society 2015).
Conservation status. The conservation status of the new species was evaluated based on the IUCN Red List Categories and Criteria (IUCN 2022). The Area of Occupancy (AOO) was estimated with GeoCAT (Bachman et al. 2011).
Study area, database and species richness of Pinguicula. The TMVB is made up of volcanic successions, continental sedimentary deposits, and volcanic-sedimentary deposits situated in the intermountain depressions, whereby the study area was delimited under the morphotectonic province criterion of Ferrusquía-Villafranca (2007). A morphotectonic province has physiographic and geologic-tectonic features unique enough to distinguish it from such other neighboring provinces (Ferrusquía-Villafranca 1993). The records from CHAP, CHAPA, ENCB, FCME, HUAP, IBUG, IEB, INEGI, INIF, MEXU, QMEX, SLPM, and XAL herbaria (Thiers 2023), the digital herbaria CAS, K, MO, and US (Thiers 2023), as well as the information available in the Global Biodiversity Information Facility (GBIF 2023), the Southwest Environmental Information Network (Gilbert et al. 2019), and the Sistema Nacional de Información sobre Biodiversidad de México (CONABIO 2020) were compiled and curated into a database. To assure the taxonomic identity of the digital records, only specimens with images were examined. Specimens without geographical data were georeferenced using Google Earth Pro v. 9.191.0.0 (Google 2023), the Mapa Digital de México v. 6.1 (INEGI 2023a) and following the recommendations of Garcia-Milagros & Funk (2010). The specimens with ambiguous information were excluded. The species distribution maps were elaborated using the presence records of Pinguicula along the TMVB.
Species richness distribution of Pinguicula along the TMVB. The species richness distribution was quantified by 1) states, 2) vegetation types, 3) elevation ranges, and 4) grid cells. The shapes of states (INEGI 2018) and vegetation types (Rzedowski 1978) were clipped with the TMVB polygon of Ferrusquía-Villafranca (2007). The distribution richness analyses by states and vegetation types were carried out through a direct count of species documented in each polygon. Species richness by elevation ranges was quantified based on 500 m intervals. The Continuo de Elevaciones Mexicano 3.0 (INEGI 2023b) with a resolution of 15 m was used to assign the elevation value to each record. The grid cell richness analyses were performed using a cell size of 0.21 × 0.21° based on Suárez-Mota & Villaseñor (2011) method and 0.24 × 0.24° according to Oyala (2020) criterion.
Results
Pinguicula tlahuica López-Pérez & Zamudio, sp. nov. (Figures 1 and 2, Table 1).
Character | P. gypsicola | P. moranensis | P. tlahuica |
---|---|---|---|
Winter rosette | |||
Life form | Subhypogeous | Epigeous, hypogeous, and subhypogeous | Subhypogeous |
Rosette diameter (cm) | 1.5-2 | 1-3 | 1.2-1.9 |
Leaf number | 41-42 | 30-80 | 55-70 |
Leaf size (cm) | 0.5-1.5 × 0.1-0.2 | 1-3 × 0.2-0.6 | 0.25-0.8 × 0.1-0.3 |
Leaf shape | Spatulate to elliptic-lanceolate | Lanceolate to oblong-lanceolate | Spatulate to oblong-spatulate |
Summer rosette | |||
Leaf orientation | Ascendent | Adpressed | Ascendent |
Leaf number | 6-17 | 4-12 | 4-8 |
Leaf size (cm) | 2.2-11 × 0.3-0.6 | 3.5-9.5 × 2.5-7.5 | 7-14.5 × 0.5-1.7 |
Leaf shape | Linear lanceolate, ciliate at the base | Elliptic, obovate to suborbicular, not ciliate | Linear-spatulate, not ciliate |
Flower length (cm) | 3-4 | 2.5-6 | 3-5 |
Corolla upper lobes size (mm) | 7-10 × 2-5 | 7-18 × 4-11 | 8-12 × 3.5-7 |
Corolla lower lobes size (mm) | 6-11 × 3-7 | 6.5-11.5 × 4.5-9 | 7-8 × 3-6 |
Corolla lower median lobe size (mm) | 7-13 × 3-7 | 8-18.5 × 5-10 | 8-10 × 4-6.5 |
Spur length (mm) | 14-22 | 15-37 | 20-30 |
Flowering time | June to October, with summer rosette | All year, with winter and summer rosettes | April to May with winter rosette |
Habitat | Gypsum soils in xeric scrublands | Limestone rock walls, soils in xeric scrublands, igneous rock walls in pine-oak forest, cloud forest, tropical deciduous forest | Igneous rock walls in oak forest |
Type. Mexico, Estado de México, municipio Ocuilan de Arteaga, parque Tlatucapa, Peña Redonda, 18° 57’ 56.6” N, 99° 24’ 58.5” W, 2,189 m snm, 12 April 2023, J. López-Pérez & G. Munguía-Lino 641 (Holotype: IBUG; Isotype: MEXU).
Diagnosis. Pinguicula tlahuica is morphologically similar to P. moranensis Kunth in the form and size of the flowers, but it is distinguished from it by: the oblong to oblong-spathulate winter leaves; linear-spatulate summer leaves, 7.0-14.5 × 0.5-1.7 cm; blooming with winter rosette.
Description. Perennial herbs. Leaves dimorphic, arranged into basal rosettes; winter rosette compact, subhypogeous, 1.2-1.9 cm in diameter, leaves 55-70, succulent, petiole 0.5-2.5 mm long, oblong, spathulate to oblong-spathulate, 2.5-8.0 × 1.0-3.0 mm, acute to obtuse, pubescent; summer rosette lax, leaves 4-8, sessile, ascending, linear-spatulate, 7.0-14.5 × 0.5-1.7 cm, acute to obtuse, margin revolute, pubescent on the upper surface with sessile and stipitate glandular trichomes. Peduncles 1-6 per plant, 4.0-12.0 cm long, pilosulose with stipitate glandular trichomes. Flowers 3.0-5.0 cm long, including the spur; calyx bilabiate, outer surface pilosulose with stalked glandular trichomes; upper lip trilobate, triangular lobes, 2.0 × 1.0 mm; lower lip bilobate, lobes triangular to lanceolate, 2.0 × 0.5 mm; corolla bilabiate, blue-violet (violet-blue group 95A), with a white macula at the base of lower lip that extends to the throat; upper lip bilobate, lobes oblong to obovate, 8.0-12.0 × 3.5-7.0 mm, truncate to obtuse; lower lip trilobate, lobes oblong to obovate, truncate to obtuse, lateral lobes 7.0-8.0 × 3.0-6.0 mm, the medium larger than the lateral ones, 8.0-10.0 × 4.0-6.5 mm; corolla tube infundibuliform, 2.5-4.0 × 2.0-2.5 mm, pilosulose with stalked glandular trichomes; spur cylindrical-subulate, 2.0-3.0 cm long, brown to green-greyish (brown group N200A, greyed-green group 197B); ovary subglobose, 1.5 mm in diameter, glandular pilosulose; stigma bilobate, blue-violet (violet-blue group 95A). Capsule globose, 4-5 mm in diameter. Seeds not seen.
Distribution and ecology. Pinguicula tlahuica is endemic to the TMVB. It grows in the municipalities of Ocuilan de Arteaga, State of México, and Cuernavaca, Morelos (Figure 3). The area is part of a mega-stratovolcanoes alignment in the Eastern sector of the TMVB (Ferrusquía-Villafranca 2007). Pinguicula tlahuica inhabits in ravines, on northeastern facing igneous rock walls, within the oak forest at elevations of 1,860-2,190 m asl (Figure 2A). The plants grow in compact groups, associated with mosses, and in sympatry with Bomarea edulis (Tussac) Herb., Calochortus pringlei B.L.Rob., Dahlia merckii Lehm., Svenkoeltzia congestiflora (L.O.Williams) Burns-Bal, Hechtia sp., Nolina sp., and Pitcairnia sp.
Conservation status. Pinguicula tlahuica is known only from two localities. It grows along a few ravines on igneous rock walls. GeoCAT calculated an AOO of 12 km2. According to the IUCN Red List Categories and Criteria, we preliminary recommend the category of Endangered (EN), criterion B2ab(iii).
Phenology. The summer rosettes have been observed from May to September. In contrast, the winter rosettes appear from September to May. The plants bloom from April to May when the winter rosette is present.
Etymology. The specific epithet honors the Tlahuica ethnical people. The tlahuicas inhabit some villages in Ocuilan de Arteaga, State of México (Álvarez Fabela 2006).
Additional specimens examined. Mexico, Estado de México, municipio Ocuilan de Arteaga, Barranca y mirador Peña Redonda, 2,185 m snm, 18° 57’ 57.3” N, 99° 24’ 57.9” W, 29 September 2021, A. Rodríguez et al. 8466 (IBUG, IEB, MEXU); Parque Tlatucapa, Peña Redonda, 2,185 m, 18° 57’ 57.2” N, 99° 24’ 59” W, 3 September 2022, J. López-Pérez & G. Munguía-Lino 589 (IBUG, IEB, MEXU). Morelos, Cuernavaca, Barranca cerca del Tecolote, antigua vía de madera hacia Bella Vista del Monte, May 1955, E. Lyonnet s/n (MEXU, two sheets MEXU-699454 and MEXU-699473).
Species of Pinguicula in the TMVB. There are 16 species of Pinguicula recorded along the TMVB (Table 2, Figures 3, 4). Pinguicula crassifolia, P. michoacana, P. tlahuica, and P. zamudioana are exclusive to this morphotectonic province (Figures 3, 4). The Pinguicula species along the TMVB can be identified as follows:
1. Corolla isolobate to subisolobate, the superior and inferior lips lobes are almost equal ............................... 2
2. Annual plants, with a single type of leaves (homophyllous); corolla lilac or white, palate diminute; tube with purple veins .............................................................................................................................. P. lilacina
2. Perennial plants, with two types of leaves during the annual cycle (heterophyllous); corolla white, occasionally with violet margin, palate absent; tube with green veins ............................................................................ 3
3. Corolla tube geniculate ...................................................................................................... P. acuminata
3. Corolla tube straight .......................................................................................................................... 4
4. Rupiculous plants; winter rosette epigeal, leaves entire, blade pubescent; summer leaves entire ............................................................................................................................................... P. agnata
4. Terrestrial plants; winter rosette hypogeal, leaves ciliate at the base, blade glabrous; summer leaves ciliate at the base .............................................................................................................................................. 5
5. Calyx accrescent, covering the capsule at maturity .................................................................... P. casperi
5. Calyx not accrescent, nor covering the capsule at maturity ...................................................... P. parvifolia
1. Corolla bilabiate, with clear distinction between the superior and inferior lip lobes ...................................... 6
6. Annual plants; flowers 3-7 mm long (including the spur); corolla lobes crenate or cleft .......................................................................................................................................... P. crenatiloba
6. Perennial plants; flowers larger than 10 mm (including the spur); corolla lobes entire, emarginate or erose .......................................................................................................................................................... 7
7. Homophyllous plants, winter and summer rosettes undifferenciated during the annual cycle ........................ 8
8. Corolla white, lobes emarginate or erose, with evident purple veins ........................................ P. emarginata
8. Corolla pink, lobes entire, with incospicuos veins or the same color as the lobes ...................... P. zamudioana
7. Heterophyllous plants, winter and summer rosettes differentiated during the annual cycle .......................... 9
9. Corolla red to purple-red; tube evident; spur equal or larger than the tube ............................... P. crassifolia
9. Corolla blue, purple, pink or violet; tube diminute; spur larger than the tube ........................................... 10
10. Summer leaves linear-spatulate ….......................................................................................... P. tlahuica
10. Summer leaves cuneate, oblong, elliptic to suborbicular ...................................................................... 11
11. Summer leaves ciliate at the base .................................................................................................... 12
12. Winter rosette subhypogeal, leaves entire .......................................................................... P. elizabetiae
12. Winter rosette hypogeal, leaves ciliate at the base .............................................................................. 13
13. Winter rosette covered by a layer of dry membranous leaves, leaves 25-86, lanceolate .......... P. oblongiloba
13. Winter rosette without dry membranous leaves, leaves 20-40, ovate-lanceolate .................... P. michoacana
11. Summer leaves entire .................................................................................................................... 14
14. Winter rosette epigeal, laxa; flowers 2.4-2.8 cm long (including spur); corolla pink to whitish-purple, whit a yellow macula at the throat ................................................................................................... P. esseriana
14. Winter rosette epigeal to hypogeal, compact; flowers 2.5-6 cm long (including spur); corolla purple, whit a white macula at the throat .................................................................................................................. 15
15. Winter rosette epigeal to subhypogeal, covered by dry membranous leaves ........................... P. moranensis
15. Winter rosette hypogeal, without dry membranous leaves ................................................. P. macrophylla
Specie | State | Vegetation type |
---|---|---|
P. acuminata Benth. | CdMx, Hgo, Méx, Mich, Qro, Tlax | Pof, Xs, G |
P. agnata Casper | Hgo | Xs |
P. casperi H.D.Juárez & Zamudio | Jal | Pof |
P. crassifolia Zamudio* | Hgo | Pof |
P. crenatiloba DC. | Jal, Méx, Mich, Nay | Pof, Tdf |
P. elizabethiae Zamudio | Hgo | Xs |
P. emarginata Zamudio & Rzed. | Pue, Ver | Pof, Cf |
P. esseriana B.Kirchn. | Hgo | Xs |
P. lilacina Schltdl. & Cham. | Nay, Ver | Pof, Cf |
P. macrophylla Kunth | Gto | Tdf |
P. michoacana Zamudio & H.D.Juárez* | Mich | Tdf |
P. moranensis Kunth | CdMx, Gto, Hgo, Méx, Mich, Mor, Pue, Qro, Tlax, Ver | Pof, Cf, Tdf, Tef, Xs, G |
P. oblongiloba A.DC. | Gto, Jal, Méx, Mich | Pof, Tf, Tdf, G |
P. parvifolia B.L.Rob. | Jal, Méx, Mich, Mor, Nay | Pof, Tf, Tdf |
P. tlahuica López-Pérez & Zamudio* | Méx, Mor | Pof |
P. zamudioana H.D.Juárez & Muñiz-Castro* | Jal | Tdf |
Species richness distribution of Pinguicula along the TMVB. The species richness distribution analyses indicated that Hidalgo, the State of México and Michoacán (six species each), and the pine-oak forest (10 species) were the richest states and vegetation type (Figure 5A, B, Table 2). While, Mexico City, Morelos, Puebla, Querétaro, and Tlaxcala registered two species each. Pinguicula acuminata, P. casperi, P. crassifolia, P. crenatiloba, P. emarginata, P. lilacina, P. moranensis, P. oblongiloba, P. parvifolia, and P. tlahuica were found in pine-oak forest. Only, P. moranensis was found in the tropical evergreen forest.
Along the TMVB, the species of Pinguicula appeared from 759 m asl to 3,427 m asl (Figure 5C), but these were found mainly between 1,500-1,999 m asl (Figure 5D). Pinguicula moranensis had the widest elevation distribution range (996-3,427 m asl, Figure 5C). Whereas, P. michoacana had the narrowest elevation distribution range (1,828-1,852 m asl, Figure 5C). Furthermore, P. moranensis reached the highest elevation (3,427 m asl, Figure 5C) and P. lilacina had the lowest elevation (759 m asl, Figure 5C).
The two cell grid sizes recovered different areas with high species values on the Eastern and Western sectors of the TMVB (Figure 6). The analysis with cells of 0.21 × 0.21° rescued one cell with the highest species richness value in the Eastern sector (Figure 6A). On the other hand, the 0.24 × 0.24° cell analysis highlighted two richest cells, one on the Eastern and the other in the Western sectors (Figure 6B).
Discussion
Taxonomic treatment. Pinguicula tlahuica was first collected in 1955 in the vicinity of Bella Vista del Monte, municipality of Cuernavaca, Morelos by E. Lyonnet. The second author searched for the plants in this locality from 2005 to 2016, but never found them. During a field expedition in 2021, it was rediscovered and collected in the vicinity of Ocuilan de Arteaga, State of México. The dimorphic leaves arranged in summer and winter rosettes, the blue-violet and bilabiate corollas, the short infundibuliform tube, and the long spur place the new taxon within P. subg. Pinguicula section Orcheosanthus A.DC. (Candolle 1844). Within this section, P. tlahuica is similar to P. moranensis and P. gypsicola Brandegee by the form and size of the flowers, but morphological characters and ecological preferences set it apart (Table 1). Pinguicula tlahuica differs from P. moranensis by the linear-spatulate and ascendant summer leaves (vs. elliptic to sub-orbicular and adpressed to the soil), and the flowering period with the presence of winter rosettes (vs. winter and summer rosettes). In addition, it differs from P. gypsicola by the linear-spatulate and entire at the base summer leaves (vs. linear-lanceolate and ciliate at the base), and niche preferences. Pinguicula tlahuica grows on igneous rock walls in the oak forest, whereas P. gypsicola is found on gypsum soils of the xeric scrubland. Pinguicula tlahuica adds up to 54 the taxonomic richness of Pinguicula in Mexico.
Species richness distribution and endemism of Pinguicula along the TMVB. The MTZ represents the boundary between the Nearctic and Neotropical regions (Villaseñor et al. 2020). It includes the main mountainous chains of Mexico, Guatemala, Honduras, El Salvador, and Nicaragua (De Mendonça & Ebach 2020). The MTZ is a set of morphotectonic and physiographic provinces with different ages and origins (Ferrusquía-Villafranca 1993, Mastretta-Yanes et al. 2015). The orientation of the mountain ranges favors the dispersal of northern elements to the south and vice versa (Zunino & Halffter 1988). Shimai et al. (2021) explain the evolution within Pinguicula by ancient geographical expansions and gene flow, and subsequent vicariance with genetic drift. Whereas, Domínguez et al. (2024) highlight the effects of climatic changes over time in the mountain chains of the MTZ, favoring speciation and persistence, which is reflected in the high species richness and endemism of Pinguicula (López-Pérez et al. 2024).
Within the MTZ, the TMVB connects three major mountain ranges at both ends (Ferrusquía-Villafranca et al. 2007, Ferrari et al. 2012). Consequently, the TMVB represents a center of diversity, endemism, persistence, and biogeographic transition of the Mexican biota (Halffter & Morrone 2017). Our results identified the species richness of Pinguicula centered at both extreme sectors of the TMVB. Contact zones among mountain ranges favored the species richness and has been observed in other groups of plants. Rodríguez et al. (2018), identified grid cells with high species richness and endemism values of angiosperms in the Eastern, Central and Western sectors. Meanwhile, Murillo-Pérez et al. (2022) showed high species richness of Solanum (Solanaceae) in the Eastern and Western sectors. Also, Vargas-Amado et al. (2013) rescued the richness of Cosmos (Asteraceae) in the Western sector. Sosa et al. (2018), Sosa & Loera (2017), and Sanginés-Franco et al. (2015) located the species richness of vascular plants, monocot geophytes, and ferns in the Eastern sector. Furthermore, Munguía-Lino et al. (2015) recognized this sector as the richest in Tigridieae (Iridaceae) species. In addition, this sector was highlighted as the species richest for Lycianthes (Solanaceae) and Echeandia Ortega (Asparagaceae) (Anguiano-Constante et al. 2018, 2021, Ortiz-Brunel et al. 2021). On the other hand, Ruiz-Sanchez & Specht (2013) correlated the TMVB uplifting with the population diversification of Nolina parviflora (Asparagaceae). In addition, Sosa et al. (2018) found a high phylogenetic diversity of Mexican vascular plants in this province. Finally, Romero-Soler et al. (2021) revealed evidence supporting the speciation of Bakerantha B.L.Sm. (Bromeliaceae) as a result of the TMVB uplift. All analyses support the importance of the geodiversity and the complex climatic history of this province which promoted the diversification of angiosperms, including Pinguicula.