SciELO - Scientific Electronic Library Online

 
vol.35 número90PresentaciónLos efectos asimétricos de la inflación, la incertidumbre inflacionaria y el crecimiento económico en México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Análisis económico

versión On-line ISSN 2448-6655versión impresa ISSN 0185-3937

Anál. econ. vol.35 no.90 Ciudad de México sep./dic. 2020  Epub 15-Abr-2021

 

Artículos

Interstate input-output model for Mexico, 20131

Modelo interestatal de insumo-producto para México, 2013

Eduardo Amaral Haddad* 

Inácio Fernandes de Araújo** 

María Eugenia Ibarrarán*** 

Roy Boyd**** 

Alejandra Elizondo***** 

Juan Carlos Belausteguigoitia******  2

*University of São Paulo. Email: ehaddad@usp.br

**University of São Paulo. Email: inaciofaj@gmail.com

***Universidad Iberoamericana Puebla. Email: mariaeugenia.ibarraran@iberopuebla.mx

****Ohio University. Email: boydr1@ohio.edu

*****Centro de Investigación y Docencia Económicas A.C.-CONACYT. Email: alejandra.elizondo@cide.edu

******Instituto Tecnológico Autónomo de México. Email: juan.belausteguigoitia@itam.mx


ABSTRACT:

The aim of this paper is to describe in detail the process of estimation of the interregional input-output system for Mexico, for the year 2013. This is the first exercise of the type since no regional model has been built including all states of Mexico. With this paper, we make available not only the details of the methodological procedures adopted to generate the interregional system, but also the database itself to be used by other researchers and practitioners.

Keywords: interregional input-output; methodology; data; Mexico

JEL Classification: C67; D57; R15

RESUMEN:

El objetivo de este documento es describir en detalle el proceso de estimación del sistema interregional insumo-producto para México para el año 2013. Este es el primer ejercicio de este tipo ya que no se ha construido un modelo regional incluyendo todos los estados de México. Con este artículo, ponemos a disposición no sólo los detalles de los procedimientos metodológicos adoptados para generar el sistema interregional, sino también la propia base de datos que podrán utilizar otros investigadores y profesionistas.

Palabras clave: Insumo producto interregional; metodología; datos; México

Clasificación JEL: C67; D57; R15

INTRODUCTION

We have witnessed considerable advances in the estimation of regional and interregional extensions of input-output models since the pioneering incursions of Isard (1951) and Leontief et al. (1953). Despite those efforts, the scarcity of information associated with the high cost of obtaining interregional trade flows based on survey data remains as one of the main obstacles to the estimation of interregional input-output systems. This has made the so-called non-survey estimation methods of interregional systems gain popularity among academic researchers and practitioners (Round, 1983).

Round (1983) recalls that the use of the terms survey and non-survey methods suggests the existence of two exclusive and well-defined research techniques. However, interregional input-output systems are often constructed under hybrid approaches, combining various techniques according to the quantity and quality of primary data available. This paper describes the process of estimation of the interregional input-output systems for Mexico, for the year 2013, using the method known as Interregional Input-Output Adjustment System (IIOAS), based on Haddad et al. (2016a). The system is estimated under the very same methodological procedure and consider the 32 regions in Mexico whose economies are disaggregated in 37 sectors. There are recent efforts to estimate regional and interregional input-output systems for Mexico (e.g. Dávila, 2015; Assuad and Sánchez, 2016; Chiquiar et al., 2017).3 However, to the best of our knowledge, this is the first interregional system that takes into account explicitly the economies of the 32 Mexican states.

The IIOAS is a hybrid method that combines data made available by official agencies, such as the Instituto Nacional de Estadística y Geografía (INEGI), with non-survey techniques for the estimation of unavailable information. The main advantages of the IIOAS are its consistency with information from the National Accounts Statistics and the flexibility of its regionalization process, which can be applied to any country that: (i) publishes standard make and use tables; and (ii) provides a regional information system at the sectorial level. Such flexibility can be attested by recent applications for distinct interregional systems: interisland model for the Azores (Haddad et al., 2015), interregional models for Colombia (Haddad et al., 2016a), Egypt (Haddad et al., 2016b), Greece (Haddad et al., 2018), Lebanon (Haddad, 2014), Morocco (Haddad et al., 2017a), and Brazil (Haddad et al., 2017b).

The estimated systems are expected to be able to capture the existing specificities in the productive structure of each Mexican region and, in addition, contribute to the methodological debate on the estimation of interregional input- output systems under conditions of limited information (Hulu and Hewings, 1993; Riddington, Gibson and Anderson, 2006; Zhang, Shi and Zhao, 2015; Tobben and Kronenberg, 2015; Flegg et al., 2016). It also adds to a broader literature that deals with a large range of methods, extending from the earlier work of Jan Oosterhaven (1981), to Roy and Thill (2004) and the contributions of the entropy modelers starting with Alan Wilson (1970) and continuing with the cross entropy approaches of Esteban Fernandez-Vazquez et al. (2015).4

The paper is organized as follows: section 1 describes in detail the methodological procedure used in the construction of the interregional system for Mexico based on the IIOAS method. Section 2 presents the regionalization procedure. Section 3 presents an illustrative analysis using different indicators from the estimated databases, revealing some main structural features of the economy of Mexico. Final remarks follow.

I. INTERREGIONAL INPUT-OUTPUT MATRIX FOR MEXICO

Initial Data Treatment

The estimation of the Interregional Input-Output Matrix for Mexico (IIOM-MX) is based on the Interregional Input-Output Adjustment System (IIOAS) method. The IIOAS method was developed to estimate interregional input-output systems under conditions of limited information. In the case of Mexico, we have used data from national and regional accounts provided by the Instituto Nacional de Estadística y Geografía (INEGI) for the years 2013 and 2014. The data consist mainly of the Supply and Use Tables (SUT) at the national level, and regional data on sectoral GRP and macro regional aggregates.

The first step in data treatment was to build the national input-output matrix for Mexico from the SUT. We have organized the information available at INEGI,5 according to figures 1 and 2. The structure of the Make Table (o_pc_2) was then used to transform the new Use Table from a commodity by sector into a sector by sector system of information. The auxiliary matrix generated by the structure of the Make Table is often called the market share matrix. Finally, the national structure of 80 sectors was aggregated into 37 sectors to match the auxiliary data available at the regional level.

Note: J sectors; Q regions; I roducts; S sources (domestic and imort); R margins.

Source: Instituto Nacional de Estadística y Geografía (INEGI) Cuadros de Oferta y Utilización: u_d_b_2: Utilización de bienes y servicios a recios básicos | Economía total / Origen doméstico | Subsector SCIAN u_m_b_2: Utilización de bienes y servicios a recios básicos | Economía total / Origen imortado | Subsector SCIAN mc_d_2: Márgenes de comercio | Economía total / Origen doméstico | Subsector SCIAN mt_d_2: Márgenes de transorte | Economía total / Origen doméstico | Subsector SCIAN mc_m_2: Márgenes de comercio | Economía total / Origen imortado | Subsector SCIAN mt_m_2: Márgenes de transorte | Economía total / Origen imortado | Subsector SCIAN in_d_2: Imuestos netos de subsidios | Economía total / Origen doméstico | Subsector SCIAN in_m_2: Imuestos netos de subsidios | Economía total / Origen imortado | Subsector SCIAN o_c_2: Oferta de bienes y servicios a recios básicos | Economía total | Subsector SCIAN Matriz de Insumo Producto: mi_t_b_ixi_2: Matriz simétrica de insumo roducto. Industria or industria | Economía total / Origen doméstico e imortado | Subsector SCIAN

Figure 1 Schematic Structure of the IIOM-MX 

Note: J sectors; Q regions; I roducts; S sources (domestic and imort); R margins.

Figure 2 Schematic Structure of the IIOM-MX 

The next step was to disaggregate the national data into the 32 regions of Mexico. The details of such procedure are described in the next two subsections.

Estimation of the Interregional Trade Matrices

In order to estimate the interregional system, it has been necessary to estimate the trade matrices among the 32 regions of Mexico. This procedure has been made by calculating three components: (i) the regional demand for domestic products; (ii) the regional demand for imported products; and (iii) the total supply of each region to the domestic and foreign markets, by sector.

We have assumed that regional demands for domestic and import products follow the national pattern for all users. In other words, economic agents share the same technology and preferences everywhere. However, it is important to note that we have estimated different trade matrices for each sector, which has allowed us to have different regional sourcing for intermediate inputs and final products.

The regional demand for domestic products is calculated, for each user, using the information provided in the matrix of demand-generating coefficients (DOMGEN). These coefficients are defined as the ratio of each element of the national use matrix to its respective column total.

For intermediate consumption, the ratio is defined as follows:

cicijdom=zijdomxj,  i, j=1, , 37 (1)

Were cicijdom is the national coefficient of intermediate consumtion of domestic imuts; zijdom is the intermediate consumtion of domestic inuts by sector, and x j is the total sectoral outut. From equation (1), we can have a matrix of size 37x37 (sector x sector) CIC dom, with all the intermediate consumtion ratios (cicijdom).

Regarding the domestic absorption components (investment, household consumption, and government expenditure), we have used the ratio of each i-element to its respective column sum:

cinvidom=invidominvt, i=1, , 37 (2)

cinvidom=houidomhout, i=1, , 37 (3)

cgovidom=govidomgovt, i=1, , 37 (4)

Where (cicijdom), houidom and govidom are the investment demand, house hold consumption, and government expenditure of each i-element in the national use matrix; and invt , hout , and govt are the resective column sums, including tax.

Thus, from equation (2) to (4), we may have vectors of size 37 x 1, cinvdom , and chou dom , and cgov dom, with all the investment demand, household consumtion and government exenditure ratios, respectively.

The gross regional demand for domestic products is obtained by multiplying these coefficients - equations (1) to (4) - by (i) a matrix with the total sectoral output of each region in the main diagonal and zero elsewhere, Xr ; (ii) the total investment demand of each region, invtr; (iii) the total household consumption of each region, houtr ; and (iv) the total government expenditure of each region, govtr :

ICr,dom=CICdom*Xr,  r=1, , 32 (5)

invr,dom=cinvdom*invtr,  r=1, , 32 (7)

hour,dom=choudom*houtr,  r=1, , 32 (7)

govr,dom=cgovdom*govtr,  r=1, , 32 (8)

where IC r, dom is a matrix of intermediate consumption of domestic products; inv r,dom is the consumption vector of capital goods produced domestically; hou r,dom is the household consumption vector of domestic products; and gov r,dom is the vector of government expenditure on domestic products; all for each region r

Therefore, the (gross) total demand for domestic products in each region is given by

demdomr=j=137ICr,dom+invr,dom+ hour,dom+ govr,dom,  r=1, , 32 (9)

Where demdom r is the total demand vector for domestic products of size 37 x 1 for each region r.

The procedure to estimate the demand for imported products is similar. Analogously, we have created a matrix of demand-generating coefficients for imported products (IMPGEN) defined to be the ratio of each element of the national matrix of imports over the respective column sum in the use matrix.

For intermediate consumption, the coefficient represents the share of imports in terms of national production as follows:

cicijimp=zijimpxj, i, j=1, , 37 (10)

Where ciciijimp is the intermediate consumption coefficient of imported inputs; zijimp is the intermediate consumption of imported inputs, and x j is the total sectoral output.

Analogously to domestic ratios, from equation (10) we can have a matrix of size 37 x 37 (sector x sector), CIC imp , with all the intermediate consumption ratios related to imported inputs.

Further, the coefficients for the final demand elements are given by

cinvijimp=invijimpinvt,  r=1, , 32 (11)

chouijimp=houijimphout,  r=1, , 32 (12)

cgovijimp=govijimpgovt,  r=1, , 32 (13)

Where inviimp, houiimp, and goviimp, are the investment demand, household, consumption and government expenditure of each i-element in the national imported matrix. Thus cinviimp, chouiimp, and cgoviimp are demand shares of imorted roducts related to investment demand , household consumtion ,, and government exenditure , resectively. From equation (11) to (13), we may have vectors of size 37 x 1 cinv im, chou im, and cgov im , with all the investment demand, household consumption and government expenditure ratios, respectively.

Therefore, the demands for imported products, by region, are defined as

ICr,imp=CICimp*Xr, r=1,..,32 (14)

invr,imp=cinvimp*invr, r=1,,32 (15)

hour,imp=chouimp*houtr, r=1,,32 (16)

govr,imp=cgovimp*govtr, r=1,,32 (17)

where IC r, imp is a matrix with imports of intermediate inputs; inv r, imp is the imports vector of capital goods; hou r, imp is the vector of imports by household; and gov r, imp is the vector of government expenditure on imports; all for each region r.

The total demand for imported products by region is given by

demimpr=j=137ICr..im+invr.im+hour.im+govr.im,  r=1, , 32 (18)

In order to generate a matrix of regional demands for domestic products, we have placed all demand vectors for domestic products ( demdom r , ∀ r = 1,..., 32) side by side, which has allowed us to have a matrix of size 37 x 32 (sector x region) - DEMDOM , where each row represents the domestic demand for sector i by each region r. Similarly, we have made the same procedure with the demand vectors for imported products ( demimp r , ∀ r = 1,..., 32), which has also allowed us to have a matrix of size 37 x 32 (sector x region) - DEMIMP , where each row represents the sectoral imports by each region r.

The next step was to estimate the sectoral domestic supply ( supdom r ) in each region, which has been done by taking the difference between the sectoral total output ( xr ) and the sectoral exports ( exp r ) in each region.

supdomr = xr - expr , ∀ r = 1, ... , 32 (19)

Similarly, placing all regional vectors side by side, we have created a matrix of size 37 x 32 (sector x region) - SUPDOM , where each row represents the total regional domestic supply of sector i.

Thus, having the sectoral domestic demand and supply by region ( DEMDOM and SUPDOM ), we have to ensure the equilibrium between them, in aggregate terms. We have thus adjusted the aggregate value of (gross) total domestic demand for each sector in order to have total domestic demand equivalent to total domestic supply.

The next step has been to construct, for each sector, matrices with regional trade shares ( SHIN i ). In other words, we have created matrices for each sector that represent the regional share on the total domestic trade. Considering s origin regions and d destination regions, we have estimated 37 matrices (one for each sector) of size 32 x 32 (origin x destination).

These shares have been estimated using equations, (20) and (21), based on previous work by Dixon and Rimmer (2004). Equation (20) has been used to calculate the initial ratio of the intra-regional trade (main diagonal of the trade matrix) while equation (21) has been used to estimate the interregional trade flows.

Thus, the intra-regional trade share is given by

shins,di=Minsupdomsidemdomdi, 1*f ,  i=1, , 32 and s=d (20)

Where shins,di  is the share of sector i in the national trade within each region.

The intra-regional trade flow is defined to be the ratio of supply to demand of sector i within the region. If supply is greater than demand, we have assumed that all demand is met internally. However, based on Haddad et al. (2016a), we have multiplied the result by a factor ( f ) which gives us the extent of tradability of a given commodity. For non-tradable sectors, usually services, we have assumed that they are typically provided by the local economy. Thus, we have used initial f values close to unity 0.9 for non-tradable and 0.5 for tradable sectors.

Otherwise, the interregional trade is given by

shins,di=1impeds.d*supdomsi132supdomki*1-shins,vig=1. gd321impedg.d*supdomgik=132supdomki,  i=1, , 37 ;s,d=1 , , 32;k=s;v=s;g=s and sd (21)

Where shin s,di is the share of trade flows of sector i with origin in region s and destination on region d; and impeds,d is given by the average travel time between two trading regions (see Annex 3).

From equations (20) and (21), we generate matrices of size 32 x 32 (region x region) for each sector - SHIN i , where the intra-regional trade shares are placed on the main diagonal and the interregional trade shares off-diagonal. Note that the column values add to one.

Using the SHIN i matrices, we have estimated initial values for the trade matrices by multilying each SHIN i by its resective reference value in DEMDOM:

TRADEi= SHINi*DEMDOM*I, Ɐ i=1, … , 37 and s, d=1, …, 32 (22)

Where TRADEs,di is the trade matrix for sector i with origin in region s and destination in region d; and is a diagonal matrix where values related to sector i from DEMDOM have been placed on the main diagonal and zero elsewhere.

This procedure ensures that the column sums of each TRADEs,di matrix is equivalent to the demand of the respective region d for the products of region s (for each sector i). However, the row sum is not necessarily equivalent to the supply of each sector i from region s to region d. Thus, we have used a RAS procedure6 to make sure that supply and demand balance out.

After the RAS procedure, we have included in each TRADEs,di matrix the respective row from DEMIMP . In other words, we added the Rest of the World as one of the origins. Thus, now s is equal to 33 since it represents the 32 Mexican regions plus the Rest of the World.

II. REGIONALIZATION PROCEDURE

The 37 trade matrices estimated are consistent with the national supply and demand in each sector. The trade matrices, after the inclusion of the import row, TRADEs,d*i, consider the sales of each Mexican region to the other Mexican regions and the purchases of each of them both from domestic and of the foreign supplying regions. However, from these matrices, we are not able to know if the sales were purchased by industries (intermediate consumption) or by final users in the other regions.

In order to deal with this issue, we have used a hypothesis proposed originally by Chenery (1956) and Moses (1955). We have applied the same regional proportion in the acquisition of inputs for all sectors and final products by all final users within a given region. In other words, we have used the same trade coefficient for all sectors or final users in the destination.

The regionalization procedure may be described by the following steps. The first step is given by the calculation of a new matrix for each sector with the trade shares, SHIN_N i. This matrix is estimated based on the ECUACION matrices as follows :

SHIN_Ni=TRADEs,d*i*TRADE*i-1, i=1, , 37 ;s=1, , 33;and d=1, , 32 (23)

Where TRADE *I is a matrix diagonal whose (s=132trades,di) are laced on the main diagonal and zero else where, being trades,d i element of TRADEs,d *1 matrix; s reresents the 33 origin regions (32 regions of Mexico lus Rest of the World) and d reresents the 32 destination regions (regions of Mexico).

Subsequently, we have used elements from the national use matrix to estimate the national coefficients (domestic plus imports) of intermediate consumption, investment demand, household consumption, and government expenditure.

For intermediate consumption, the matrix of coefficients is given by

CICN=ZDOM+IMP*(ICT*N)-1 (24)

Where ZDOM+IMP is the intermediate consumption matrix (domestic +imported); and ICT*N is a diagonal matrix with the values from the vector of total intermediate consumption for each sector of destination j ( ictN ) in the main diagonal. This vector, ictN , is defined as

ictN=xN-vaN (25)

Where xN is the vector with all national total sectoral output; and vaN is the vector with all national sectoral value-added.

For the final demand elements, we have taken each element of each vector over its respective total (including also indirect taxes). Thus, the investment demand, household consumption, and government expenditure coefficients are defined as follows:

cinviN=inviDOM+IMPinvtN,  i=1, , 37 (26)

chouiN=houiDOM+IMPhoutN,  i=1, , 37 (27)

cgoviN=goviDOM+IMPgovtN,  i=1, , 37 (28)

Where inviDOM+IMP and goviDOM+IMP represent each element in the investment demand, household consumption and government expenditure vectors, respectively (including domestic and imported sources); invt N , hout N , and govt N are the respective column sum, including also indirect taxes.

From equations (26) to (28), we can generate vectors with coefficients ofinvestment demand ( cinv N ), household consumption ( chou N ), and government expenditure ( cgov N ).

The next step has been to estimate the regional coefficients. In order to obtain the intermediate consumption shares, RICC , we have transformed the 37 SHIN_N matrices into 33 SHIN_S matrices of size 37 x 32, which represent, for each origin, foreign region inclusive, the consumption share of each sector in each destination region. Thus, each SHIN_S matrix represents one origin trade region, where rows show the sectors and columns the destination regions.

Therefore, using Aguascalientes (the first region) as an example, the SHIN_S for this region is composed of all the first rows of each of the 37 SHIN_N . For the second region, Baja California, the SHIN_S includes all the second rows of each of the 37 SHIN_N , and so on. Further, in order to estimate RICC, each column of each SHIN_S matrix is diagonalized and multiplied by CIC N:

RICCsd=SHIN_S**CICN (29)

Where SHIN_S* is a diagonal matrix whose non-zero elements come from the SHIN_S ; s represents the 33 origin regions, and d represents the 32 destination regions.

From equation (29), we estimated, for each origin region, 32 destination matrices of size 37 x 37 (sector x sector). These matrices contain the shares of each sector in the intermediate consumption in each destination region.

Similarly, for each of the final demand components, we estimated, for each origin region, 33 vectors of size 37 x 1, shin_s , which represents the shares of each destination region d in the acquisition of the output from each of the 37 sectors.

The final demand for capital goods (investment demand) for each region is given by

rcinvsd=SHIN_S***cinvN,  s=1, , 33, and d=1,,32  (30)

Where SHIN_S** is a diagonal matrix of the vector shin_s . For household consumption:

rchonsd=SHIN_S***chouN,  s=1,,33, and d=1,,32 (31)

and for government expenditure:

rcgovsd=SHIN_S***cgovN,  s=1,,33;and d=1,,32 (32)

In order to obtain the regional share for the indirect tax paid by each user, we have calculated some coefficients from the national tax matrix. These coefficients are calculated for intermediate consumption, investment, household consumption, and government expenditure as follows.

The matrix with the national indirect tax coefficients related to intermediate consumption ( TCIC N ) is given by

TCICN=TICN*ICTN-1 (33)

Where TICN is a matrix of size 37 x 37 (sector x sector) with the indirect taxes related to intermediate consumption in the national tax matrix; and ICTN is a diagonal matrix with the sectorial total intermediate consumption.

The vector with national indirect tax coefficients related to investment (tcinv N ) is

tcinvN=tinvN*invN-1 (34)

Where tinv N is the vector with tax related to investment, and invt N is the total demand for investment from the national use matrix.

The vector with national tax coefficients related to household consumption ( tchou N ) is given by

tchouN = thouN *(hout N )- 1 (35)

Where thou N is the vector with tax related to household consumption, and houtN is the total demand for household from the national use matrix.

Finally, the vector with national tax related to government expenditure ( tcgov N ) is

tcgovN = tgovN *(govt N )- 1 (36)

Where tgov N is the vector with tax related to government consumption, and govt N is the total demand for government from the national use matrix.

The regional coefficients are obtained by multiplying each column of SHIN_S by the national tax coefficient. Thus, the regional coefficient for indirect tax related to intermediate consumption is given by

RTCICsd = SHIN_S* * TCICN , ∀ s = 1, ... , 33; and d = 1, ... , 32 (37)

Which generates 1056 matrices of size 37 x 37 (sector x sector). These matrices represent the regional indirect tax coefficients for each pair of regions s x d (origin x destination).

For investment demand:

rtcinvsd = SHIN_S* * tcinvN , ∀ s = 1, ... , 33; and d = 1, ... , 32 (38)

which gives us 1056 vectors of size 37 x 1 that represents the proportion paid in tax related to the acquisition of products for investment in each pair of regions s x d.

Similarly, we have the regional coefficient for household consumption:

rtchousd = SHIN_S* * tchouN , ∀ s = 1, ... , 33; and d = 1, ... , 32 (39)

And for government expenditure:

rtcgovsd = SHIN_S* * tcgovN , ∀ s = 1, ... , 33; and d = 1, ... , 32 (40)

In order to have all regional coefficients in monetary flows, we have multiplied the coefficients defined above by the regional values.

Intermediate consumption:

RICsd = RICCsd * RICTd , ∀ s = 1, ... , 33; and d = 1, ... , 32 (41)

Where RIC sd is the regional intermediate consumption matrix for each pair of region (s x d), and RICT d is a matrix with the total regional intermediate consumption in the main diagonal and zero elsewhere.

Investment demand:

rinvsd = rcinvsd * rinvtd , ∀ s = 1, ... , 33; and d = 1, ... , 32 (42)

Where rinv sd is the vector of demand for regional investment for each pair of region (s x d), and rinvt d is the total regional for investment.

Household consumption:

rhousd = rchousd * rhout d , ∀ s = 1, ... , 33; and d = 1, ... , 32 (43)

Where rhou sd is the vector of regional household consumption for each pair of region (s x d), and rhoutd is the total regional household consumption.

Government expenditure:

rgovsd = rcgovsd * rgovt d , ∀ s = 1, ... , 33; and d = 1, ... , 32 (44)

Where rgov sd is the vector of regional government expenditures for each pair of regions (s x d), and rgovt d is the total regional government expenditures.

Given the estimates of sectoral foreign exports by region, ( exp r), the values are allocated directly in the relevant column of the inter-regional system. We had access to foreign exports of manufacturing sectors by region.7 For those sectors for which regionally disaggregated foreign exports were not available, we have assumed the same ratio of sectoral foreign exports to sectoral gross output to allocate foreign exports across regions.

Similar procedure has been used to transform indirect tax coefficients in monetary flows as follows:

For tax related to intermediate consumption:

RTICsd = RTCICsd * RICTd , ∀ s = 1, ... , 33; and d = 1, ... , 32 (45)

Investment:

rtinvsd = rtcinvsd * rinvt d , ∀ s = 1, ... , 33; and d = 1, ... , 32 (46)

Household consumption:

rthousd = rtchousd * rhout d , ∀ s = 1, ... , 33; and d = 1, ... , 32 (47)

And government expenditure:

rtgovsd = rtcgovsd * rgovt d , ∀ s = 1, ... , 33; and d = 1, ... , 32 (48)

In order to have the completed inter-regional system, we need the regional value-added components (VA R ). In the interregional input-output system, the total regional output (x R ) should be equivalent to the total demand of each region (DT R ). This balance checking can be done using the following identities.

Total regional output:

xR=i=137RICsd+i=137RTICsd+rvasd (49)

where X R is the vector of sectorial regional total output; RIC sd is the regional intermediate consumption matrix; RTIC sd is the indirect tax matrix related to intermediate consumption, and rva sd is the vector of regional value-added.

Total demand:

dtR=J=137RICsd+rinvsd+rhousd+exprsd+rgovsd (50)

Where dt R is the total demand vector; rinv sd is the demand for investment; rhou sd is the household consumption; expr sd is the export vector; and rgov sd is the government expenditure.

Finally, an adjustment in Stocks ( stock R ) must be done to complete the interregional system:

stockR = xR - dtR (51)

III. STRUCTURAL ANALYSIS

Interregional Linkages

In this section, a brief comparative analysis of regional economic structures is carried out to illustrate some features of the system. Production linkages between sectors are considered through the analysis of the intermediate inputs portion of the interregional input-output database. Both the direct and indirect production linkage effects of the economy are captured by the adoption of different methods based on the evaluation of the Leontief inverse matrix.

The conventional input-output model is given by

𝐱 = 𝐀𝐱 + 𝐟 (52)

And

𝐱 = (𝐈 − 𝐀)−1𝐟 = Bf (53)

Where x and f are respectively the vectors of gross output and final demand; A is a matrix with the input-output coefficients a ij defined as the amount of product i required per unit of product j (in monetary terms) - i, j = 1, …, n; and B is known as the Leontief inverse.

Let us consider systems equations (52) and (53) in an interregional context, with r different regions, so that:

x=x1xR;A=A11A1RAR1ARR;f1fR;B=B11B1RBR1BRR (54)

And

x1=xR=B11f1BR1f1++++B1RfrBRRfr (55)

Furthermore, we may consider different components of f, which includes demands originating in the specific regions, V, and abroad, e. We obtain information of final demand from origin s in the IIOM-MX, allowing us to treat V as a matrix which provides the monetary values of final demand expenditures from the domestic regions in Mexico and from the foreign region.

V=V11V1RVR1VRR;and e= e1eR (56)

Thus, we can re-write equation (55) as:

x1=B11(V11++VR1e1)+xR=BR1(V11++VR1+e1)+ +B1RV1R++VRR+eR+BRRV1R++VRR+eR (57)

From equation (57), we can then compute the contribution of final demand from different origins on regional output. It is clear from (57) that regional output depends, among others, on demand originating in the region and on the degree of interregional integration, also on demand from outside the region.

In what follows, interdependence among sectors in different regions is considered through the analysis of the complete intermediate input portion of the interregional input-output table. The Leontief inverse matrix, based on the system (55), will be considered, and some summary interpretations of the structure of the economy derived from it will be provided. To illustrate the nature of interregional linkages in Mexico, we provide analysis of the structure of the Mexican economy derived from the Leontief inverse (multipliers) matrix, focusing on the database for 2013.

Multiplier Analysis

The column multipliers derived from B were computed (Miller and Blair, 2009). An output multiplier is defined for each sector j, in each region r, as the total value of production in all sectors and in all regions of the economy that is necessary to satisfy a euro’s worth of final demand for sector j’s output.

Further, the multiplier effect can be decomposed into intraregional (internal multiplier) and interregional (external multiplier) effects,8 the former representing the impacts on the outputs of sectors within the region where the final demand change was generated, and the latter showing the impacts on the other regions of the system (interregional spillover effects).

Table 1 shows the intraregional and interregional shares for the average total output multipliers of the 32 regions of Mexico as well as the equivalent shares for the direct and indirect effects of a unit change in final demand in each sector in each region net of the initial injection (the total output multiplier effect net of the initial change). The entries are shown in percentage terms, providing insights into the degree of dependence of each region on the other regions.

Table 1 Regional Percentage Distribution of the Average Total and Net Output Multipliers: Mexico, 2013 

Total multiper output Net out put multiplier
Intra-regional share Interregional share Intraregional share Interregional share
R1 Aguascalientes 0.756 0.244 0.260 0.740
R2 Baja California 0.784 0.216 0.355 0.645
R3 Baja California Sur 0.774 0.226 0.358 0.642
R4 Campeche 0.708 0.292 0.164 0.836
R5 Coahuila de Zaragoza 0.767 0.233 0.336 0.694
R6 Colima 0.764 0.236 0.328 0.672
R7 Chiapas 0.810 0.190 0.426 0.574
R8 Chihuahua 0.766 0.234 0.302 0.698
R9 Ciudad de México 0.780 0.220 0.357 0.643
R10 Durango 0.775 0.225 0.353 0.647
R11 Guanajuato 0.801 0.199 0.400 0.600
R12 Guerrero 0.766 0.234 0.328 0.672
R13 Hidalgo 0.795 0.205 0.370 0.630
R14 Jalisco 0.812 0.188 0.437 0.563
R15 Estado de México 0.798 0.202 0.387 0.613
R16 Michoacán de Ocampo 0.784 0.216 0.377 0.623
R17 Morelos 0.786 0.214 0.342 0.658
R18 Nayarit 0.771 0.229 0.349 0.651
R19 Nuevo León 0.813 0.187 0.446 0.554
R20 Oaxaca 0.811 0.189 0.425 0.575
R21 Puebla 0.784 0.216 0.359 0.641
R22 Querétaro 0.793 0.207 0.376 0.624
R23 Quintana Roo 0.767 0.233 0.346 0.654
R24 San Luis Potosí 0.784 0.216 0.358 0.642
R25 Sinaloa 0.784 0.216 0.386 0.614
R26 Sonora 0.791 0.209 0.377 0.623
R27 Tabasco 0.758 0.242 0.276 0.724
R28 Tamaulipas 0.785 0.215 0.340 0.660
R29 Tlaxcala 0.777 0.223 0.317 0.683
R30 Veracruz de Ignacio de la Llave 0.799 0.201 0.406 0.594
R31 Yucatán 0.790 0.210 0.402 0.598
R32 Zacatecas 0.740 0.260 0.252 0.748

Source: Calculations by the authors.

Nuevo León, Jalisco, Chiapas, Oaxaca, Veracruz de Ignacio de la Llave, Yucatán and Guanajuato are the most self-sufficient regions; the average flow-on effects from a unit change in sectoral final demand are among the highest. The average net effect exceeds 40% for those regions. For some regions, such as Campeche, Zacatecas, Aguascalientes and Tabasco, the degree of regional self-sufficiency is lower, and the net intraregional flow-on effects, on the average, are below 25% of the total interregional effects.

Output Decomposition

In order to complement the multiplier analysis, the regional output decomposition is carried out in this section. We considered not only the multiplier structure but also the structure of final demand in the 32 domestic and the foreign regions.

Following equation (57), regional output (for each region) was decomposed, and the contributions of the components of final demand from different areas were calculated. The results are presented in table 2. As expected, the main contributions to the final demand of a region are given by itself, so the highest values in table are on the diagonal. In addition, the importance of Ciudad de México (R9), Nuevo León (R19) and México (R15) for the Mexican economy is verified, with the final demand originating in these regions generating the greatest contribution to the output of the other regions. The final demand for Ciudad de México (R9) contributes to 18.55% of the Mexican output, and, at the regional level, it contributes mainly to the regions México (R15), Hidalgo (R13), and Guerrero (R12). Final demand originating in Nuevo León (R19), contributes to 5.50% of total national output, and final demand originating in México (R15) contributes to 4.91% of final output. It is worth noting the importance of the rest of the world’s demand for the Mexican production, with a contribution of 27.55%.

A more systematic approach to visualize the influence of final demand from different regions is to map the column original estimates that generated table 2. The results, illustrated in figure 3, provide an attempt to reveal the spatial patterns of income dependence upon specific sources of final demand. The 32 regions are grouped in five different categories in each map, so that darker colors represent higher values.

Table 2 Components of Decomposition of Regional Output Based on the Sources of Final Demand: México, 2013 (in %) 

ORIGINAL OF DEMAND
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R39 R31 R32 ROW
REGIONAL OUTPUT R1 34.43 0.65 0.09 1.86 0.94 0.14 0.45 0.97 6.43 0.22 1.31 0.12 0.17 1.18 0.34 0.15 0.13 1.98 0.17 0.45 0.53 0.17 0.70 0.22 0.40 1.18 0.80 0.06 1.09 0.16 1.06 1.06 39.75
R2 0.17 39.09 0.22 3.57 0.96 0.06 0.67 1.12 3.43 0.12 0.31 0.06 0.07 0.48 0.58 0.12 0.08 0.06 1.26 0.09 0.32 0.17 0.14 0.18 0.21 1.12 1.65 0.42 0.03 0.93 0.13 0.33 41.84
R3 0.46 4.78 39.70 7.88 2.70 0.08 1.38 2.39 9.69 0.38 0.92 0.10 0.22 1.04 1.63 0.22 0.17 0.09 3.96 0.16 0.83 0.50 0.17 0.50 0.31 1.81 3.72 1.23 0.09 2.13 0.24 0.65 9.87
R4 0.45 1.04 0.18 18.52 1.25 0.18 0.84 1.11 8.28 0.26 1.01 1.24 1.25 1.46 1.93 0.43 0.30 0.16 2.42 0.26 0.84 0.58 0.40 0.53 0.45 0.87 2.47 0.70 0.12 1.74 0.48 0.43 49.83
R5 0.23 0.75 0.11 1.75 23.40 0.08 0.40 1.29 3.54 0.23 0.45 0.09 0.09 0.66 0.71 0.17 0.11 0.09 4.26 0.13 0.30 0.23 0.17 0.26 0.27 0.48 1.01 0.85 0.04 0.80 0.15 0.30 56.59
R6 0.77 1.46 0.10 4.30 1.70 44.73 0.85 1.82 10.76 0.24 1.32 0.14 0.24 3.29 1.96 0.45 0.24 0.19 2.93 0.19 0.79 0.67 0.20 0.65 0.30 1.07 2.49 1.06 1.10 1.73 0.26 0.73 12.29
R7 0.45 1.80 0.25 4.03 1.52 0.16 40.04 1.69 11.79 0.32 1.03 0.30 0.33 1.40 2.00 0.41 0.30 0.16 3.11 0.37 1.02 0.67 0.71 0.49 0.47 1.13 4.04 1.08 0.14 2.17 0.79 1.28 15.54
R8 0.23 1.10 0.10 1.97 1.33 0.07 0.43 31.77 3.68 0.22 0.45 0.08 0.09 0.65 0.70 0.16 0.10 0.08 2.18 0.12 0.31 0.23 0.15 0.24 0.25 0.80 1.09 0.60 0.04 0.82 0.15 0.33 49.45
R9 0.56 1.28 0.14 1.75 1.34 0.14 0.56 1.50 58.06 0.29 1.54 0.33 0.84 1.53 4.97 0.51 0.58 0.16 2.06 0.44 1.48 1.07 0.22 0.73 0.33 0.88 1.58 1.21 0.26 2.17 0.29 0.33 10.86
R10 0.71 1.86 0.23 3.44 3.10 0.15 0.76 3.33 9.65 34.10 1.28 0.18 0.26 1.85 1.91 0.38 0.26 0.21 5.54 0.24 0.79 0.64 0.31 0.73 0.68 1.27 2.06 1.59 0.10 1.70 0.30 0.99 19.40
R11 0.80 1.04 0.15 2.12 1.19 0.18 0.52 1.32 10.96 0.27 35.69 0.20 0.29 2.11 1.99 0.60 0.24 0.17 2.42 0.22 0.76 1.10 0.24 0.82 0.36 0.71 1.42 1.08 0.10 1.41 0.24 0.58 28.79
R12 0.56 1.49 0.09 4.22 1.78 0.09 0.83 1.85 20.99 0.21 1.17 35.14 0.40 1.46 2.97 0.30 0.69 0.10 3.19 0.26 1.34 0.84 0.21 0.57 0.20 0.96 2.89 1.15 0.16 2.26 0.33 0.42 10.90
R13 0.45 1.98 0.14 2.56 1.03 0.15 0.67 1.13 26.85 0.23 1.17 0.29 29.01 1.44 3.34 0.45 0.41 0.13 2.03 0.31 1.66 0.90 0.28 0.53 0.33 0.68 1.84 0.82 0.25 2.26 0.31 0.37 17.01
R14 0.87 1.32 0.17 2.45 1.45 0.28 0.56 1.62 10.38 0.31 1.81 0.18 0.29 35.19 2.06 0.80 0.25 0.29 2.92 0.23 0.77 0.84 0.26 0.78 0.44 0.89 1.60 1.32 0.10 1.50 0.26 0.59 27.21
R15 0.36 0.80 0.11 1.53 0.89 0.12 0.41 0.94 28.16 0.18 1.02 0.26 0.43 1.20 32.08 0.41 0.44 0.11 1.85 0.26 0.98 0.85 0.22 0.44 0.25 0.54 1.20 0.79 0.15 1.46 0.23 0.23 21.13
R16 0.83 1.42 0.14 2.69 1.71 0.19 0.55 1.78 14.69 0.26 2.02 0.20 0.37 3.53 2.75 33.48 0.32 0.21 3.36 0.25 0.92 1.16 0.25 0.72 0.33 0.95 1.85 1.32 0.13 1.70 0.29 0.47 19.13
R17 0.30 0.70 0.09 2.13 0.80 0.09 0.52 0.79 16.84 0.15 0.71 0.34 0.29 0.88 2.44 0.26 35.79 0.08 1.49 0.21 1.11 0.53 0.17 0.34 0.20 0.48 1.47 0.58 0.13 1.53 0.19 0.26 28.10
R18 0.78 1.66 0.13 3.74 2.41 0.17 0.75 2.28 12.43 0.49 1.61 0.14 0.30 3.10 2.13 0.47 0.22 42.66 4.18 0.18 0.84 0.87 0.19 0.70 0.44 1.31 2.17 1.42 0.10 1.72 0.22 0.61 9.54
R19 0.38 1.15 0.15 2.59 3.33 0.12 0.59 1.84 5.30 0.32 0.70 0.14 0.13 1.00 0.99 0.26 0.15 0.11 38.21 0.18 0.46 0.35 0.22 0.45 0.36 0.75 1.51 1.93 0.05 1.22 0.23 0.54 34.28
R20 0.49 1.50 0.18 5.49 1.66 0.14 1.30 1.58 15.94 0.27 1.11 0.28 0.38 1.35 2.39 0.39 0.36 0.13 3.09 34.82 1.76 0.77 0.38 0.52 0.38 0.97 3.56 1.06 0.19 3.07 0.44 0.44 13.59
R21 0.32 0.74 0.12 2.70 0.78 0.12 0.78 0.85 16.40 0.16 0.90 0.27 0.48 1.10 2.41 0.36 0.46 0.12 1.70 0.46 30.69 0.63 0.29 0.38 0.24 0.48 2.13 0.68 0.39 3.20 0.30 0.27 29.06
R22 0.53 0.77 0.12 2.25 1.00 0.14 0.58 1.01 13.30 0.21 1.77 0.20 0.33 1.51 2.44 0.49 0.27 0.13 1.95 0.24 0.82 31.28 0.22 0.72 0.28 0.54 1.54 0.89 0.11 1.59 0.24 0.44 31.10
R23 0.51 1.87 0.018 11.15 2.37 0.07 0.77 2.60 12.97 0.41 1.31 0.12 0.40 1.00 2.07 0.24 0.19 0.07 4.91 0.24 0.98 0.80 35.59 0.61 0.21 1.34 3.88 1.85 0.14 2.16 1.11 0.23 7.73
R24 0.83 0.84 0.13 2.36 1.36 0.16 0.58 1.21 9.17 0.27 1.59 0.17 0.23 1.74 1.71 0.41 0.22 0.15 3.14 0.22 0.64 0.88 0.23 31.63 0.30 0.54 1.52 1.34 0.08 1.44 0.22 0.84 33.83
R25 0.58 3.07 0.27 4.29 3.08 0.15 0.81 3.10 9.90 0.54 1.12 0.16 0.25 2.02 1.75 0.36 0.23 0.23 4.91 0.22 0.77 0.64 0.30 0.58 38.54 2.52 2.43 1.50 0.10 1.72 0.32 0.62 13.10
R26 0.26 2.48 0.27 3.66 1.09 0.14 0.79 1.69 5.20 0.23 0.60 0.14 0.13 1.06 1.07 0.28 0.16 0.16 1.98 0.20 0.48 0.30 0.30 0.28 0.66 29.26 1.93 0.63 0.06 1.43 0.27 0.38 42.45
R27 0.48 1.64 0.27 4.85 1.38 0.21 1.19 1.53 10.06 0.37 1.07 0.35 0.31 1.58 2.09 0.51 0.32 0.18 2.57 0.33 1.10 0.63 0.70 0.56 0.62 1.18 26.21 0.83 0.15 2.21 0.99 0.40 33.15
R28 0.44 1.25 0.16 2.78 2.08 0.14 0.59 1.59 6.83 0.31 0.82 0.17 0.16 1.18 1.23 0.32 0.16 0.13 5.06 0.16 0.57 0.44 0.23 0.51 0.40 0.82 1.55 29.12 0.07 1.28 0.26 0.56 38.52
R29 0.37 0.88 0.12 2.38 0.90 0.12 0.68 1.03 18.46 0.18 0.98 0.26 0.59 1.21 2.63 0.36 0.41 0.12 1.95 0.42 3.18 0.74 0.29 0.42 0.25 0.59 1.95 0.78 30.69 2.78 0.33 0.28 23.65
R30 0.44 1.35 0.19 2.80 1.20 0.15 0.78 1.40 13.97 0.27 1.07 0.32 0.43 1.45 2.39 0.43 0.37 0.15 2.48 0.40 1.65 0.71 0.43 0.51 0.41 0.88 2.36 1.00 0.22 39.29 0.48 0.32 19.73
R31 0.30 1.31 0.16 12.47 1.22 0.09 1.13 1.30 7.73 0.19 0.74 0.17 0.23 0.98 1.38 0.25 0.21 0.10 2.45 0.29 0.71 0.45 1.46 0.36 0.26 0.73 5.17 0.99 0.10 1.83 44.08 0.24 10.93
R32 1.32 1.00 0.12 2.54 1.74 0.14 0.60 1.62 8.78 0.38 1.45 0.16 0.23 1.79 1.72 0.38 0.24 0.14 3.86 0.19 0.73 0.72 0.22 1.03 0.29 0.66 1.55 1.16 0.09 1.52 0.23 36.23 27.17
TOTAL 0.92 2.49 0.40 3.35 2.53 0.37 0.30 2.54 18.55 0.65 2.54 0.62 0.80 3.63 4.91 1.08 0.74 0.38 5.50 0.78 2.00 1.41 0.70 1.23 1.04 1.88 2.58 2.06 0.32 3.58 0.85 0.71 27.55

Source: Calculations by the authors

Source: Calculations by the authors.

Figure 3 Identification of Regions Relatively More Affected by a Specific Regional Demand, by Origin of Final Demand  

FINAL REMARKS

The main aim of this paper was to describe the process of estimation of an interregional input-output system for México, for the year 2013. Further understanding of the structure of the Mexican regional economies, within an integrated system, is one of the main goals of a broader collaborative project underway at the University of São Paulo Regional and Urban Economics Lab (NEREUS) the Institute for Environmental Research Xabier Gorostiaga SJ (Universidad Iberoamericana Puebla) and the Instituto Tecnológico Autónomo de México (ITAM). With this paper, we make available not only the details of the methodological procedures adopted to generate the interregional system, but also the database itself to be used by other researchers and practitioners.9

One important caveat for this work is that there are no data available for a statistical validation of the results. Results can only be validated heuristically, which is the norm in this literature. The conclusions of the paper should be taken very cautiously when attempted to be generalized to other contexts. There is only methodological support for an internal validation of the conclusions for the case of the imposed structure on the database, i.e. the chosen gravity-equation parameters’ values, the choice of the impedance function, etc. Unfortunately, given the lack of official statistics on interstate sectoral trade flows in México, there is no room for the statistical validation of the proposed method.

REFERENCES

Chenery, H. B. (1956). Interregional and International Input-Output Analysis. In: T. Barna (Ed.), The Structure Interdependence of the Economy, New York: Wiley, p. 341-356. [ Links ]

Chiquiar, D., Alvarado, J., Quiroga, M. and Torre, L. (2017). Regional input-output matrices, an application to manufacturing exports in Mexico. Working Papers, N. 2017-09, Banco de México, Documentos de Investigación. [ Links ]

Dávila, A.F. (2015). Modelos Interregionales de Insumo-Producto de la Economía Mexicana. Editorial Miguel Ángel Porrúa, Universidad Autónoma de Coahuila y Universidad Autónoma de Nuevo León, México. [ Links ]

Dixon, P. B. and Rimmer, M. T. (2004). Disaggregation of Results from a Detailed General Equilibrium Model of the US to the State Level. General Working Paper N. 145, Centre of Policy Studies, April. [ Links ]

Fernandez Vazquez, E., Hewings, G. J.D. and Ramos-Carvajal, C. (2015). Adjustment of Input-Output Tables from Two Initial Matrices. Economic Systems Research, v.27, n. 3, 345-361. https://doi.org/10.1080/09535314.2015.1007839 [ Links ]

Flegg, A.T., Mastronardi, L.J. and Romero, C.A. (2016). Evaluating the FLQ and AFLQ formulae for estimating regional input coefficients: empirical evidence for the province of Córdoba, Argentina. Economic Systems Research, v. 18, n. 1, 21- 37. DOI: 10.1080/09535314.2015.1103703 [ Links ]

Haddad, E.A. (2014). Trade and Interdependence in Lebanon: An Interregional Input-Output Perspective, Journal of Development and Economic Policies, v. 16, n. 1, p. 5-45. [ Links ]

Haddad, E.A., Silva, V., Porsse, A.A. and Dentinho, T.P. (2015). Multipliers in an Island Economy: The Case of the Azores. In: Batabyal, A.A. and Nijkamp, P. (Org.). The Region and Trade: New Analytical Directions. Singapore: World Scientific, p. 205-226. [ Links ]

Haddad, E.A., Faria, W.R., Galvis-Aponte, L.A. and Hahn-De-Castro, L.W. (2016a). Interregional Input-Output Matrix for Colombia, 2012, Borradores de Economía, n. 923, Banco de La República, Bogotá. [ Links ]

Haddad, E.A., Lahr, M., Elshahawany, D., Vassallo, M. (2016b). Regional Analysis of Domestic Integration in Egypt: An Interregional CGE Approach, Journal of Economic Structures, v. 5, n. 1, p. 1-33. https://doi.org/10.1186/s40008-016-0056-5 [ Links ]

Haddad, E.A., Ait-Ali, A. and El-Hattab, F. (2017a). A Practitioner’s Guide for Building the Interregional Input-Output System for Morocco, 2013, Research papers & Policy papers 1708, Policy Center for the New South. [ Links ]

Haddad, E.A., Gonçalves Junior, C.A. and Nascimento, T.O. (2017b). Matriz Interestadual De Insumo-Produto Para o Brasil: Uma Aplicação do Método IIOAS. Revista Brasileira de Estudos Regionais e Urbanos, v. 11, n. 4, p. 424-446. [ Links ]

Haddad, E.A.; Cotarelli, N.; Simonato, T.C.; Vale, V.A.; Visentin J.C. (2018). Estimation of NUTS2 Interregional Input-Output Systems for Greece, 2010 and 2013. TD Nereus 03-2018. University of São Paulo. [ Links ]

Hulu, E. and Hewings, G.J.D. (1993). The Development and Use of Interregional Input-Output Models for Indonesia under Conditions of Limited Information. Urban & Regional Development Studies. v. 5, n. 2, p. 135-153. https://doi.org/10.1111/j.1467-940X.1993.tb00127.x [ Links ]

Isard, W. (1951). Inter-Regional and Regional Input-Output Analysis: a Model of a Space Economy. The Review of Economics and Statistics, Cambridge, v. 33, n. 4, p. 319-328. DOI: 10.2307/1926459 [ Links ]

Leontief, W., Hollis, B., Chenery, P., Clark, P., Duesenberry, J., Ferguson, A., Grosse, R., Hlzman, M., Isard, W. and Kistin, H. (1953). Studies in the Structure of the American Economy. White Plains, NY: International Arts and Science Press. [ Links ]

Miller, R.E. and Blair, P.D. (2009). Input-Output Analysis: Foundations and Extensions. Cambridge U.K.: Cambridge University Press, SecondEdition. [ Links ]

Moses, L.N. (1955). The Stability of Interregional Trading Patterns and Input-Output Analysis, American Economic Review, v. XLV, n. 5, p. 803-832. [ Links ]

Oosterhaven, J. Interregional Input-Output Analysis and Dutch Regional Policy Problems. Aldershot: Gower, 1981. [ Links ]

Riddington, G., Gibson, H. and Anderson, J. (2006). Comparison of Gravity Model, Survey and Location Quotient-Based Local Area Tables and Multipliers. Regional Studies, Vol. 40 (9), p. 1069-1081. https://doi.org/10.1080/00343400601047374 [ Links ]

Roy, J. R. and Thill, J.-C. (2004). Spatial Interaction Modelling. In: Florax R.J.G.M., Plane D.A. (eds). Fifty Years of Regional Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 339-361. https://doi.org/10.1007/978-3-662-07223-3_15 [ Links ]

Round, J.I. (1983). Nonsurvey Techniques: A Critical Review of the Theory and the Evidence. International Regional Science Review. v. 8, (3), pp. 189-212. DOI: 10.1177/016001768300800302 [ Links ]

Tobben, J. and Kronenberg, T. (2015). Construction of Multi-Regional Input-Output Tables Using the CHARM Method. Economic Systems Research. v. 27, n. 4, p. 487-507. DOI: 10.1080/09535314.2015.1091765 [ Links ]

Wilson, A. G. (1970). Inter‐regional Commodity Flows: Entropy Maximizing Approaches. Geographical Analysis, Vol. 2 (3), pp. 255-282. https://doi.org/10.1111/j.1538-4632.1970.tb00859.x [ Links ]

Zhang, Z., Shi, M. and Zhao, Z. (2015). The Compilation of China’s Interregional Input-Output Model 2002. Economic Systems Research. v. 27; n. 2, p. 238-256. DOI: 10.1080/09535314.2015.1040740 [ Links ]

1This project was funded by Consejo Nacional de Ciencia y Tecnología in Mexico, under Project 266837 “Proyecto de implementación integral de la reforma energética: eficiencia energética, desarrollo de infraestructura e impacto social”. We are very thankful for this support.

2We thank Pedro Liedo and Mariana Menchero due to their excellent help as Research Assistants.

3There is also a plethora of studies that estimated regional input-output models for different regions in Mexico. For different reviews, refer to Callicó et al. (2003); Dávila (2015); Assuad and Sánchez (2016).

4It is not our intention to compare different approaches. By recognizing the strand of the literature in which our contribution lies, we leave that task to future work.

6For more details of this method, see Miller and Blair (2009).

8Departing from ECUACION, intraregional effects are associated with the block matrices in the main diagonal, and interregional effects with the off-diagonal block matrices. To obtain the net multiplier effects, we use 𝐁−𝐈, instead of 𝐁 (Miller and Blair, 2009).

9The database generated in this project is available as a supplementary file.

ANNEX

Annex 1 List of Regions 

id Regions
R1 Aguascalientes
R2 Baja California
R3 Baja California Sur
R4 Campeche
R5 Coahuila de Zaragoza
R6 Colima
R7 Chiapas
R8 Chihuahua
R9 Ciudad de Mexico
R10 Durango
R11 Guanajuato
R12 Guerrero
R13 Hidalgo
R14 Jalisco
R15 México
R16 Michoacán de Ocampo
R17 Morelos
R18 Nayarit
R19 Nuevo Leon
R20 Oaxaca
R21 Puebla
R22 Queretaro
R23 Quintana Roo
R24 San Luis Potosí
R25 Sinaloa
R26 Sonora
R27 Tabasco
R28 Tamaulipas
R29 Tlaxcala
R30 Veracruz de Ignacio de la Llave
R31 Yucatán
R32 Zacatecas

Annex 2

Annex 2 List of Sectors 

Id Cod.SUT* Sectors
S1 111 Agriculture
S2 112 Animal production
S3 113 Forestry and logging
S4 114 Fishing and aquaculture
S5 115 Agriculture, farming, forestry and fishing support service activities
S6 211 Extraction of crude petroleum and natural gas
S7 212-213 Mining and support service activities
S8 221 Electric power generation, transmission and distribution
S9 222 Water and gas supply by pipelines to the final consumer
S10 236-238 Construction
S11 311 Manufacture of food products
S12 312 Manufacture of beverages and tobacco products
S13 313-314 Manufacture of textiles
S14 315-316 Manufacture of wearing apparel
S15 321 Manufacture of wood and of products of wood and cork, except furniture
S16 322-323 Manufacture of paper and paper products; Printing and reproduction of recorded media
S17 324-326 Manufacture of coke and refined petroleum products; Manufacture of chemicals and chemical products; Manufacture of rubber and plastics products
S18 327 Manufacture of other non-metallic mineral products
S19 331-332 Manufacture of basic metals; Manufacture of fabricated metal products, except machinery and equipment
S20 333-336 Manufacture of machinery and equipment n.e.c.; Manufacture of computer, electronic and optical products; Manufacture of electrical equipment; Manufacture of motor vehicles, trailers and semi-trailers; Manufacture of other transport equipment
S21 337 Manufacture of furniture
S22 339 Other manufacturing
S23 431 Wholesale trade
S24 461 Retail trade
S25 481-493 Transportation and storage
S26 511-519 Information and communication
S27 521-524 Financial and insurance activities
S28 531-533 Real estate activities
S29 541 Professional, scientific and technical activities
S30 551 Activities of head offices; management consultancy activities
S31 561-562 Administrative and support service activities
S32 611 Education
S33 621-624 Human health and social work activities
S34 711-713 Arts, entertainment and recreation
S35 721-722 Accommodation and food service activities
S36 811-814 Other service activities
S37 931 Public administration and defense; compulsory social security; Activities of extraterritorial organizations and bodies

Note: *Instituto Nacional de Estadística y Geografía (INEGI) Cuadros de Oferta y Utilización

- Supply and Use Tables (SUT).

Annex 3

Sectoral GRP Data

INEGI publishes sectoral GRP information for 32 activity sectors in the 32 regions of Mexico for the year 2013. In order to obtain a more disaggregated sectoral structure, we disaggregate the Agriculture, forestry and fishing sector (11), and the Electric, water and gas supply sector (22) using regional shares from other databases. This disaggregation procedure takes into account the consistency with the sectoral information available at the Supply and Use Tables (SUT) at the national level.

Table A.3.1 shows the sectoral structure after the disaggregation of sector 11 into five economic sectors (111, 112, 113, 114, 115) and the disaggregation of sector 22 into two economic sectors (221, 222). This table also exhibits the variables used to calculate regional shares.

After calculating the regional shares for each SUT sector, the respective sectoral value- added estimates at the national level (from the national IO table) are distributed across the 32 Mexican regions. Next, the consistency of the regionalized data with GRP estimates is ensured using the bi-proportional adjustment method, RAS. For all the remaining 30 sectors, we use the regional shares provided by INEGI’s sectoral GRP.

Table A.3.1 Data Sources Used to Calculate Regional Shares of Sectoral Output 

Gross Regional Product Supply and Use Tables Variables used to calculate regional shares
Cod. Sectors Cod. Sectors
111 Agriculture SIAP, Anuario Estadístico de la Producción Agrícola (Año base: 2013)
11 Agriculture, forestry and fishing 112 Animal production SIAP, Anuario Estadístico de la Producción Ganadera (Año base: 2013)
113 Fishing and aquaculture SAGARPA, CONAPESCA, Anuario Estadístico de Acuacultura y Pesca (Año base: 2014)
115 Agriculture, farming, forestry and fishing support service activities INEGI, PIB por Entidad Federativa, sector 11 (Año base: 2013)
221 Electric power generation, transmission and distribution Programa de Desarrollo del Sistema Eléctrico Nacional - Generación 2013 (GWh)
22 Electricity, water and gas supply 222 Water supply and gas supply by pipelines to the final consumer INEGI, Censo Económico 2014 (año base: 2013), Valor agregado censal bruto (A131A)

Annex 4.A

Interregional Trade in Mexico, 2013 (in MXN billion) 

DESTINATION
ORIGIN R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 ROW TOTAL
R1 159 2 0 6 4 1 2 4 20 1 7 1 1 10 6 2 1 1 8 1 2 3 1 4 1 2 4 3 0 4 1 5 91 355
R2 2 456 3 29 11 1 6 12 27 2 3 1 1 7 7 1 1 1 13 1 3 2 2 2 3 16 14 4 0 9 2 3 256 899
R3 1 8 84 11 5 0 2 4 13 1 2 0 0 2 3 0 0 0 7 0 1 1 0 1 1 4 5 2 0 3 0 1 8 170
R4 1 5 0 164 8 0 15 4 45 1 26 0 13 23 47 3 6 1 32 13 6 11 1 6 1 4 44 41 2 42 2 1 347 915
R5 5 13 2 20 478 1 5 28 39 5 9 2 2 15 15 4 2 1 93 3 7 5 3 6 5 12 12 17 1 13 3 5 448 1279
R6 1 2 0 5 3 73 1 2 12 0 2 0 0 6 3 1 0 0 4 0 1 1 0 1 0 2 3 1 0 2 0 1 8 139
R7 2 8 1 16 7 1 233 7 39 2 5 2 2 7 11 2 1 1 13 2 5 3 3 2 2 6 20 5 1 13 4 1 33 462
R8 3 13 1 18 21 1 5 416 32 5 6 1 1 11 11 3 2 1 29 2 5 3 2 4 4 14 11 8 1 10 2 4 330 979
R9 22 46 6 59 58 6 21 59 2566 12 68 18 44 69 256 25 28 7 73 21 72 49 8 34 15 41 60 51 13 92 10 14 166 4088
R10 2 5 1 8 12 0 2 11 20 148 4 1 1 7 7 2 1 1 18 1 2 2 1 3 3 5 5 5 0 5 1 3 31 317
R11 11 12 2 18 17 2 5 16 99 4 556 3 4 32 28 9 3 2 28 3 10 16 3 12 5 10 13 13 1 16 3 7 187 1151
R12 2 4 0 11 6 0 2 6 58 1 4 138 1 5 11 1 3 0 10 1 5 3 1 2 1 3 8 3 1 7 1 1 19 318
R13 2 4 1 7 5 1 2 5 101 1 6 2 179 7 18 2 2 1 8 1 9 5 1 3 1 3 6 4 2 10 1 1 35 435
R14 8 22 3 36 30 6 9 28 145 7 38 4 6 897 44 18 5 6 50 4 15 17 5 17 10 19 24 23 2 27 5 11 306 1855
R15 9 17 3 26 24 3 8 22 629 5 27 8 13 34 1052 12 13 3 43 7 31 25 5 13 6 15 23 19 5 35 5 5 300 2475
R16 5 8 1 10 12 1 2 10 63 2 14 1 3 30 21 246 2 1 18 2 6 8 1 5 2 7 8 7 1 10 2 2 51 562
R17 1 2 0 5 3 0 1 3 51 1 3 2 1 4 11 1 157 0 5 1 5 2 1 1 1 2 4 2 1 5 1 1 62 338
R18 1 2 0 4 4 0 1 3 15 1 2 0 0 6 3 1 0 78 6 0 1 1 0 1 1 2 3 2 0 2 0 1 7 154
R19 11 29 4 44 118 3 11 52 89 9 20 4 4 30 27 7 4 3 1148 5 13 10 5 15 10 25 28 64 2 27 6 12 388 2226
R20 2 6 1 18 7 1 5 6 51 1 5 1 2 6 11 2 2 1 12 189 8 3 2 2 2 5 12 4 1 13 2 2 27 409
R21 4 7 1 21 9 1 7 9 149 2 11 3 8 14 36 4 7 1 17 6 428 8 3 5 2 6 18 7 7 36 3 2 164 1006
R22 4 5 1 11 8 1 3 7 74 2 16 2 3 13 22 4 2 1 13 2 7 289 1 7 2 4 8 6 1 10 2 3 119 651
R23 1 6 0 33 8 0 2 8 35 1 4 0 1 3 6 1 1 0 14 1 3 2 144 2 1 5 12 6 0 6 3 1 10 320
R24 7 5 1 10 11 1 3 8 46 2 13 1 2 16 14 3 2 1 22 2 5 8 1 272 2 4 7 10 1 99 1 6 113 611
R25 3 14 1 17 18 1 3 15 36 4 5 1 1 13 9 2 1 1 23 1 4 3 1 3 241 15 10 7 1 8 2 3 34 500
R26 3 33 3 33 19 2 8 23 42 3 8 2 2 17 16 5 3 2 27 3 7 4 3 4 9 458 18 7 1 18 4 4 244 1035
R27 3 13 2 33 11 1 18 11 56 3 18 3 9 18 34 5 4 1 25 9 10 8 6 6 5 11 303 23 2 40 9 2 177 878
R28 5 13 2 23 26 2 5 18 51 4 11 2 3 15 16 4 2 1 66 2 6 6 2 9 5 11 13 404 1 14 3 6 230 980
R29 1 1 0 3 2 0 1 2 26 0 2 0 1 2 6 1 1 0 3 1 9 2 0 1 0 1 2 1 69 5 1 0 20 164
R30 6 17 3 30 18 2 11 18 149 4 18 6 10 24 44 7 6 2 33 8 31 11 6 8 6 15 31 17 5 706 7 4 142 1404
R31 1 4 0 35 4 0 3 14 18 1 2 1 1 4 5 1 1 0 7 1 2 1 5 1 1 3 15 3 0 6 186 1 22 341
R32 4 2 0 5 6 0 1 4 16 1 5 0 1 6 5 2 1 0 12 0 2 2 0 4 1 2 3 3 0 5 1 100 33 228
ROW 96 215 16 139 369 15 73 269 603 37 229 26 70 330 450 60 66 15 492 51 233 146 26 133 48 247 153 226 29 230 38 37 0 5167
TOTAL 398 1000 143 907 1341 128 477 1092 5445 274 1148 235 391 1678 2256 439 328 133 2372 343 955 661 245 590 394 979 902 999 150 1440 311 250 4407 32809

Annex 4.B Interregional Trade in México: Purchases Shares 2013 

DESTINATION
ORIGIN R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 ROW TOTAL
R1 0.399 0.002 0.002 0.007 0.003 0.005 0.003 0.004 0.004 0.004 0.006 0.002 0.002 0.006 0.003 0.004 0.002 0.004 0.003 0.002 0.002 0.004 0.003 0.007 0.003 0.002 0.004 0.003 0.002 0.003 0.002 0.018 0.021 0.011
R2 0.005 0.456 0.021 0.031 0.008 0.005 0.012 0.011 0.005 0.006 0.003 0.003 0.002 0.004 0.003 0.003 0.003 0.005 0.005 0.003 0.004 0.003 0.007 0.004 0.007 0.017 0.015 0.004 0.002 0.006 0.005 0.012 0.058 0.027
R3 0.002 0.008 0.587 0.012 0.004 0.001 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.006 0.002 0.001 0.002 0.001 0.004 0.002 0.005
R4 0.003 0.005 0.001 0.181 0.006 0.002 0.032 0.004 0.008 0.004 0.023 0.001 0.034 0.014 0.021 0.007 0.017 0.006 0.014 0.037 0.006 0.016 0.005 0.010 0.002 0.004 0.049 0.041 0.013 0.029 0.008 0.003 0.079 0.028
R5 0.012 0.013 0.014 0.022 0.357 0.011 0.011 0.025 0.007 0.019 0.008 0.008 0.005 0.009 0.007 0.008 0.007 0.011 0.039 0.007 0.007 0.007 0.011 0.011 0.013 0.013 0.014 0.017 0.005 0.009 0.009 0.018 0.102 0.039
R6 0.003 0.002 0.001 0.005 0.002 0.570 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.004 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.001 0.001 0.002 0.001 0.004 0.002 0.004
R7 0.005 0.008 0.008 0.018 0.006 0.006 0.487 0.007 0.007 0.006 0.004 0.007 0.005 0.004 0.005 0.005 0.005 0.005 0.006 0.007 0.005 0.005 0.013 0.004 0.006 0.006 0.022 0.005 0.005 0.009 0.013 0.005 0.008 0.014
R8 0.008 0.013 0.009 0.020 0.015 0.008 0.010 0.381 0.006 0.018 0.006 0.005 0.004 0.006 0.003 0.006 0.005 0.008 0.012 0.005 0.005 0.005 0.008 0.007 0.009 0.014 0.012 0.008 0.004 0.007 0.007 0.015 0.075 0.030
R9 0.057 0.046 0.039 0.065 0.043 0.044 0.045 0.054 0.471 0.045 0.059 0.075 0.113 0.041 0.113 0.056 0.085 0.049 0.031 0.063 0.076 0.074 0.034 0.058 0.037 0.042 0.066 0.051 0.087 0.064 0.033 0.057 0.038 0.125
R10 0.006 0.005 0.005 0.009 0.009 0.003 0.004 0.010 0.004 0.540 0.004 0.002 0.002 0.004 0.003 0.004 0.003 0.005 0.008 0.002 0.003 0.003 0.003 0.005 0.007 0.005 0.005 0.005 0.003 0.004 0.003 0.012 0.007 0.010
R11 0.028 0.012 0.012 0.020 0.013 0.018 0.010 0.015 0.018 0.015 0.484 0.012 0.011 0.019 0.012 0.021 0.009 0.015 0.012 0.008 0.011 0.025 0.011 0.021 0.012 0.010 0.015 0.013 0.010 0.011 0.010 0.029 0.042 0.035
R12 0.005 0.004 0.001 0.012 0.005 0.002 0.005 0.005 0.011 0.003 0.003 0.586 0.004 0.003 0.005 0.002 0.008 0.002 0.004 0.003 0.005 0.004 0.002 0.003 0.001 0.003 0.009 0.003 0.004 0.005 0.003 0.005 0.004 0.010
R13 0.005 0.004 0.004 0.008 0.004 0.005 0.005 0.004 0.019 0.004 0.005 0.007 0.459 0.004 0.008 0.005 0.006 0.004 0.003 0.004 0.010 0.007 0.004 0.005 0.004 0.004 0.007 0.004 0.011 0.007 0.004 0.006 0.008 0.013
R14 0.045 0.022 0.021 0.039 0.022 0.048 0.019 0.026 0.027 0.026 0.033 0.016 0.015 0.534 0.020 0.042 0.014 0.047 0.021 0.013 0.015 0.024 0.019 0.029 0.024 0.020 0.027 0.023 0.014 0.019 0.015 0.044 0.070 0.057
R15 0.022 0.017 0.018 0.029 0.018 0.022 0.017 0.020 0.121 0.017 0.024 0.033 0.034 0.020 0.467 0.026 0.040 0.019 0.018 0.020 0.032 0.038 0.020 0.021 0.016 0.015 0.025 0.019 0.031 0.024 0.017 0.021 0.068 0.075
R16 0.014 0.008 0.005 0.011 0.009 0.008 0.005 0.009 0.012 0.007 0.012 0.005 0.007 0.018 0.009 0.560 0.006 0.009 0.008 0.005 0.006 0.012 0.005 0.009 0.005 0.007 0.009 0.007 0.007 0.007 0.006 0.010 0.012 0.017
R17 0.003 0.002 0.003 0.006 0.002 0.003 0.003 0.002 0.009 0.002 0.002 0.008 0.004 0.002 0.005 0.002 0.478 0.002 0.002 0.003 0.005 0.003 0.002 0.002 0.002 0.002 0.004 0.002 0.004 0.004 0.002 0.003 0.014 0.010
R18 0.003 0.002 0.001 0.005 0.003 0.002 0.002 0.003 0.003 0.003 0.002 0.001 0.001 0.004 0.001 0.002 0.001 0.587 0.003 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.003 0.002 0.005
R19 0.027 0.029 0.029 0.049 0.088 0.023 0.023 0.048 0.016 0.035 0.017 0.017 0.010 0.018 0.012 0.017 0.013 0.020 0.484 0.015 0.014 0.015 0.022 0.025 0.025 0.025 0.031 0.064 0.010 0.019 0.018 0.049 0.088 0.068
R20 0.005 0.006 0.006 0.019 0.005 0.005 0.009 0.006 0.009 0.005 0.004 0.006 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.552 0.008 0.005 0.006 0.004 0.004 0.005 0.014 0.004 0.007 0.009 0.006 0.007 0.006 0.012
R21 0.009 0.007 0.007 0.023 0.007 0.009 0.015 0.008 0.027 0.007 0.010 0.014 0.020 0.008 0.016 0.009 0.020 0.008 0.007 0.017 0.448 0.012 0.011 0.008 0.006 0.006 0.020 0.007 0.045 0.025 0.011 0.009 0.037 0.031
R22 0.010 0.005 0.005 0.012 0.006 0.007 0.007 0.006 0.014 0.006 0.014 0.007 0.008 0.008 0.010 0.009 0.007 0.007 0.005 0.005 0.007 0.437 0.006 0.011 0.005 0.004 0.009 0.006 0.007 0.007 0.005 0.012 0.027 0.020
R23 0.004 0.006 0.002 0.036 0.006 0.001 0.005 0.007 0.006 0.005 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.001 0.006 0.002 0.003 0.004 0.589 0.003 0.002 0.005 0.013 0.006 0.003 0.004 0.011 0.002 0.002 0.010
R24 0.018 0.005 0.006 0.011 0.008 0.008 0.006 0.008 0.008 0.008 0.012 0.006 0.005 0.009 0.006 0.008 0.006 0.007 0.009 0.005 0.006 0.012 0.006 0.460 0.005 0.005 0.008 0.010 0.005 0.006 0.005 0.024 0.026 0.019
R25 0.007 0.014 0.008 0.018 0.013 0.005 0.007 0.014 0.007 0.013 0.005 0.003 0.003 0.008 0.004 0.004 0.003 0.009 0.010 0.003 0.004 0.005 0.006 0.005 0.611 0.015 0.011 0.007 0.004 0.006 0.006 0.011 0.008 0.015
R26 0.009 0.033 0.022 0.037 0.014 0.012 0.017 0.022 0.008 0.012 0.007 0.008 0.005 0.010 0.007 0.011 0.008 0.013 0.011 0.008 0.008 0.006 0.014 0.008 0.023 0.468 0.020 0.007 0.077 0.012 0.012 0.015 0.055 0.032
R27 0.006 0.013 0.014 0.037 0.008 0.012 0.037 0.010 0.010 0.011 0.015 0.013 0.023 0.011 0.015 0.010 0.013 0.010 0.011 0.026 0.010 0.012 0.024 0.010 0.012 0.011 0.336 0.023 0.014 0.028 0.029 0.009 0.040 0.027
R28 0.012 0.013 0.013 0.025 0.020 0.013 0.011 0.016 0.009 0.015 0.010 0.010 0.006 0.009 0.007 0.009 0.006 0.010 0.028 0.006 0.007 0.008 0.009 0.015 0.012 0.011 0.015 0.405 0.006 0.010 0.008 0.024 0.052 0.030
R29 0.002 0.001 0.001 0.003 0.001 0.001 0.002 0.002 0.005 0.001 0.002 0.002 0.004 0.001 0.003 0.001 0.003 0.001 0.001 0.002 0.009 0.002 0.002 0.001 0.001 0.001 0.003 0.001 0.459 0.003 0.002 0.002 0.004 0.005
R30 0.015 0.017 0.019 0.033 0.013 0.017 0.022 0.017 0.027 0.016 0.015 0.024 0.024 0.014 0.020 0.016 0.020 0.014 0.014 0.023 0.032 0.017 0.024 0.014 0.016 0.015 0.034 0.017 0.032 0.490 0.022 0.017 0.032 0.043
R31 0.002 0.004 0.003 0.039 0.003 0.002 0.007 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.022 0.002 0.002 0.003 0.017 0.003 0.002 0.004 0.600 0.003 0.005 0.010
R32 0.010 0.002 0.002 0.005 0.005 0.002 0.003 0.003 0.003 0.004 0.004 0.002 0.002 0.004 0.002 0.004 0.002 0.002 0.005 0.001 0.002 0.003 0.002 0.007 0.002 0.002 0.004 0.003 0.003 0.003 0.002 0.399 0.008 0.007
ROW 0.241 0.215 0.112 0.153 0.275 0.119 0.153 0.246 0.111 0.137 0.199 0.111 0.170 0.197 0.199 0.136 0.200 0.110 0.208 0.148 0.244 0.221 0.106 0.225 0.123 0.253 0.169 0.227 0.191 0.160 0.123 0.147 0.000 0.157
TOTAL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Annex 4.C Interregional Trade in Mexico: Sales Shares, 2013 

DESTINATION
ORIGIN R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 ROW TOTAL
R1 0.446 0.007 0.001 0.017 0.012 0.002 0.004 0.011 0.057 0.003 0.019 0.002 0.002 0.028 0.017 0.005 0.002 0.002 0.002 0.002 0.006 0.008 0.002 0.011 0.003 0.005 0.011 0.009 0.001 0.012 0.002 0.013 0.255 1.000
R2 0.002 0.508 0.003 0.032 0.012 0.001 0.006 0.014 0.030 0.002 0.004 0.001 0.001 0.007 0.008 0.002 0.001 0.001 0.014 0.001 0.004 0.002 0.002 0.002 0.003 0.018 0.015 0.005 0.000 0.010 0.002 0.003 0.285 1.000
R3 0.004 0.047 0.494 0.064 0.029 0.001 0.011 0.023 0.077 0.004 0.009 0.001 0.002 0.012 0.016 0.003 0.002 0.001 0.039 0.002 0.008 0.005 0.002 0.005 0.003 0.021 0.031 0.012 0.001 0.020 0.003 0.006 0.046 1.000
R4 0.001 0.006 0.000 0.179 0.008 0.000 0.017 0.005 0.049 0.001 0.028 0.000 0.014 0.025 0.051 0.003 0.006 0.001 0.035 0.014 0.006 0.012 0.001 0.007 0.001 0.004 0.049 0.044 0.002 0.046 0.003 0.001 0.379 1.000
R5 0.004 0.010 0.002 0.016 0.374 0.001 0.004 0.022 0.030 0.004 0.007 0.001 0.001 0.012 0.012 0.003 0.002 0.001 0.073 0.002 0.005 0.004 0.002 0.005 0.004 0.010 0.010 0.013 0.001 0.010 0.002 0.004 0.350 1.000
R6 0.008 0.013 0.001 0.034 0.019 0.526 0.007 0.017 0.084 0.003 0.015 0.001 0.003 0.045 0.023 0.006 0.003 0.002 0.029 0.002 0.008 0.007 0.002 0.008 0.003 0.012 0.021 0.010 0.001 0.016 0.002 0.007 0.061 1.000
R7 0.004 0.017 0.003 0.035 0.016 0.002 0.503 0.015 0.085 0.004 0.011 0.004 0.004 0.015 0.024 0.004 0.003 0.001 0.029 0.005 0.011 0.007 0.007 0.005 0.005 0.014 0.043 0.012 0.002 0.028 0.009 0.003 0.072 1.000
R8 0.003 0.014 0.001 0.019 0.021 0.001 0.005 0.425 0.033 0.005 0.006 0.001 0.001 0.011 0.011 0.003 0.002 0.001 0.030 0.002 0.005 0.003 0.002 0.004 0.004 0.014 0.011 0.008 0.001 0.011 0.002 0.004 0.337 1.000
R9 0.005 0.011 0.001 0.014 0.014 0.001 0.005 0.014 0.628 0,003 0.017 0.004 0.011 0.017 0.063 0.006 0.007 0.002 0.018 0.005 0.018 0.012 0.002 0.008 0.004 0.010 0.015 0.012 0.003 0.023 0.002 0.003 0.041 1.000
R10 0.007 0.017 0.002 0.025 0.037 0.001 0.006 0.034 0.064 0.466 0.014 0.002 0.003 0.023 0.022 0.005 0.003 0.002 0.057 0.003 0.008 0.007 0.003 0.009 0.008 0.015 0.016 0.014 0.001 0.016 0.003 0.010 0.097 1.000
R11 0.010 0.010 0.002 0.016 0.015 0.002 0.004 0.014 0.086 0.003 0.483 0.002 0.004 0.028 0.024 0.008 0.003 0.002 0.024 0.002 0.009 0.014 0.002 0.011 0.004 0.009 0.012 0.012 0.001 0.014 0.003 0.006 0.163 1.000
R12 0.006 0.013 0.001 0.034 0.020 0.001 0.007 0.018 0.182 0.002 0.012 0.433 0.005 0.016 0.035 0.003 0.009 0.001 0.031 0.003 0.015 0.009 0.002 0.006 0.002 0.010 0.025 0.011 0.002 0.022 0.003 0.004 0.058 1.000
R13 0.004 0.009 0.001 0.017 0.011 0.001 0.005 0.011 0.233 0.003 0.014 0.004 0.413 0.016 0.043 0.005 0.005 0.001 0.019 0.003 0.021 0.011 0.002 0.006 0.003 0.008 0.013 0.008 0.004 0.022 0.003 0.003 0.077 1.000
R14 0.010 0.012 0.002 0.019 0.016 0.003 0.005 0.015 0.078 0.004 0.020 0.002 0.003 0.483 0.024 0.010 0.002 0.003 0.027 0.002 0.008 0.009 0.002 0.009 0.005 0.010 0.013 0.012 0.001 0.015 0.03 0.006 0.165 1.000
R15 0.004 0.007 0.001 0.011 0.010 0.001 0.003 0.009 0.266 0.002 0.011 0.003 0.005 0.014 0.425 0.005 0.005 0.001 0.017 0.003 0.012 0.010 0.002 0.005 0.002 0.006 0.009 0.008 0.002 0.014 0.002 0.002 0.121 1.000
R16 0.010 0.013 0.001 0.018 0.021 0.002 0.004 0.018 0.013 0.004 0.025 0.002 0.005 0.052 0.037 0.437 0.004 0.002 0.033 0.011 0.014 0.002 0.002 0.009 0.003 0.012 0.014 0.013 0.002 0.017 0.003 0.004 0.091 1.000
R17 0.003 0.007 0.001 0.015 0.008 0.001 0.004 0.008 0.151 0.002 0.008 0.005 0.004 0.011 0.031 0.003 0.464 0.001 0.014 0.003 0.014 0.006 0.002 0.004 0.002 0.006 0.012 0.006 0.002 0.016 0.002 0.002 0.182 1.000
R18 0.008 0.015 0.001 0.029 0.026 0.002 0.006 0.021 0.098 0.006 0.016 0.001 0.003 0.039 0.022 0.005 0.0020 0.510 0.039 0.002 0.008 0.009 0.002 0.007 0.005 0.015 0.017 0.013 0.001 0.016 0.002 0.005 0.048 1.000
R19 0.005 0.013 0.002 0.020 0.053 0.001 0.005 0.023 0.040 0.004 0.009 0.002 0.002 0.013 0.012 0.003 0.002 0.001 0.516 0.002 0.006 0.005 0.002 0.007 0.004 0.011 0.013 0.029 0.001 0.012 0.002 0.006 0.174 1.000
R20 0.004 0.014 0.002 0.043 0.018 0.001 0.011 0.015 0.126 0.003 0.011 0.004 0.005 0.014 0.026 0.004 0.004 0.001 0.029 0.462 0.019 0.008 0.004 0.006 0.004 0.012 0.030 0.011 0.003 0.032 0.004 0.004 0.066 1.000
R21 0.004 0.007 0.001 0.021 0.009 0.001 0.007 0.009 0.149 0.002 0.011 0.003 0.008 0.014 0.036 0.004 0.007 0.001 0.017 0.006 0.425 0.008 0.003 0.005 0.002 0.006 0.018 0.007 0.007 0.036 0.003 0.002 0.163 1.000
R22 0.006 0.007 0.001 0.017 0.012 0.001 0.005 0.010 0.114 0.002 0.024 0.002 0.005 0.020 0.034 0.006 0.003 0.001 0.020 0.003 0.011 0.444 0.002 0.010 0.003 0.007 0.012 0.010 0.002 0.016 0.002 0.005 0.183 1.000
R23 0.005 0.017 0.001 0.102 0.024 0.001 0.007 0.024 0.110 0.004 0.012 0.001 0.004 0.009 0.018 0.002 0.002 0.001 0.045 0.002 0.009 0.007 0.451 0.006 0.002 0.014 0.036 0.017 0.001 0.020 0.011 0.002 0.033 1.000
R24 0.012 0.009 0.001 0.017 0.018 0.002 0.005 0.014 0.075 0.004 0.022 0.002 0.003 0.026 0.024 0.006 0.003 0.003 0.036 0.003 0.009 0.013 0.002 0.445 0.003 0.007 0.012 0.016 0.001 0.015 0.002 0.010 0.184 1.000
R25 0.006 0.028 0.002 0.033 0.036 0.001 0.007 0.030 0.071 0.007 0.011 0.001 0.003 0.025 0.018 0.004 0.002 0.002 0.047 0.002 0.008 0.006 0.003 0.006 0.482 0.030 0.020 0.013 0.001 0.017 0.004 0.006 0.068 1.000
R26 0.003 0.032 0.003 0.032 0.018 0.002 0.008 0.023 0.041 0.003 0.008 0.002 0.02 0.016 0.016 0.005 0.002 0.002 0.026 0.003 0.007 0.004 0.003 0.004 0.009 0.442 0.018 0.007 0.001 0.017 0.004 0.004 0.235 1.000
R27 0.003 0.014 0.002 0.038 0.012 0.002 0.020 0.012 0.064 0.003 0.020 0.004 0.010 0.021 0.039 0.005 0.005 0.001 0.029 0.010 0.011 0.009 0.007 0.007 0.005 0.013 0.345 0.026 0.002 0.045 0.010 0.003 0.201 1.000
R28 0.005 0.013 0.002 0.023 0.027 0.002 0.005 0.018 0.052 0.004 0.011 0.002 0.003 0.015 0.016 0.004 0.002 0.001 0.067 0.002 0.006 0.006 0.002 0.009 0.005 0.011 0.014 0.413 0.001 0.014 0.003 0.006 0.235 1.000
R29 0.004 0.008 0.001 0.016 0.010 0.001 0.005 0.011 0.158 0.002 0.011 0.003 0.009 0.014 0.035 0.004 0.005 0.001 0.019 0.005 0.055 0.009 0.003 0.005 0.002 0.007 0.015 0.008 0.419 0.029 0.003 0.002 0.120 1.000
R30 0.004 0.012 0.002 0.021 0.013 0.002 0.008 0.013 0.106 0.003 0.013 0.004 0.007 0.017 0.032 0.005 0.005 0.001 0.023 0.006 0.022 0.008 0.004 0.006 0.004 0.011 0.022 0.012 0.003 0.502 0.005 0.003 0.101 1.000
R31 0.003 0.011 0.001 0.103 0.013 0.001 0.010 0.011 0.052 0.002 0.007 0.002 0.002 0.011 0.014 0.002 0.002 0.001 0.021 0.003 0.007 0.004 0.016 0.004 0.003 0.008 0.045 0.009 0.001 0.017 0.547 0.002 0.066 1.000
R32 0.018 0.009 0.001 0.022 0.027 0.001 0.006 0.016 0.069 0.005 0.020 0.002 0.003 0.026 0.024 0.008 0.003 0.001 0.051 0.002 0.009 0.010 0.002 0.018 0.003 0.008 0.014 0.012 0.002 0.021 0.003 0.437 0.147 1.000
ROW 0.019 0.042 0.003 0.027 0.071 0.003 0.014 0.052 0.117 0.007 0.044 0.005 0.014 0.064 0.087 0.012 0.013 0.003 0.095 0.010 0.045 0.028 0.005 0.026 0.009 0.048 0.030 0.044 0.006 0.045 0.007 0.007 0.000 1.000
TOTAL 0.012 0.030 0.004 0.028 0.041 0.004 0.015 0.033 0.166 0.008 0.035 0.007 0.012 0.051 0.069 0.013 0.010 0.004 0.072 0.010 0.029 0.020 0.007 0.018 0.012 0.030 0.027 0.030 0.005 0.044 0.009 0.008 0.134 1.000

Received: March 03, 2020; Accepted: July 09, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License