SciELO - Scientific Electronic Library Online

 
vol.9 número1Método colorimétrico para estimar la materia orgánica del suelo en áreas de karst índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Ecosistemas y recursos agropecuarios

versión On-line ISSN 2007-901Xversión impresa ISSN 2007-9028

Ecosistemas y recur. agropecuarios vol.9 no.1 Villahermosa ene./abr. 2022  Epub 09-Dic-2022

https://doi.org/10.19136/era.a9n1.3134 

Artículos científicos

Comportamiento agronómico de 81 genotipos de quinua (Chenopodium quinoa Willd) en el Perú

Agronomic behavior of quinoa genotypes (Chenopodium quinoa Willd) in Peru

Rigoberto Estrada-Zúniga1 
http://orcid.org/0000-0002-0652-9437

Vidal Apaza-Mamani2 
http://orcid.org/0000-0001-6594-3526

Angel Agustin Pérez-Ávila3 
http://orcid.org/0000-0001-5040-3199

Ana Maria Altamirano-Pérez4 
http://orcid.org/0000-0002-0239-6948

Edgar Neyra-Valdez5 
http://orcid.org/0000-0003-2086-7245

Leidy G. Bobadilla6 
http://orcid.org/0000-0002-9873-1252

1Estación Experimental Agraria Andenes, Cusco, Instituto Nacional de Innovación Agraria (INIA). Av. Micaela Bastidas N° 314 - 316, CP. 08630. Zurite, Anta, Cusco, Perú.

2Estación Experimental IIlpa, Puno, Instituto Nacional de Innovación Agraria (INIA). Rinconada Salcedo s/n Km. 22 Carretera Puno-Juliaca Paucarcolla. CP. 21110. Paucarcolla, Puno, Perú.

3Estación Experimental Santa Ana, Junín, Instituto Nacional de Innovación Agraria (INIA). Carretera Saños Grande - Hualahoyo Km 8, CP. 12006. El Tambo, Huancayo, Junín, Perú.

4Estación Experimental Canaán, Ayacucho, Instituto Nacional de Innovación Agraria (INIA). Av. Abancay N° 299, CP. 05003. Ayacucho, Huamanga, Perú.

5Unidad de Genómica, Universidad Peruana Cayetano Heredia. Av. Honorio Delgado 430, CP.15102. San Martín de Porres. Lima, Perú.

6Dirección de Desarrollo Tecnológico Agrario (DDTA), Instituto Nacional de Innovación Agraria (INIA). Av. La Molina, N° 1981, La Molina. Lima, Perú.


Resumen

La quinua (Chenopodium quinoa Willd) es consumida a nivel mundial debido a su composición nutricional. Es importante conocer las características agronómicas que se ven influenciadas por las condiciones edafoclimáticas y evaluar el comportamiento agronómico de 81 genotipos de quinua del Instituto Nacional de Innovación Agraria (INIA) sembradas en las localidades de Cusco, Puno, Ayacucho y Junín, bajo un diseño experimental de bloques completos al azar, con tres repeticiones. Se evaluaron las variables: altura de planta, diámetro de panoja, longitud de panoja, rendimiento, severidad de infección de mildiu (Peronospora farinosa) e índice de selección (IS), en siembras del 2017 y 2018. La comparación de medias se realizó mediante la prueba de Tukey, análisis de conglomerados, componentes principales, correlación de Pearson y la evaluación del índice de selección para identificar la adaptación de los genotipos. Los resultados mostraron que la siembra del 2018 tuvo los mayores rendimientos. El análisis de conglomerados encontró la formación de tres grupos, donde el grupo tres mostró las mejores características en rendimiento, altura de planta, diámetro y longitud de panoja. El análisis de componentes principales mostró correlaciones positivas entre variables altura de planta, diámetro y longitud de panoja. Más del 45% de los tratamientos mostraron un índice de selección mayor a uno y se identificaron 16 genotipos con nivel bajo de severidad de infección a mildiu. Las localidades de Cusco y Puno reportaron el mejor comportamiento agronómico para los 81 genotipos.

Palabras clave Adaptación; conglomerado; fenotípico; índice de selección; rendimiento

Abstract

Quinoa (Chenopodium quinoa Willd) is consumed worldwide for its nutritional composition. It is important to know the agronomic characteristics that are influenced by edaphic and climatic conditions and to evaluate the agronomic performance of 81 quinoa genotypes from the National Institute of Agrarian Innovation (INIA) planted in four locations of Peru: Cusco, Puno, Ayacucho and Junín, under a randomized complete block experimental design with three replications. The following variables were evaluated: plant height, panicle diameter, panicle length, yield, severity of downy mildew infection (Peronospora farinosa) and Selection Index (SI), during the 2017 and 2018 plantings. The comparison of means was performed using Tukey’s test, in addition, cluster analysis, principal components and Pearson’s correlation were performed and the evaluation of the selection index was applied to identify the adaptation of the genotypes. The results showed that the 2018 planting had the highest yields. Cluster analysis found the formation of three groups, where group three showed the best characteristics in yield, plant height, diameter and panicle length. Principal component analysis showed positive correlations between plant height, diameter and panicle length variables. More than 45% of the treatments showed a selection index greater than one and 16 genotypes were identified with a low level of severity of downy mildew infection. Cusco and Puno reported the best agronomic performance for the 81 genotypes.

Key words: Adaptation; cluster; phenotypic; selection index; performance

Introducción

La quinua (Chenopodium quinoa Willd) es una planta cultivada en zonas áridas y semiáridas de los Andes de América del Sur, su cultivo se ha extendido a nivel mundial (Bazile et al. 2016) debido a su extraordinaria tolerancia a condiciones ambientales desfavorables (Choukr-Allah et al. 2016). Como resultado de la mayor atención a este cultivo por sus propiedades nutricionales y el incremento de la demanda mundial, se incrementó la superficie cultivada y su producción en la región de los Andes (Gamboa et al. 2020). En Perú, la producción de quinua está en el orden de las 70 000 toneladas anuales desde el 2013 y para el 2019 la exportación de este cultivo alcanzó las 20 992 toneladas (MIDAGRI 2019). Se cultiva en 14 departamentos, siendo los que aportan los mayores volúmenes de producción Puno y Ayacucho con 38 900 y 21 200 toneladas, respectivamente (MIDAGRI 2017). Dentro de los factores que afectan la producción de quinua están las plagas, enfermedades y otros patógenos, siendo la enfermedad más importante el mildiú producido por Peronospora variabilis, que se ha incrementado de forma notable por la alta susceptibilidad de las variedades comerciales (León et al. 2018). Las zonas andinas debido a su alta humedad relativa, nubosidad y precipitación, favorecen la aparición de esta enfermedad (FAO 2016), que afecta el rendimiento y calidad del grano, además las variedades que actualmente se ofertan son de bajos rendimientos (Apaza 2018).

Un gran número de investigaciones han mostrado la amplia diversidad genética de la quinua (García-Godos y Cueva-Castillo 2021). Por lo que la selección de nuevas líneas, brinda la opción de que las características agronómicas de la planta lleguen a adaptarse a determinadas condiciones ambientales, convirtiéndola en un cultivo potencial para el sector agrícola (García et al. 2017). Por ello, es necesario que los programas de mejoramiento genético seleccionen nuevas variedades con características favorables de rendimiento, sanidad y adaptabilidad en beneficio de los productores y la oferta según las demandas del mercado (Morillo-Coronado et al. 2017). Trabajos como los de Mestanza et al. (2019) analizaron las características agronómicas de los genotipos de quinua en condiciones de costa central de la zona de Mocache (Ecuador), destacando el genotipo 48 con 154.17 cm de altura de planta, el genotipo Faro 2 con el mayor peso de 1 000 semillas (2.58 g) y el mayor rendimiento el genotipo O-5 con 143.15 g por planta. Mientras que Guevara et al. (2018) reporta que en quinua (Chenopodium quinoa Willd.) el genotipo Blanca de Junín tuvo el mayor rendimiento, altura y diámetro de panoja con 3815 kg ha−1, 189 cm y 60 cm, respectivamente. En tanto que Urdanegui et al. (2021) ren la evaluación agromorfológica de 11 genotipos de quinua en Huancayo, Perú; reportan que el genotipo CQH44H tuvo el mayor rendimiento de grano con promedio de 3 130.21 kg ha−1. Debido a la gran variabilidad de los genotipos de quinua es importante conocer las características agronómicas y la interacción genotipo ambiente para conocer la relación entre suelo, planta y clima (García-Parra y Plazas-Leguizamón 2018). Bajo este contexto, el objetivo del presente trabajo fue conocer las características agronómicas que se ven influenciadas por las condiciones edafoclimáticas y evaluar el comportamiento agronómico de 81 genotipos de quinua del Instituto Nacional de Innovación Agraria (INIA) sembradas en cuatro localidades del Perú.

Materiales y métodos

Localización del experimento

El experimento se realizó en cuatro (localidades) estaciones experimentales del Instituto Nacional de Innovación Agraria (INIA): 1) Estación Experimental Agraria Illpa, ubicada en el distrito de Paucarcolla de la provincia de Puno, departamento de Puno a una altitud de 3 815 m, presenta suelos tipo Mollisol (Gobierno Regional de Puno 2014), temperatura promedio de 15.6 ◦C, precipitación de 3.8 mm día−1, y humedad relativa de 7.7% (SENAMHI 2021a). 2) Estación Experimental Agraria Andenes, ubicada en el distrito de Zurite de la provincia Anta, departamento de Cusco a una altitud de 3 390 msnm, temperatura promedio de 12.5 ◦C, precipitación de 3.3 mm día−1, humedad relativa de 76.93% (SENAMHI 2021b), suelos profundos, arcillosos, ácidos y bosque húmedo Montano Subtropical (Gobierno Regional de Cusco 2016). 3) Estación Experimental Agraria Canaán, ubicada en el distrito de Ayacucho de la provincia de Huamanga, departamento de Ayacucho (2 740 m) con suelos de tipo Entisol (Gobierno Regional de Ayacucho 2012), temperatura promedio de 13 ◦C, precipitación de 7.78 mm día−1, y humedad relativa de 80.98% (SENAMHI 2021c). 4) Estación Agraria Experimental Santa Ana, ubicada en el distrito de El Tambo de la provincia de Huancayo departamento de Junín (3 260 m), predominancia de suelos arenosos y arcillosos (Gobierno Regional de Junín 2015), temperaturas promedio de 13.3 ◦C, precipitación de 3.4 mm día−1 y humedad relativa de 56.07% (SENAMHI 2021d) (Figura 1).

Figura 1 Ubicación de las Estaciones Experimentales Agrarias (EEA) donde se realizó la investigación 

Genotipos de quinoa evaluados

Se utilizaron 81 genotipos de quinua, obtenidos del banco de germoplasma del Instituto Nacional de Innovación Agraria (Tabla 1). Que corresponden a 20 genotipos de Junín, 16 de Ayacucho, 27 de Puno y 18 de Cusco, predominan los genotipos de grano blanco (70), grano rojo (6) y cristalinos (5).

Tabla 1 Genotipos de quinua utilizados en la investigación 

Código Denominación de genotipo Código Denominación del genotipo
1 M.28. L.6. T-197 03-21-112P (6.23) 52 M.39 L.6. T-261 03-21-115P (13.2)
2 M.19. L.6. T-86 Yunguyo Villa Pilar 53 M.5. L.6. T-22 10(97) 03-21-024P X 03-21-043P
3 CQA-023 Ayacucho 55 M.15 L.6 T-69 03-21-00011P (09)
5 CQA-024 Ayacuchano 56 M.29. L.6. T-200 K’coito Negro
6 CQA-016 57 M.14 L.6. T-61 Pomata Capachica
7 CQH-7 Huancas 58 INIA 415 - Pasankalla
8 Salcedo INIA 60 CQH-62 Sicaya
10 CQH-52 Vicso 61 M.37. L.6. T-226 Chullpi Amarillo
11 M.40 L.6. T-265 Misaquinua 62 M.23. L.6. T-98 Kuchiwila 2011
12 M.8. L.6. T-44 03-21-339P 63 Sucano Pilcuyo
13 Q 006-12 Blanca Ranra Cancha 65 Pomata (Capachica)
15 CQH-43 Huachac 66 Amarillo Maranganí
16 CQA-035 Ayacuchano 67 CQA-033 Ayacucho
17 M.13. L.6. T-60 Ccacata 68 M-18 L.6. T-77 03-21-003P
18 M.38 L.6. T-256 03-21-114P (261) 69 M.33 L.6. T-220 Chullpi Juli
20 CQH-INIA - 433 70 CQH-04(97) Puno
21 M.35. L.6. T-224 03-21-0004P (09) Chullpi Amarillo 71 M.31. L.6. T-211 Real Rosado Cabana
22 M.21 L.6. T-91 03-21-00039P(09) Lampa 72 M.22 L.6. T-93 Nicasio
23 Q 004-8 Rojo Chihuampata 73 M.9. L.6. T-51 Sucano Pilcuyo
25 M.2 L.6. T-13 80(99) 04-02-641 X 04-02-339 75 Q 003-6 Blanca Collopuquio
26 M.26 L.6. T-70 Pomata (Lampa Chico) 76 M.24 L.6. T-161 Wariponcho Cabana
27 M.11 L.6. T-55 Alquipa 77 Yunguyo (Chajillapi)
28 Blanca de Juli 78 M.16 L.6. T-70 Anicho
30 CQH-10 Acolla 80 CQH- Huancayo
31 M.34. L.6. T-223 03-21-0006P (99) Chullpi Blanca 81 M.36. L.6. T-225 Chullpi Rojo
32 M.20. L.6. T-90 03-21-00030P (09) Cabana 82 M.4. L.6. T-21, 47(99) 04-02-062 X 04-02-339
33 M.17. L.6. T-72 Huancayo 83 CQA-048 Ayacucho
35 CQH-19 Sincos Aramachay 85 CQA-043 Ayacucho
36 CQH-65 Orcutuna 86 INIA 427 - A marillo Sacaca
37 M.12 L.6. T-58 Alquipa 87 03-21-00039P (09) Pantela Roja Lampa
38 INIA 431 - Altiplano 88 Kancolla
40 CQH-29 Huayao 90 CQH-3 Jauja Aeropuerto
41 M.30. L.6. T-205 03-21-0003P (09) Chullpi Misti Cabana 91 M.32. L.6. T-212 03-21-013P (5.17)
42 M.10. L.6. T-52 Misti Quinua Cabana 92 CQH-2 Jauja Aeropuerto
43 M.3. L.6. T-15 47(99) 04-02-062 X 04-02-339 93 Blanca Junin
45 M.1 L.6. T-1 6(99) 04-02-062 X Ayacuchana 95 03-21-001 (4.5)
46 M.25. L.6. T-163 Wariponcho 96 M.27 L.6. T-182 Yunguyo Villa Pilar
47 M.7. L.6. T-40 46(99) Cheweca X Real Boliviana 97 CQA-027 Ayacucho
48 CQH- Hualhuas 98 INIA 420 - Negra Collana
50 CQH-16 Sincos 100 CQH-44 Huachac
51 M.6. L.6. T-29 45(99) Cheweca X 04-02-339

Diseño y manejo del experimento

El experimento en cada estación se sembró bajo un diseño de bloques completos al azar con tres repeticiones, la evaluación se realizó durante las siembras del 2017 y 2018, la densidad de siembra fue de 10 kg ha−1 y el nivel de fertilización de 80 unidades de nitrógeno, 60 de fosforo y 40 de potasio aplicado durante la siembra. Cada unidad experimental fue de 12.8 m2 con un área total de 3 110 m2 por sitio experimental, con una densidad promedio de 15 plantas por metro lineal equivalentes a 187 500 plantas por hectárea, el experimento se realizó en la campaña agrícola normal de producción en la zona andina del Perú entre los meses de octubre a junio, las siembra se realizaron según las condiciones ambientales de cada localidad de ubicación de la estación experimental bajo condiciones de precipitación para el caso de Puno fue en el mes de octubre, en Cusco y Junín en el mes de noviembre y en Ayacucho en el mes de diciembre.

En todas las localidades el experimento fue bajo condiciones de secano con preparación mecanizada del terreno, no se realizó ninguna aplicación de fertilización foliar ni de pesticidas durante el desarrollo del cultivo. En madurez de cosecha se realizó el corte de forma manual de los dos surcos centrales por tratamiento realizando la trilla con una trilladora experimental, posteriormente la limpieza del grano se realizó con una seleccionadora experimental.

Variables agronómicas evaluadas

Se evaluaron 10 plantas tomadas al azar (surcos centrales), midiendo las variables: Altura de planta, desde la base del tallo hasta el inicio de la panoja. Diámetro de panoja, con ayuda de un vernier tomando la parte más ancha de la panoja. Longitud de panoja, desde la base hasta el ápice de la misma teniendo en cuenta la panoja central y el rendimiento de quinua registrando el peso de grano trillado y limpio, con la ayuda de una balanza de precisión de marca ACU, modelo MACSOO6A/w con capacidad de 6 kg y lectura mínima de 0.01 g (Rojas y Padulosi 2013).

Cálculo del índice de selección (IS)

El cálculo de los estimadores BLUP (best linear unbiased predictor) de los efectos aleatorios de los genotipos estudiados se realizó a través de una constante generada por el tamaño de la población (Muñoz y Gonzáles 2016).

ISloc1=BLUPloc1+K

Dónde: IS = Índice de Selección, BLUP = Estimador de los efectos aleatorios por localidad, y K = Valor constate generado por el número de localidades y tratamientos.

A través de la interacción genotipo x ambiente se observó el comportamiento diferencial de los genotipos en las condiciones ambientales variables. Esta interacción es muy importante en el mejoramiento genético, debido a que se encuentra presente durante el proceso de selección y recomendación de genotipos, para ello al encontrar diferencias estadísticas del análisis de varianza combinado de años, localidades y genotipos para las interacciones, se ha desarrollado predicciones de efectos aleatorios para estudio de estabilidad (BLUP) en base a la variable rendimiento y la influencia de las condiciones ambientales que genera el índice ambiental para la selección de los genotipos.

Evaluación de severidad a infección a mildiu

Las evaluaciones de reacción a mildiu se desarrollaron mediante tres evaluaciones en campo a fin de identificar el área bajo la curva de progreso de la enfermedad (AUDPC) utilizando la fórmula propuesta por Danielsen y Ames (2010):

AUDPC=(in-1yi+yi+1)/2*(ti+1-ti)

Dónde: n es el número de evaluaciones, y es la severidad, t es el número de días después de la siembra en que se hace la evaluación. Se incluye (t, y) = (0, 0) como la primera evaluación.

Análisis de datos

Se utilizó análisis exploratorios y estadística descriptiva de las variables agronómicas evaluadas. Se comprobó la normalidad de datos mediante la prueba de Shapiro-Wilk entre localidades y entre tratamientos. Posterior a ello, se realizó un análisis de varianza para detectar diferencias significativas a nivel de tratamientos y sus interacciones con localidad y año. La comparación de medias se realizó mediante la prueba de Tukey (P ≤ 0.05) para determinar diferencias significativas entre tratamientos. También se realizó un análisis de conglomerados para la formación de grupos y su respectivo análisis de varianza. Se realizó un análisis de componentes principales a fin de determinar las correlaciones existentes entre las variables de estudio. Además de que se calculó el índice de selección (IS) y el área bajo la curva de progreso de la enfermedad (AUDPC). Los análisis se realizaron con el programa estadístico InfoStat v.2018p.

Resultados

En la Tabla 2 se presentan los promedios obtenidos de las variables evaluadas por localidad (departamento). En Puno se tuvo los valores más altos para altura de planta, diámetro de panoja y rendimiento con 1.51 ± 0.20 m, 8.96 ± 2.20 cm y 2.75 ± 0.99 t ha−1, respectivamente.

Tabla 2 Comparación entre localidad por variable estudiada (media y desviación estándar). 

Localidad Altura de planta (m) Longitud de panoja (cm) Diámetro de panoja (cm) Rendimiento (t ha-1)
Puno 1.51 ± 0.20a 34.77 ± 4.64b 8.96 ± 2.20a 2.75 ± 0.99a
Cusco 1.50 ± 0.28a 40.58 ± 7.37a 8.17 ± 2.35b 1.89 ± 1.00b
Ayacucho 1.34 ± 0.32b 35.91 ± 8.84b 8.25 ± 2.33b 1.48 ± 0.83c
Junín 1.19 ± 0.32c 33.12 ± 6.76c 8.62 ± 3.86ab 1.30 ± 0.74d
F = 142.32 F = 275.81 F = 207.67 F = 207.52
P = 0.0001 P = 0.0001 P = 0.0001 P = 0.0001

Letras diferentes en sentido vertical indican diferencias altamente significativas (p < 0.0001)

Los resultados del análisis de varianza indican que, para las fuentes de variación año, localidades, repeticiones, año por localidad y año por localidad por tratamiento hay diferencias estadísticas significativas (P ≤ 0.0001). Lo que indica diferencias en el comportamiento y respuesta del material genético en los diferentes años y localidades en los que fueron evaluados. A nivel de los años de siembra se encontró que durante el ciclo agrícola 2017-2018 los resultados obtenidos son superiores estadísticamente (P ≤ 0.0001) a los encontrados en el ciclo agrícola 2016-2017 para las variables rendimiento, altura de planta, longitud y diámetro de panoja. El rendimiento promedio de los dos ciclos de siembra evaluados en Puno fue de 2.75 t ha−1, valor que es estadísticamente diferente y superior a los promedios que se lograron obtener en las demás localidades con rendimientos inferiores a las 2.00 t ha−1 (Figura 2).

Figura 2 Prueba de comparación de medias para rendimiento de localidades por año 

El análisis de conglomerados clasificó en tres grupos a las características agronómicas de quinua, estando el grupo uno formado por 19 genotipos, y los grupos dos y tres por 31 genotipos cada uno (Figura 3). Según el análisis de varianza, todas las variables agronómicas como altura de planta, longitud de panoja y diámetro de panoja, presentan diferencias significativas (P 0.001), lo que indica que fueron variables determinantes en la formación de los grupos. El grupo tres presenta las mejores características con respecto a rendimiento, altura de planta, diámetro de panoja y longitud de panoja con 2.27 t ha−1, 1.57 m, 9.96 cm y 39.35 cm, respectivamente (Tabla 3).

Figura 3 Conglomerados. Método de Ward (18: 3 grupos). Distancia Euclídea 

Tabla 3 Análisis de varianza de conglomerados para características agronómicas de 81 genotipos de quinua. 

Grupos Rendimiento Altura de planta (m) Diámetro de panoja (cm) Longitud de panoja (cm) Total de genotipos
1 1.29c 1.27b 7.26c 31.01c 19
2 1.79b 1.26b 7.80b 35.95b 31
3 2.27a 1.57a 9.96a 39.35a 31
F = 142.32 F = 275.81 F = 207.67 F = 207.52
P = 0.0001 P = 0.0001 P = 0.0001 P = 0.0001

El Análisis de Componentes Principales (ACP), con su primer eje (PC1) logró explicar 75.8% de la variabilidad de los datos, y el segundo componente principal (PC 2) explicó 9.7% de la variabilidad (Figura 4), lo que indica que los primeros dos CP explican el 55.5% de la variabilidad. El ACP separó a los genotipos en tres grupos, siendo el grupo tres el que presenta las mejores características con respecto a las variables altura de planta, diámetro de panoja, longitud de panoja y rendimiento.

Figura 4 Análisis de componentes principales de 81 genotipos de quinua 

Por otro lado, la correlación (Pearson, P ≤ 0.0001), para las variables cuantitativas fue altamente significativa, mostrando que las variables altura de planta, longitud de panoja y diámetro de panoja se correlaciona de forma positiva con el rendimiento (0.63**, 0.66** y 0.69**, respectivamente; Tabla 4), lo que indica que, a mayor altura de planta, se tiene mayor longitud de panoja y mayor diámetro de panoja, lo que incrementa el rendimiento del genotipo de quinua.

Tabla 4 Correlación de Pearson para variables evaluadas. 

Rendimiento Altura de planta Longitud de panoja Diámetro de panoja
Rendimiento 1
Altura de planta 0.63** 1
Longitud de panoja 0.66** 0.63** 1
Diámetro de panoja 0.69** 0.73** 0.73** 1

Al realizar las pruebas del IS, se encontró que la productividad está influenciada por los diferentes genotipos en estudio, la franja roja de la Figura 5 muestra el promedio del efecto ambiental. En muchos casos, algunos genotipos de quinua presentan mayor grado de asociación entre el rendimiento y el índice de Selección. El índice de selección frente al rendimiento para los genotipos por localidades de procedencia fue IS = 1.05 para la localidad de Ayacucho, IS = 1.45 para la localidad de Cusco, IS = 0.87 para la localidad de Junín, IS = 2.31 para Puno.

Figura 5 Interacción de genotipo ambiente para los 81 genotipos de quinua en cuatro localidades 

Los resultados de la reacción a mildiu se muestran en la Figura 6 y Tabla 5, donde se observa que 16 genotipos de quinua tuvieron bajos niveles de severidad de infección a mildiu con rango de 559.84 hasta 1 170.78 unidades AUDPC, lo que indica que estos genotipos tienen resistencia a la enfermedad, por lo que se pueden considerar como progenitores en programas de mejoramiento de quinua para resistencia a mildiu.

Figura 6 Identificación de genotipos de quinua por su reacción a mildiu 

Tabla 5 Genotipos de quinua seleccionados por su sanidad y rendimiento. 

Código Denominación del genotipo
3 CQA-023 Ayacucho
8 Variedad Salcedo INIA
10 CQH-52 Vicso
13 Q 006-12 Blanca Ranra Cancha
20 CQH-INIA - 433
25 M.2 L.6. T-13 80(99) 04-02-641 X 04-02-339
26 M.26 L.6. T-70 Pomata (Lampa Chico)
28 Variedad Blanca de Juli
41 M.30. L.6. T-205 03-21-0003P (09) Chullpi Misti Cabana
53 M.5. L.6. T-22 10(97) 03-21-024P X 03-21-043P
62 M.23. L.6. T-98 Kuchiwila 2011
70 CQH-04(97) Puno
72 M.22 L.6. T-93 Nicasio
82 M.4. L.6. T-21. 47(99) 04-02-062 X 04-02-339
83 CQA-048 Ayacucho
87 03-21-00039P(09) Pantela Roja Lampa

DISCUSIÓN

De acuerdo a las características agronómicas evaluadas en los genotipos de quinua las localidades mostraron diferencias entre ellas, asociado a los mecanismos de adaptación de los genotipos estudiados, ya que provienen de condiciones agroclimáticas propias de la zona (Mestanza et al. 2019). Las mayores alturas de planta (1.51 0.20) se encontraron en la localidad de Puno (3 815 m), probablemente debido a las condiciones de temperatura, humedad relativa, precipitación y propiedades físico químicas del suelo que fueron favorables en los dos ciclos de evaluación (García y Plazas 2018). Además, de que la altura depende de las características genéticas propias de cada variedad que determinan el desarrollo de la planta y la pueden proveer de mayor eficiencia en la captación de la radiación solar, nutrientes y agua (Onofre y Bonifacio 2021).

En Puno en los dos ciclos de siembra se tuvieron los mejores rendimientos, lo que se puede deber a que las condiciones de precipitación anual acumulada en el altiplano de acuerdo los reportes de precipitación acumulada del SENAMHI de la Estación Convencional Meteorológica Puno (2021) que fue de 480 mm mientras que en valles interandinos fue superior a 500 mm. Al respecto, se sabe que las condiciones climáticas influyen en la producción y rendimiento de la quinua, siendo los niveles óptimos para un mejor desarrollo una precipitación de 700 mm (Carrasco 2016). Otro factor que puede estar asociado al rendimiento de quinua en las localidades evaluadas es el resultado de un manejo tradicional de cultivo (Cancino-Espinoza et al. 2018).

Las variables agronómicas permitieron la formación de tres grupos, lo que coincide con lo reportado por Morillo et al. (2020) quienes también reportan la formación de tres grupos en la evaluación morfoagronómica de 19 genotipos de quinua en Colombia. El grupo 2 presentó los promedios más altos de las variables evaluadas, estando presente en este grupo los genotipos INIA 415 Pasankalla, Kancolla, Salcedo INIA e INIA 420 Negra Collana, con altura promedio de 1.26 m, valor que es superior a los 93.39 cm reportados por Churra et al. (2019) para el genotipo INIA 415 Pasankalla, en condiciones de la localidad de Puno. Esta variación para la altura de planta se sabe que depende de la variedad y las condiciones ambientales de la localidad de cultivo (Benique 2019). Lo que indica que las condiciones ambientales de las localidades de evaluación tuvieron interacción con el genotipo evaluado.

Las correlaciones positivas significativas encontradas son similares a las reportados por Romero-Félix et al. (2018) quienes mencionan que la altura planta, longitud de panoja, diámetro de panoja y rendimiento, se correlacionan de forma positiva con el rendimiento de semilla. Por lo que la selección de genotipos con los mayores valores en estas variables es de suma importancia en los programas de mejoramiento de quinua para la selección de variedades con componentes de rendimiento que contribuyan a incrementar la productividad del cultivo de quinua, (Morillo et al. 2020). Para el índice de selección se observa que los genotipos de quinua de los valles interandinos (Cusco, Ayacucho y Junín) tuvieron influencia del ambiente, mientras que en los genotipos procedentes del altiplano (Puno) presentan mejor estabilidad (Apaza 2018), por lo que, existen genotipos en los cuales el efecto del índice de selección es menor al promedio general encontrado en el análisis. Los índices de selección de los genotipos estudiados en las cuatro localidades fueron superiores a uno, los cuales son mayores que los reportados por Delgado et al. (2009), quienes encontraron índices de selección entre -1.79 y 0.96, lo que indica que los genotipos evaluados en la presente investigación tienen una amplia adaptabilidad a diferentes condiciones ambientales (Mestanza et al. 2019). Lo cual indica que dentro de los genotipos evaluados hay genotipos que pueden responder de forma positiva en cualquier ambiente que se siembren.

Con respecto a la severidad a infección a mildiu se identificaron 16 genotipos con bajos niveles de severidad. Lo que indica que la mayor parte de genotipos evaluados presenta niveles de severidad alto, lo que se puede deber a que no se aplicó ningún tratamiento para el control de Mildiu. Lo cual coincide con León et al. (2018) quienes encontraron valores de 615.7 hasta 759 en Salcedo INIA con aplicación de Trichoderma sp. nativa en Puno. Mientras que Tejada (2020) reportó que el comportamiento de las accesiones de quinua y su reacción a mildiu, están asociadas a las condiciones ambientales y la variabilidad de la precipitación y temperatura que se presenta durante el desarrollo fenológico del cultivo. Lo anterior indica que los genotipos con bajos niveles de severidad, pueden ser utilizados para programas de conservación y mejoramiento genético a fin de garantizar la seguridad alimentaria en tierras de andenes peruanos (Gómez-Pando et al. 2019).

Conclusiones

Se encontró alta influencia del ambiente en el comportamiento de los genotipos estudiados, por lo que algunos genotipos mostraron interacción en cuanto a su comportamiento particular a cada uno de las localidades. El Índice de Selección detectó que más del 45% de los tratamientos tuvieron un IS mayor a uno, lo que indica la se tienen genotipos de quinoa apropiados para ser utilizados como parentales en los programas de mejoramiento genético de quinua. Con respecto, a la reacción a mildiu sobresalen 16 genotipos de quinua que muestran un bajo nivel de severidad al mildiu.

Este trabajo fue financiado por el Instituto Nacional de Innovación Agraria (INIA) a través del Programa Nacional de Innovación Agraria (PNIA) Contrato 031-2015-INIA-PNIA/UPMSI/IE

Literatura citada

Apaza JD (2018) Selección de líneas de quinua (Chenopodium quinoa Willd.) en Puno, Perú. Revista de Investigaciones de la Escuela de Postgrado 7: 422-432. [ Links ]

Bazile C, Pulvento C, Verniau A, Al-Nusairi MS, Ba D, Breidy J, Hassan L, Mohammed MI, Mambetov O, Otam- bekova M, Sepahvand NA, Shams A, Souici D, Miri K, Padulosi S (2016) Worldwide evaluations of quinoa: preliminary results from postinternational year of quinoa FAO projects in nine countries. Frontiers in Plant Science 7: 1-18. DOI: 10.3389/fpls.2016.00850 [ Links ]

Benique E (2019) Impacto del cambio climático en el rendimieto de la producción de cañihua (Chenopodium pallidicaule) en la región-Puno. Revista de Investigaciones Altoandinas 21: 100-110. [ Links ]

Choukr-Allah R, Rao NK, Hirich A, Shahid M, Alshankiti A, Toderich K, Gill S, Rahman KU (2016) Quinoa for marginal environments: Toward future food and nutritional security in MENA and Central Asia Regions. Frontiers in Plant Science 7: 1-11. DOI: 10.3389/fpls.2016.00346 [ Links ]

Cancino-Espinoza E, Vásquez-Rowe I, Quispe I (2018) Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Science of The Total Environment 637-638: 221-232. [ Links ]

Carrasco F (2016) Efectos del cambio climático en la producción y rendimiento de la quinua en el distrito de Juli, periodo 1997-2014. Comuni@cción 7: 38-47. [ Links ]

Churra E, Mujica A, Haussmann B, Smith K, Flores S, Florez AL (2019) Caracterización agronómica de la progenie de quinua (Chenopodium quinoa Willd.) de cruces simples autofecundados cercanos y distantes. Ciencia e Investigación Agraria 46: 154-165. [ Links ]

Danielsen S, Ames T (2010) El Mildiu de la Quinua en la zona andina. Manual práctico para el estudio de la enfermedad y el patógeno. Centro Internacional de la papa. Dinamarca. 38p. http://cipotato.org/wp-content/uploads/2014/10/AN60198.pdf . Fecha de consulta: 10 de abril de 2021. [ Links ]

Delgado AI, Palacios JH, Betancourt C (2009) Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoa Willd.) en el municipio de Iles, Nariño (Colombia). Agronomía Colombiana 27: 159-167. [ Links ]

FAO (2016) Guía de identificación y control de las principales plagas que afectan a la quinua en la zona andina, Organización de las Naciones Unidas para la Alimentación y la Agricultura. Santiago, Chile. 92p. http://www.fao.org/3/i5519s/i5519s.pdf . Fecha de consulta: 9 de abril de 2021. [ Links ]

Gamboa C, Bojacá CR, Schrevens E, Maertens M (2020) Sustainability of smallholder quinoa production in the Peruvian Andes. Journal of Cleaner Production 264: 1-12. DOI: 10.1016/j.jclepro.2020.121657. [ Links ]

García-Godos P, Cueva-Castillo JM (2021) Variabilidad genética de 29 accesiones de quinua (Chenopodium quinoa Willd) peruana mediante marcadores AFLP y análisis multivariante. Scientia Agropecuaria 12: 57- 64. [ Links ]

García MA, García JF, Melo DI, Deaquiz YA (2017) Respuesta agronómica de la quinua (Chenopodium quinoa Willd) variedad dulce de Soracá a la fertilización en Ventaquemada-Boyacá. Cultura Científica 15: 66-77. [ Links ]

García-Parra MA, Plazas-Leguizamón NZ (2018) La quinua (Chenopodium quinoa Willd) en los sistemas de producción agraria. Revista Producción + Limpia 13: 112-119. [ Links ]

Guevara EF, Oliva M, Collazos S (2018) Comportamiento agronómico de ocho genotipos de quinua (Chenopodium quinoa Willd.) en el distrito Molinopampa, provincia Chachapoyas, Amazonas, 2017. Revista de Investigación Científica UNTRM 2: 63-71. [ Links ]

Gobierno Regional de Ayacucho (2012) Zonificación ecologica y económica Ayaucho. Gobierno Regional de Ayacucho. Perú 289p. [ Links ]

Gobierno Regional de Cusco (2016) Estudio de diagnostico y zoonificación para el tratamiento de la demarcación territorial de la provincial de Anta. Gobierno Regional de Cusco. Cusco, Perú. 188p. [ Links ]

Gobierno Regional de Junín (2015) Memoria descriptiva zonificación ecológica y económica del departamento de Junín a nivel meso y escala1:100000. Gobierno Regional de Junín, Perú. 385p. [ Links ]

Gobierno Regional de Puno (2014) Estudio de suelos y capacidad de uso mayor (departamento de puno). Gobierno Regional de Puno, Perú. 136p. [ Links ]

Gómez-Pando LR, Aguilar-Castellanos E, Ibáñez-Tremolada M (2019) Quinoa (Chenopodium quinoa Willd.) Breeding. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: Cereals. Springer, Cham. Switzerland. pp: 259-316. [ Links ]

León B, Ortiz N, Condori N, Chura E (2018) Cepas de Trichoderma con capacidad endofítica sobre el control de mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de quinua. Revista de Investigaciones Altoandinas 20: 19-30. [ Links ]

Mestanza C, Zambrano K, Pinargote J, Veliz D, Vásconez G, Fernández-García N, Olmos E (2019) Evaluación agronómica de genotipos de quinua (Chenopodium quinoa Willd.) en condiciones agroclimáticas en la zona de Mocache. Ciencias agrarias 12: 19-30. [ Links ]

MIDAGRI (2017) Perú se mantiene como primer productor y exportador mundial de quinua, superando a Bolivia. Ministerio de Desarrollo Agrario y Riego. Perú. https://www.midagri.gob.pe/portal/noticias-anteriores/notas-2017/20566-peru-se-mantiene-como-primer-productor-y-exportador-mundial-de-quinua-superando-a-bolivia . Fecha de consulta: 8 de abril de 2021. [ Links ]

MIDAGRI (2019) Boletín estadístico mensual “El agro en cifras” 2019. Ministerio de Desarrollo Agrario y Riego. Perú. http://siea.minagri.gob.pe/siea/?q=publicaciones/boletin-estadistico-mensual-el-agro-en-cifras . Fecha de consulta: 8 de abril de 2021. [ Links ]

Morillo AC, Manjarres EH, Morillo Y (2020) Evaluación morfoagronómica de 19 materiales de Chenopodium quinoa en el departamento de Bocayá. Biotecnología en el Sector Agropecuario y Agroindustrial 18: 84-96. [ Links ]

Morillo-Coronado AC, Castro-Roberto MA, Morillo-Coronado Y (2017) Caracterización de la diversidad genética de una colección de quinua (Chenopodium quinoa Willd). Biotecnología en el Sector Agropecuario y Agroindustrial 15: 49-56. [ Links ]

Muñoz R, González C (2016) Guía práctica de evaluación genética animal con virtual blup. Servicios Informáticos y Tecnologías Web, E.I.R.L. Villarrica, Chile. 80p. [ Links ]

Onofre XM, Bonifacio A (2021) Evaluación de las características fenológicas y agronómicas de la quinua silvestre (Chenopodium quinoa spp.) del altiplano boliviano. Revista de investigación e Innovación Agropecuaria y de Recursos Naturales 8: 7-20. [ Links ]

Rojas W, Padulosi S (2013) Descriptores para quinua y sus parientes silvestres. 1era. edición. Bioversity International. Roma, Italia. 64p. [ Links ]

Romero-Félix CS, López-Castañeda C, Kokashi-Shibata J, Martínez-Rueda CG, Martínez-Ruedo CG, Aguilar-Rincón VH (2018) Ambiente y genotipo: Efectos en el rendimiento y sus componentes, y fenología en frijol común. Acta Universitaria 28: 20-32. [ Links ]

SENAMHI (2021a) Datos hidrometeorológicos a nivel nacional. Estación Convencional Meteorológica Puno. Servicio Nacional de Meteorología e Hidrología del Perú. https://www.senamhi.gob.pe/?&p=estaciones . Fecha de consulta: 10 de abril de 2021. [ Links ]

SENAMHI (2021b) Datos hidrometeorológicos a nivel nacional. Estación Convencional Meteorológica Granja Kayra. Servicio Nacional de Meteorología e Hidrología del Perú. https://www.senamhi.gob.pe/?&p=estaciones . Fecha de consulta: 10 de abril de 2021. [ Links ]

SENAMHI (2021c) Datos hidrometeorológicos a nivel nacional . Estación Convencional Meteorológica Chilcayoc. Servicio Nacional de Meteorología e Hidrología del Perú. https://www.senamhi.gob.pe/?&p=estaciones . Fecha de consulta: 10 de abril de 2021. [ Links ]

SENAMHI (2021d) Datos hidrometeorológicos a nivel nacional . Estación Convencional Meteorológica Santa Ana. Servicio Nacional de Meteorología e Hidrología del Perú. https://www.senamhi.gob.pe/?&p=estaciones . Fecha de consulta: 10 de abril de 2021. [ Links ]

Tejada TN (2020) Nueva variedad de “quinua” Chenopodium quinoa Wild. (Chenopodiaceae) para la sierra norte del Perú con características agronómicas y comerciales sobresalientes. Arnaldoa 27: 751-768. [ Links ]

Urdanegui P, Pérez-Ávila A, Estrada-Zúñiga R, Neyra E, Mujica A, Corredor FA (2021) Rendimiento y evaluación agromorfológica de genotipos de quinua (Chenopodium quinoa Willd.) en Huancayo, Perú. Agroindustrial Science 11: 63-71 [ Links ]

Recibido: 24 de Septiembre de 2021; Aprobado: 04 de Febrero de 2022

*Autor de correspondencia: restrada@inia.gob.pe

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons