INTRODUCCIÓN
Este artículo presenta un estudio de caso que forma parte de un proyecto de investigación cuyo objetivo es profundizar en el análisis de una actividad prioritaria para el profesor: la selección de recursos para enseñar un tema específico. En dicho proyecto hemos llevado a cabo estudios de casos de cinco profesores de primaria en Colombia, para comprender sus procesos de selección de recursos, en particular los digitales, para enseñar geometría; este artículo se enfoca en un profesor de quinto grado.
La investigación sobre los recursos y cómo los profesores interactúan con éstos se ha desarrollado en las últimas dos décadas (e.g. ver Adler, 2000; Gueudet &Trouche, 2009; Trouche, Gueudet & Pepin, 2018). En nuestra investigación, utilizamos la Aproximación Documental de la Didáctica o ADD (Gueudet & Trouche, 2009) como principal referente teórico, considerando que es importante profundizar en aspectos específicos del trabajo documental del profesor. De acuerdo con Pepin, Gueudet y Trouche (2013) el trabajo documental, corresponde al conjunto de actividades profesionales que realiza el profesor en interacción con recursos; abarca actividades tan diversas como el diseño, selección y adaptación de recursos a usar en la clase, así como su orquestación (disposición y gestión de los recursos), el trabajo colaborativo con otros colegas y las reflexiones que el profesor realiza sobre su práctica.
En nuestro caso, nos preguntamos sobre aspectos específicos del trabajo documental de los profesores que enseñan geometría en primaria: ¿cómo es su proceso de selección de los recursos (digitales y no-digitales) que usan en sus clases? y ¿qué conocimientos profesionales del profesor intervienen durante ese proceso de selección?
Consideramos que el estudio de los procesos de selección de recursos, especialmente de recursos digitales, es importante porque nos permite comprender los criterios y conocimientos de los profesores sobre la calidad y usos de los recursos que consideran para su práctica -un área de investigación aún poco estudiada y urgente en educación matemática (Trgalová & Jahn, 2013)-. Más aún, este tipo de estudios sobre la selección de recursos, pueden orientar el desarrollo de programas de formación de profesores y dar pistas importantes a quienes diseñan recursos y los ponen a disposición de los profesores.
Asimismo, tomamos la metodología de la investigación reflexiva de la ADD (Gueudet & Trouche, 2012) para estudiar el proceso de selección de recursos del profesor Miguel (seudónimo), sujeto del estudio de caso (ver sección de Metodología). Dicha metodología nos permitió analizar el proceso de selección de recursos de este profesor para enseñar transformaciones geométricas en su clase de quinto grado de primaria.
Como parte del análisis de este proceso de selección de recursos, consideramos importante indagar en los conocimientos profesionales que intervienen en el mismo. Para ello, tomamos el concepto de “paradigma” que forma parte de la teoría de los Espacios de Trabajo Matemático (ETM) propuesta por Houdement y Kuzniak (2006), para comprender cómo el profesor entiende la geometría y su enseñanza -entendimientos que intervienen cuando éste selecciona y pone en juego recursos para su clase de geometría-.
ANTECEDENTES
La investigación en educación matemática ha mostrado interés por indagar el trabajo de los profesores de matemáticas, especialmente los relacionados con los usos de los recursos en clase (Gueudet & Trouche, 2009; Gueudet & Trouche, 2012; Guzmán & Kieran, 2013), y así proponer pistas que permitan repensar la formación inicial y continua de los docentes (Clark-Wilson, Robutti & Sinclair, 2014; Llinares, 2014; Trgalová & Jahn, 2013).
Al respecto, Artigue (2011) señala la necesidad de investigación para comprender las limitaciones de ciertas prácticas y las razones de éxito de otras. Esta autora enfatiza que las prácticas de los profesores son dinámicas y se adaptan al contexto (e.g., institucional) de cada profesor. En ese sentido, un aspecto a tomar en cuenta al analizar el trabajo documental de los profesores, son los cambios que se han dado en la era digital y que de una manera u otra impactan en la práctica docente: por ejemplo, Messaoui (2018) señala que el uso de computadoras para organizar y planear la enseñanza, transforma la manera en que se desarrolla el trabajo documental de los profesores. Además, las prácticas de los profesores se relacionan con los recursos que tengan disponibles; su participación en grupos que comparten intereses comunes (e.g. redes sociales o blogs); y el uso potencial de recursos digitales para la enseñanza, desde videos, dispositivos móviles (los cuales han ganado mayor relevancia), hasta software educativo.
Estas nuevas dinámicas en el trabajo documental y uso de recursos digitales son promovidas, para el caso de los profesores colombianos, por cambios y orientaciones curriculares, llamadas “mallas de aprendizaje”3 (Ministerio de Educación Nacional [MEN], 1998, 2017); la aplicación regular de pruebas estandarizadas y censales para evaluar el desempeño de los estudiantes4; la dotación de tecnologías digitales en las escuelas y la disponibilidad de programas de formación que promueven su uso. Consideramos que este tipo de aspectos pueden llegar a impactar procesos documentales, como la selección de recursos para enseñar geometría. Sin embargo, importantes recursos digitales para geometría, como la geometría dinámica, al menos en Colombia, aún no han logrado permear significativamente las prácticas de los profesores en los cursos regulares (MEN, 2003) y más aún de primaria.
En cuanto al currículo de geometría en Colombia, hay varios aspectos que vale la pena considerar para comprender el proceso de selección de recursos por parte de un profesor. Uno de ellos es que buena parte del marco teórico del currículo de geometría (MEN, 1998) está basado en los aportes de Vasco (1992), quien propone la existencia de una dicotomía entre lo “estático” y lo “dinámico” en la naturaleza de la geometría, que impacta su enseñanza. Por un lado, están las relaciones “estáticas” en la geometría euclidiana: como el paralelismo, la perpendicularidad y demostraciones a partir de trazos y prolongaciones de las figuras. Por otra parte, está el aspecto de “dinamismo”; al respecto Vasco (1992) cita el cuarto postulado euclidiano sobre la igualdad de todos los ángulos rectos, el cual considera toma sentido si visualizamos la rotación de una recta sobre otra, hasta que los cuatro ángulos sean iguales.
Esta dicotomía, entre lo estático y lo dinámico, según Vasco (1992) está vinculada con la noción de transformación geométrica; y propone una visión (epistemológica y didáctica) de las transformaciones como aplicaciones en el plano, las cuales se pueden enseñar propiciando actividades como caminar en línea recta, girar el cuerpo o el uso de distintos recursos como el doblado de papel.
Por otro lado, en relación a los recursos para enseñar geometría, Alsina (1991) enfatiza la importancia del uso de diversos “materiales y recursos”. Al respecto, este autor señala que los profesores de primaria tienden a incluir en sus clases de geometría recursos como el doblado de papel y muchos otros tipos de manipulativos, lo cual estimula la oferta de estos.
MARCO TEÓRICO
Como señalamos en la introducción, nuestra investigación utiliza elementos de la Aproximación Documental de la Didáctica o ADD (Gueudet & Trouche, 2009), tales como los conceptos de “recurso”, “documento”, “esquema” y “sistema de recursos del profesor”; así como el concepto de “paradigma” que propone Kuzniak (2011) en su modelo de los Espacios de Trabajo Matemático (ETM).
El concepto de recurso se entiende como todo aquello (sea material o simbólico) que da sentido, apoya y proyecta el trabajo del profesor; es decir, lo que los profesores usan para trabajar y desarrollar su práctica profesional (Adler, 2000). Por ejemplo, se consideran recursos a las orientaciones curriculares, materiales, talleres, planeaciones de clase, cuadernos de anotaciones, discusiones con sus colegas, geometría dinámica, etc. Más aún, Gueudet y Trouche (2009) entienden los recursos como dispositivos propios del trabajo del profesor; los cuales son concebidos, seleccionados, adaptados y usados con intencionalidades didácticas explícitas.
Para estos autores el concepto de recurso es central para el análisis del “trabajo documental” del profesor, e incluye las interacciones de éste con recursos diversos. En la perspectiva de la ADD, un documento es una entidad mixta compuesta por un recurso (o varios de ellos) junto con ciertos conocimientos (esquemas) asociados a dicho(s) recurso(s) y cómo usarlo(s) en determinadas situaciones. Así pues, la dupla situación-esquema, inicialmente propuesta porVergnaud (1998), es retomada por Pepin, Gueudet y Trouche (2013) como algo fundamental respecto a la idea de documento.
De acuerdo con Vergnaud (1998), una situación corresponde a un conjunto o combinación de tareas relacionadas entre sí. Para este autor, los sujetos aprenden a enfrentarse -a través de esquemas- a distintos tipos de situaciones, de manera que éstas moldean la forma como el sujeto actúa y piensa.
Por otra parte, Vergnaud (1998) define como un esquema a una organización invariante de actividad para una familia de situaciones; por tanto, no corresponde a una conducta o una técnica, sino que depende de la situación y de la competencia del sujeto. Un esquema consta de varios elementos (Vergnaud, 1998):
Metas de acción y posibles sub-metas, las cuales son ordenadas secuencial y jerárquicamente por el sujeto. Estas metas incluyen posibles anticipaciones del sujeto frente a una situación (e.g. anticipaciones respecto al objetivo de una tarea, sus efectos y etapas intermedias de realización). Estas metas y sub-metas generalmente corresponden a la “parte intencional” del esquema.
Reglas de acción, que le permiten al sujeto tomar y controlar información de la situación a la que se enfrenta, lo cual le posibilita generar sus secuencias de acciones. Estas reglas de acción generalmente se expresan en la forma “si... entonces...”.
-
Invariantes operatorias, las cuales corresponden a los conocimientos (en términos de proposiciones que pueden tener valor de verdad) contenidos en el esquema y que le permiten al sujeto reconocer y captar información sobre la situación. Las invariantes operatorias son de dos tipos: conceptos-en-acto y teoremas-en-acto.
Concepto-en-acto es conocimiento considerado por el sujeto como relevante de acuerdo con la situación, y que le permite identificar objetos, propiedades y relaciones; además sirve para analizar la situación, recabar información y seleccionar los teoremas-en-acto.
Teorema-en-acto es conocimiento considerado por el sujeto como verdadero según las particularidades de la situación.
Posibilidades de inferencia del sujeto frente a la situación que intenta resolver. Se refiere a las posibles adaptaciones que puede realizar el sujeto frente a una variedad de situaciones. Estas adaptaciones le permiten al sujeto calcular posibles anticipaciones a partir de las informaciones (de la situación) y del sistema de invariantes operatorios (conocimientos) de los que dispone.
Regresando al proceso del trabajo documental del profesor, tomamos en consideración las ideas de Gueudet y Trouche (2009) sobre cómo los profesores organizan los recursos que usan. Según estos autores, para realizar su trabajo, el profesor construye un conjunto organizado de recursos, al que llaman sistema de recursos. Éste es un sistema dinámico que evoluciona a lo largo del tiempo y está estrechamente vinculado al sistema de conocimientos profesionales y a la experiencia documental (Wang, 2018) del profesor. El sistema de recursos de un profesor generalmente está organizado según jerarquías que él mismo elabora. Un profesor puede asignar jerarquías (es decir, criterios de organización) a su sistema de recursos, de acuerdo con la “funcionalidad” de los recursos; por ejemplo, cuando los organiza de acuerdo con funciones específicas, tales como recursos para introducir una nueva temática; o recursos para evaluar; etc.
El estudio del sistema de recursos de un profesor incluye analizar su sistema documental e implica una mirada a los documentos que el profesor elabora (a partir de los recursos que usa) en contextos específicos y a lo largo del tiempo (génesis documentales).
Por otro lado, nos interesa profundizar en el análisis de los conocimientos geométricos (contenidos en las invariantes operatorias) que el profesor pone enjuego mientras selecciona recursos para su clase; con este objeto tomamos en cuenta el concepto de “paradigma” propuesto por Houdement y Kuzniak (2006) para describir la naturaleza de este conocimiento y las consideraciones epistemológicas que el profesor puede tener en cuenta mientras selecciona recursos para sus clases.
Un paradigma constituye una manera de interpretar la realidad; se refiere a los diferentes “puntos de vista” del profesor, que coexisten en su enseñanza de la geometría, asumiendo diferentes significados dependiendo de la situación en la clase, y que frecuentemente resultan en variaciones epistémicas y didácticas durante su práctica (Kuzniak, 2011).
En el caso de la enseñanza de la geometría, Kuzniak (2011) distingue varios paradigmas geométricos:
Geometría (natural o) elemental, corresponde a la geometría sobre objetos reales con un uso intensivo de la intuición. Incluye actividades como el trazado de gráfico usando distintos tipos de instrumentos, así como el uso de la medición y la aproximación para realizar validaciones o comprobaciones.
Geometría axiomática natural o modelizante, se refiere a un esquema de la realidad que se nutre de la experiencia de la geometría elemental. Aquí los axiomas se enuncian, aunque la axiomatización no esté completa; y se promueve el uso del lenguaje geométrico (símbolos) y el desarrollo de demostraciones no rigurosas.
Geometría axiomática verbal o formal, implica un uso intensivo de la lógica y las estructuras. Cuenta con una axiomática coherente y completa, con una organización temática.
Uno de los fenómenos que Houdement y Kuzniak (2006) resaltan son las posibles “rupturas” entre una geometría y otra. A manera de ejemplo, estos autores señalan que cuando el profesor usa términos como “prueba o demostración”, dicho término puede tener un significado para el profesor y otro para sus estudiantes. Para un profesor de secundaria, el término “demostración” puede significar tener en cuenta, así sea parcialmente, los axiomas y producir un razonamiento basado en la deducción; en este caso, el profesor entiende la demostración desde el paradigma de la geometría axiomática natural o modelizante. Por otro lado, para sus estudiantes, “demostración” puede significar probar mediante mecanismos como la medición que algo es evidente por sí mismo; en ese caso, los estudiantes entenderían la demostración desde el paradigma de la geometría elemental. Este tipo de rupturas y tensiones, constituyen, desde la perspectiva de Houdement y Kuzniak (2006), un problema didáctico que vale la pena ser estudiado.
Teniendo en cuenta las consideraciones anteriores, pensamos que el concepto de esquema, particularmente el de invariantes operatorias (Vergnaud, 1998), se complementa con el de paradigma de Kuzniak (2011). Esta dupla teórica nos permite profundizar en el análisis de cómo se ponen en juego los conocimientos profesionales del profesor en la selección y uso de recursos. Nuestra hipótesis es que las invariantes operatorias incluidas en el esquema de un profesor para seleccionar recursos (respecto a un tema específico) están vinculadas con el, o los paradigmas geométricos que orientan su práctica.
DISEÑO METODOLÓGICO
El diseño metodológico de esta investigación es predominantemente exploratorio, descriptivo y cualitativo. Utiliza estudios de caso (Stake, 2000), en los que se siguen aspectos de la investigación reflexiva (Gueudet & Trouche, 2012). Nos enfocamos en la particularidad de cada profesor participante, tomando en cuenta, en sus respectivos estudios de caso, los antecedentes y contexto en los que el profesor trabaja. Como parte central de esos estudios de caso, utilizamos la metodología de investigación reflexiva (Gueudet & Trouche, 2012) para indagar sobre el trabajo documental del profesor. Dicha metodología incluye varias estrategias (o técnicas) para la recolección de datos como: hacer un seguimiento a largo plazo de la práctica del profesor; llevar a cabo un análisis de la colección de recursos que el profesor usa; promover la mirada retrospectiva del profesor, por ejemplo, a través de la producción de mapas o diagramas en los que el profesor representa su sistema de recursos (Gueudet & Trouche, 2012). En nuestra investigación utilizamos todas esas estrategias, realizando un seguimiento de entre dos años y tres meses de cada uno de los cinco profesores participantes. Como ya se señaló, reportamos aquí los resultados del estudio de caso del profesor de quinto grado que llamamos Miguel, y a quien seguimos durante tres meses.
Los criterios de selección de este profesor fueron: que su participación fuera voluntaria; que fuera un profesor de escuela pública; que tuviera amplia experiencia docente (para poder analizar sistemas de recursos consolidados); que tuviera interés en su desarrollo profesional (por ejemplo, participando en proyectos o posgrados); y que tuviéramos la oportunidad de observar clases de geometría (el tema en el que elegimos centrarnos). También queríamos seleccionar un profesor de quinto grado ya que, en Colombia, este grado representa el último año de la primaria.
Resultó seleccionado el profesor Miguel quien de formación inicial es normalista e ingeniero, con una maestría en la enseñanza de las ciencias y las matemáticas y con una trayectoria profesional amplia (más de 20 años de experiencia docente), casi toda en educación primaria. Miguel se considera a sí mismo como un profesor entusiasta del uso de recursos digitales en la clase y participa en grupos y proyectos relacionados con sus temas de interés (entre los que se encuentran el Programa Ondas-Colciencias y el del Instituto GeoGebra Cali).
Miguel es profesor de planta en la misma escuela5 primaria desde hace 8 años. La escuela de Miguel es urbana, cuenta con sala de computación, acceso a Internet, biblioteca y proyectores (o videobeams, como se llaman en Colombia) en los salones de clase.
En el período de seguimiento de Miguel, él daba clases en la jornada de la mañana, teniendo un grupo de 41 alumnos de quinto grado de primaria. Su grupo de alumnos era mixto, con una edad media de 11 años. El seguimiento a su trabajo se llevó a cabo durante los meses de octubre de 2017 a enero de 2018, en los cuales se observaron un total de 9 sesiones de clase. Todas estas clases aludieron al tema de las transformaciones geométricas (traslación, rotación, simetría axial, teselaciones).
Además de las observaciones a las 9 sesiones de clase, en nuestra investigación utilizamos las siguientes fuentes de toma de datos (resumidas y explicadas en la tabla 1): observaciones de las planeaciones de clase; entrevistas al profesor (antes y después de las clases observadas); producción de mapas o diagramas por parte del profesor (ver figura 1); y toma de notas de campo por parte de los investigadores durante todo lo anterior.
Fuente | Comentarios |
Observaciones de la planeación de clases | Incluye, entre otros aspectos, el análisis (por parte de los investigadores)de la bitácora del profesor (llamado en Colombia,“parcelación”) con detalles de su plan de clase. |
Observaciones de clase | Incluye, entre otros aspectos, el análisis de los recursos usados por el profesor. |
Entrevistas al profesor | En estas entrevistas, realizadas antes y después de las clases observadas, se promovió la mirada retrospectiva del profesor (para que analizara su práctica). Parte de ello fue la producción de mapas o diagramas por parte del profesor. |
Mapas o diagramas producidos por el profesor | Durante las entrevistas se le propuso al profesor que produjera mapas y/o diagramas para representar la colección de recursos que usa para enseñar geometría. Estos mapas iban acompañados de las respectivas explicaciones del profesor. |
Notas de campo del investigador | Mediante éstas, se registraban consideraciones de los investigadores durante las observaciones y entrevistas realizadas. |
Como ya se mencionó, uno de los enfoques de nuestro estudio fue el promover la mirada retrospectiva del profesor. Particularmente, nosotros estábamos interesados en que el profesor reconstruyera su proceso de selección de recursos.
Para ello, durante las entrevistas, utilizamos una técnica de introspección (Santacruz & Sacristán, 2018) para “estimular” los recuerdos y reflexiones del profesor, usando información y materiales (textuales o audiovisuales) tomados de su propia práctica (e.g., a partir de videograbaciones de sus clases). La estimulación consiste en presentar al profesor con esos materiales (usualmente fragmentos de videos) y hacerle preguntas al respecto. Esto le permite evocar (a posteriori) sus acciones, pensamientos y acciones en un momento o actividad específica (Calderhead, 1981). Después de estimular al profesor, le pedíamos que reflexionara sobre su experiencia en el proceso de selección de recursos para su práctica, la describiera mediante mapas, diagramas, o notas; y la analizara y explicara a través de verbalizaciones.
En el caso de Miguel aplicamos esta técnica durante el desarrollo de 4 entrevistas (después de clases observadas) con un espacio de tiempo de una semana aproximadamente entre ellas.
Los datos se clasificaron de acuerdo a las acciones del profesor, para luego codificarlos (asignando varias palabras-códigos provenientes del marco teórico. Así surgieron categorías (y sub-categorías) que nos permitieron realizar nuestro análisis (ver tabla 2).
Categorías | Sub-categorías | Palabras-código para analizar los datos |
---|---|---|
Proceso de selecciónde recursos para la clase | Criterios de selección derecursos para enseñar geometría | Razones, explicaciones, argumentos, conocimientos, decisiones, selecciones, ETM personal del profesor, paradigma geométrico, geometría elemental, geometría axiomática natural, ergonómico, cognitivo, curricular, geométrico. |
Rutas-recorridas por el profesor en su proceso de selección | Huellas, actividades, caminos, pasos, pensamientos, sentimientos, expectativas, reflexión, recuerdos, introspección, discusiones, creencias. | |
Usos de los recursos digitales | Recursos para enseñar geometría | Libros de texto, guías, talleres, hojas de trabajo, materiales manipulativos, software, videos, canciones, juegos, computadores, tabletas, applets, internet, dispositivos, situaciones, actividades, tareas. |
Recursos para planificar la enseñanza de la geometría | Planes de clase, diarios de campo de los profesores, recursos curriculares, cuadernos de estudiantes de años anteriores, recursos diseñados o adaptados por el profesor, recursos compartidos por otros colegas. | |
Orquestación y ETM adecuados propuestos por los profesores | Configuración didáctica, organización de la participación de los estudiantes, disposición de los recursos, clase en acto, conducción, gestión de la clase, ambiente de la clase, actividades, situaciones propuestas en la clase, ETM adecuado del profesor, paradigma geométrico | |
Sistema de recursos del profesor | Recursos disponibles parala clase de geometría | Materiales que ha usado el profesor previamente, recursos que ha conocido en encuentros con maestros, manipulativos, talleres, guías, búsqueda de nuevos recursos. |
Organización de los recursos disponibles | Criterios de organización de los recursos, recursos-madre, recursos-hijos, jerarquía, niveles, clasificación de los recursos según sus usos. | |
Calidad de los recursos | Condiciones básicas de los recursos para usarse en clase, acceso a recursos de calidad,recursos recomendados por otros colegas o formadores. | |
Aspectos del trabajo documental del profesor | Trabajo colaborativo | Actas de reuniones de profesores, planes de área, comités de trabajo, grupos, redes sociales, asistencia a eventos académicos. |
Actividades del trabajo documental | Preparación de clases, parcelación, discusión con los colegas, reportes, revisión, difusión de experiencias, compartir con otros colegas. | |
Conocimientos sobre cómo usar los recursos | Esquemas de utilización,invariantes operatorias, conocimiento-en-acto, teorema-en-acto, maneras de usar el recurso, potencialidades del recurso, limitaciones del recurso, ETM personal del profesor, ETM de referencia. |
A continuación presentamos nuestro análisis al seguimiento del proceso de selección de recursos por parte del profesor Miguel.
SEGUIMIENTO AL PROCESO DE SELECCIÓN DE RECURSOS DE MIGUEL
Para Miguel, la selección de qué recursos usar en la clase es una actividad importante. Prefiere tener tiempo para revisar los materiales de años pasados y hacer las modificaciones que considere convenientes. Miguel expresa que es su responsabilidad preparar recursos de calidad para la clase:
Miguel: Uno como profesor tiene que hacer bien su trabajo, preparar la clase, prepararse uno sobre el tema... Hay que mirar antes qué cosas se van a hacer, cómo las vamos a hacer y eso debe mirarse antes... Yo guardo lo que me sirve. Como no es primera vez que doy grado quinto, es más fácil saber qué cosas sí puedo usar y cuáles no... Trato de guardar mucho material en mi computador porque es más fácil y rápido para buscar, para organizar y para cambiar cualquier cosa que uno vea que se debe cambiar.
A lo largo de su experiencia docente, Miguel ya ha consolidado un sistema de recursos importante, que incluye: talleres para estudiantes, recursos curriculares, reportes, videos, presentaciones en diapositivas, imágenes, recursos digitales, instrumentos para construir (regla, escuadras, compás), interacciones con colegas e investigadores, etc. También ha tenido el tiempo de ir aglomerando y organizando parte de estos recursos en su salón de clase. Tiene pleno acceso (un día a la semana) a la sala de computación donde hay equipos para cada estudiante y un servicio limitado de internet. La organización usual de la clase es en grupos de cinco estudiantes, que se mantienen, en su mayoría, durante todo el año escolar.
Para que Miguel realizara sus mapas de recursos, primero tuvimos una discusión para identificar los recursos que habitualmente usa para enseñar geometría (los que ha usado desde hace tiempo, o los más recientes) -de los cuales nos hizo una “visita guiada”- y ahondar en cómo los ha usado. La consigna para Miguel era que escribiera, dibujara o esquematizara los recursos que usa; para ello le sugerimos el uso de colores, flechas u otros conectores; así empezaron a surgir las distintas versiones de su sistema de recursos.
En las primeras representaciones de Miguel sobre su sistema de recursos, su mirada era aún bastante limitada y priorizaba los recursos (materiales) que se incluían directamente en la clase y que usaba de manera más habitual, sin tener en cuenta la sala de computación o el trabajo colaborativo. En ese entonces, el profesor consideraba que contaba con los recursos básicos para la clase, aunque reconocía que recursos como las tabletas electrónicas podrían ser muy convenientes.
Miguel: Yo tengo lo necesario para dar mis clases, lo que uno necesita... Lo que necesito, se lo pido a los niños, o a un compañero, a la directora de la escuela, o a los padres de familia... Como llevo dando varios años, grado quinto, uno va recogiendo material, lo que le sirve... Ahora toda la información de la escuela es por el computador, todo, que los planes, las circulares, todo se lo mandan a uno por allí... el correo electrónico, la plataforma de evaluación, la página web de la escuela, Facebook, hasta WhatsApp. Paramí la educación va cambiando y uno lo tiene que entender y ser parte del cambio, las tabletas son buenas, usar Internet en la clase... que ahorita no tenemos, todo son cosas que uno debe aprovechar.
Lo interesante en esta primera etapa fueron las reflexiones de Miguel (puestas mediante Post-Its sobre su mapa, como puede verse en la figura 1): por ejemplo, en ellas insistió en el protagonismo de los recursos digitales y en que es trabajo del profesor sacarle provecho a los recursos que usa. Para Miguel es muy importante que se les suministren materiales a los estudiantes (que contengan situaciones atractivas) y que la clase no sea solamente el discurso del profesor.
Aquí surge un punto importante para el análisis que es reconocer qué potenciales recursos tiene Miguel disponibles o puede tener acceso a los que aún no hacen parte de su sistema de recursos. Al respecto, Miguel enfatiza el papel del Internet como una oportunidad importante para disponer de recursos variados, pero con varias limitaciones: el idioma de muchos de los recursos disponibles, la demanda cognitiva involucrada en el recurso y criterios ergonómicos (e.g. recurso libre y fácil de usar para el profesor y los estudiantes).
Miguel: Tener los materiales, los recursos para trabajar es muy importante, pero también uno debe saber qué hacer con lo que tiene. ¿De qué me sirve tener aquí un computador si no lo sé usar? De nada... Yo busco cómo usar el geoplano, cómo sacarle el provecho con los niños, cómo hacer la clase más dinámica con GeoGebra... Para mí, aprender a usar GeoGebra fue muy importante... todavía estoy aprendiendo, veo tutoriales, hago cosas... Porque no se trata de yo usar el GeoGebra, y que los niños me vean y digan “qué bonitas las cosas que hace el profesor”; se trata de que ellos lo usen, que ellos mismos aprendan... Para eso se necesitan las hojas de trabajo, así sean unas instrucciones copiadas en el tablero, pero que guíen a los niños en los que deben hacer... paso a paso.
La discusión sobre los recursos a los que tiene acceso, llevó a Miguel a reflexionar sobre qué recursos son útiles para enseñar geometría y empezó a contemplar recursos que él mismo produce o adapta. Su mirada empezó a ampliarse y a evocar experiencias de años anteriores. Empezaron a emerger, en el discurso de Miguel, algunos elementos didácticos sobre el uso de los recursos:
Miguel: Además de GeoGebra, usamos el geoplano, el manejo de las escuadras... Yo, en casi todas mis clases, uso mis presentaciones, además porque es una ayuda para uno, para los estudiantes y queda el registro de lo que vi con ellos... Hacemos el trabajo en tres partes. Primero se hace la parte teórica: nosotros trabajamos conceptos como adyacentes, opuestos, perpendiculares y luego de que hemos hecho ejemplos, construcciones con escuadras y todo. [Luego] vamos con GeoGebra y vemos más ejemplos y construcciones que ya hemos visto y saben cómo hacer.
Aquí emerge un principio didáctico del profesor para el uso de los recursos en la clase: se necesita complementariedad entre los recursos puestos en juego (regla, escuadras, compás, geoplano, GeoGebra), dividiendo el trabajo en tres momentos:
El profesor expone (explica, hace y responde preguntas) y ejemplifica usando recursos. Explícitamente se hace énfasis en lo conceptual, el trabajo sobre gráficos (en el pizarrón, imágenes estáticas, videos, o en GeoGebra usando un proyector de video). Miguel se esfuerza en que sus estudiantes participen en la clase y toma en cuenta sus contribuciones.
Se proponen ejercicios a los estudiantes (principalmente de construcción) usando recursos como lápices de colores, regla, escuadras, papel o imágenes proyectadas. Se explicita un procedimiento de construcción. Los primeros ejemplos habitualmente los presenta el profesor; otras veces convoca la participación de estudiantes para que lo acompañen en el pizarrón.
Se proponen ejercicios en GeoGebra adaptando los procedimientos de construcción ya trabajados en lápiz y papel. En esta instancia, Miguel prefiere darles mayor autonomía a sus estudiantes. Al final, el profesor gusta de hacer socializaciones para que los estudiantes presenten sus trabajos.
Para Miguel, los estudiantes necesitan trabajar tanto con recursos no-digitales como el lápiz y papel, como con recursos digitales; es fundamental que conceptualicen (Miguel se refiere a que identifiquen, describan, caractericen propiedades o relaciones) y que aprendan a construir siguiendo procedimientos. Para este último punto, Miguel hace mucho énfasis en el uso de recursos para construir y empieza a contemplar otro tipo de recursos como el movimiento del cuerpo (ya sea el cuerpo completo o parte de él) y el manejo del espacio (e.g. girar un objeto 90º a la derecha o a la izquierda).
Miguel: Que [los alumnos] se muevan, que caminen, que giren, que miren el reloj, que tracen líneas usando las escuadras. La geometría se aprende haciéndola, dibujando, armando cosas, midiendo, trazando, y no solo mirando... porque se trata de que conceptualicen. Para eso necesitan hacer las cosas y luego uno les va explicando, dando ejemplos... Ellos van aprendiendo a escribir usando los símbolos de la geometría, escribir cómo es que se hace una construcción, escribir un procedimiento.
En las palabras expresadas por Miguel resultan notorias algunas ideas relacionadas con la dicotomía entre lo estático y lo dinámico que Vasco (1992) plantea: el uso del movimiento, de la exploración, de la experiencia como base de construcción del pensamiento geométrico. Pero también surge su contraparte “estática”: escribir procedimientos de construcciones respetando cierta “lógica” propia de la geometría. Miguel va y viene en estos razonamientos, lo que finalmente lo lleva a analizar los paradigmas que está considerando en su práctica.
En varias ocasiones (e.g. observaciones de clase o entrevistas) se detectó que Miguel pone énfasis en actividades propias del paradigma de la geometría elemental (Kuzniak, 2011). En este paradigma, la actividad está estrechamente ligada con el mundo real, donde la fuente de validación es lo sensible; aquí es posible el juego modelo-realidad y es muy importante la medida, la aproximación y la estimación. Como se mencionó en el marco teórico, el uso de instrumentos es esencial en el paradigma de la geometría elemental, y es justamente una de las actividades priorizadas por Miguel en sus clases: por ejemplo, durante la construcción del geoplano en el que los estudiantes midieron, trazaron, representaron figuras usando retazos de lana y usaron diversos instrumentos (ver figura 2). En ese caso, la medición jugó un papel doble: por un lado, los niños realizaron mediciones en el proceso de construcción del geoplano; pero también las usaron para validar que sus construcciones estuvieran bien hechas para que, si no, hicieran las modificaciones necesarias.
Efectivamente, respecto al paradigma de la geometría elemental, es notorio que Miguel propone un uso intensivo de gráficos (en papel, digitales, en el pizarrón, etc.), de actividades como recortar, plegar, calcar, medir y otras. En las clases de Miguel aún no se hace explícito el paso a la geometría axiomática natural; ello implicaría un uso del lenguaje propio de la geometría (con símbolos) y un énfasis en los procesos de prueba. En el caso de Miguel, se introducen algunos símbolos, por ejemplo, para denotar paralelismo, pero su uso es aún restringido y las pruebas generalmente se hacen usando la medición o el arrastre propio de la geometría dinámica.
Sin embargo, es posible notar en Miguel, cierta tensión o ruptura en la transición entre el paradigma de la geometría elemental y el paradigma de la geometría axiomática natural; es decir, durante su práctica Miguel se centra en aspectos de la geometría elemental, aunque expresa (en una entrevista) que le interesa preparar a sus estudiantes para que en un futuro puedan trabajar con sistemas axiomáticos (geometría axiomática natural). Lo anterior explica la insistencia de Miguel en sus clases para que sus estudiantes “conceptualicen”; es decir, identifiquen, describan, caractericen propiedades o relaciones geométricas usando lenguaje verbal:
Miguel: Todo lo que hacemos en clase, con GeoGebra, con el geoplano, con las planchas de dibujo técnico, todo, es para apoyar la conceptualización. Que el niño tenga ejemplos, que trabaje sobre los mismos conceptos en todo lo que se haga... Ya después, para los últimos meses del año, empezamos a trabajar problemas sencillos, pequeños, para que aplique lo que hemos visto.
Para Miguel no es prudente que el niño se enfrente a la resolución de problemas sin tener herramientas conceptuales que le permitan actuar frente a ello y prefiere introducir situaciones más abiertas hacia el final del año escolar. A partir de ese momento el profesor estaba en situación de seleccionar recursos para sus siguientes cuatro clases de geometría.
Ya hacia el final del año escolar, Miguel impartió a sus estudiantes un taller sobre transformaciones (como aplicaciones directas en el plano) en cuatro sesiones de clase en la sala de computación, donde los niños iban desarrollando tareas sobre las traslaciones, las rotaciones, las simetrías y las teselaciones. Miguel propuso que este proyecto fuera interdisciplinar: involucrando geometría, artes y computación. En la figura 3 se observa parte del contenido de la hoja de trabajo que Miguel propuso a sus estudiantes, en la cual es posible observar: eluso de gráficos, la introducción de simbología propia de la geometría (acompañada de lenguaje verbal), y el énfasis en los procesos de construcción mediante el seguimiento de procedimientos proporcionados por el profesor. Las consignas de las tareas allí propuestas por Miguel son:
Ahora, vamos de nuevo al comando Poligonal [...]
y tracemos una línea que parta de uno de los extremos, al otro lado de la figura,conformada por tres puntos, así: [...]
Recuerden cerrarla donde partieron [...]
Luego, esa línea poligonal que hicimos vamos a rotarla, pero ahora con un ángulo de 120º entorno a cada uno de los extremos, así: [...] Obtenemos algo así: [...]
Sigamos repitiendo hasta llegar a esto [...]
Ahora vamos [al comando] Polígono [...]
y formamos un polígono con todos los puntos del contorno de la figura. Uno por uno, así [...]
Este fue el segundo año en que Miguel puso en juego este taller sobre transformaciones geométricas; se lo había suministrado un colega, también profesor de quinto grado en la escuela (a quien se lo enseñaron en la universidad); ambos lo adaptaron (seleccionando las tareas para los niños y complementado algunas consignas) y planearon su implementación para cuatro sesiones de clase (aunque en la puesta en práctica posterior, fueron más sesiones: las nueve que observamos). Para Miguel fue un proyecto importante que además compartió en la reunión del Instituto de GeoGebra de su ciudad, la cual se realizó en septiembre de 2018.
Miguel consideró que, al fin del año escolar, correspondiente a los meses de octubre a diciembre, los niños ya tenían las capacidades para enfrentarse a un trabajo más autónomo y colaborativo, por ejemplo, trabajando en parejas. En general, las tareas propuestas por Miguel a sus estudiantes son del tipo: construye una figura, aplica una transformación, arrastra la figura, mide lados o ángulos y describe qué sucede. En este caso, Miguel explicita su interés por los procedimientos y la conceptualización, en términos de caracterización de propiedades. Al final, sus alumnos desarrollaron algunas tareas respecto a la congruencia entre figuras relacionadas mediante una transformación o composición de transformaciones. Estas últimas tareas fueron incluidas por Miguel este año.
Para cerrar el proyecto con GeoGebra, Miguel realizó una jornada de socialización donde los estudiantes expusieron sus trabajos; allí intentó sintetizarles a sus alumnos, las ideas geométricas abordadas. Tanto Miguel, como los niños, se sintieron muy satisfechos con el trabajo realizado. Finalmente, Miguel reflexionó sobre la importancia de considerar el papel de los recursos para la clase, y cómo ampliar su mirada incide positivamente en su trabajo. También mencionó que tener una mejor organización y disposición de los recursos contribuye a que el ambiente de la clase sea mejor:
Miguel: Es que lo mejor es que uno mire que todo esté organizado en el salón, que los niños se sientan cómodos y que el ambiente sea agradable... uno no se detiene a pensar sobre los recursos que puede usar, sino que se va como limitando, acostumbrando. Pero si uno analiza, se da cuenta y ve: esto también me sirve o esto otro, y así mejor porque se va actualizando... puede compartir con otros profesores o recibir de ellos ayuda.
Teniendo en cuenta el seguimiento al trabajo de Miguel, fue posible inferir su esquema de selección de recursos para la situación particular de enseñanza de las transformaciones geométricas en su clase de quinto grado. A continuación, en la tabla 3, resumimos nuestro análisis del Esquema de Selección de Recursos de Miguel (en adelante ESR_M) para su taller sobre transformaciones geométricas en quinto grado; dicho análisis se hace en términos de los elementos constitutivos descritos por Vergnaud (1998):
La meta general de Miguel es clara: desea buscar un recurso (o varios) para un bloque de cuatro clases (aunque luego fueron nueve, como ya se señaló); para eso establece varias sub-metas relacionadas con esa acción. Aquí se destacan dos cosas: por un lado, la priorización del aprendizaje de los estudiantes y la necesidad de adaptar, recombinar y complementar el recurso seleccionado con otros (ya incluidos en el sistema de recursos). Las anticipaciones se organizan en dos grupos: con cualidades deseables del recurso a seleccionar (criterios curriculares, ergonómicos, didácticos y cognitivos) y con posibles problemas que puede tener en su búsqueda.
Las reglas de acción de Miguel están divididas en: reglas de búsqueda de información y reglas de control. Las reglas de búsqueda de información orientan su acción en términos de aquello que es posible hacer para realizar la selección; mientras que las reglas de control son útiles para darle orientación a la acción del profesor en esta situación particular.
Las invariantes operatorias constituyen la médula del ESR_M y corresponden a los conocimientos (explícitos o implícitos) contenidos en el esquema que le permite a Miguel orientar su acción para dar cuenta de la situación en la que se encuentra. Las invariantes operatorias de Miguel (conocimientos-en-acto yesquemas-en-acto) tienen que ver con sus consideraciones epistemológicas, curriculares, didácticas y cognitivas y están regidas por el paradigma de la geometría elemental. Al respecto, el profesor exhibe un conocimiento-en-acto cuando sostiene que los niños de quinto grado no requieren aprender explícitamente la axiomática de la geometría (euclidiana) que están trabajando; al mismo tiempo sostiene que, como profesor, sí la debe de saber y tenerla en cuenta en las actividades que propone en clase. Este es un acuerdo central en el paradigma de la geometría elemental y un conocimiento fundamental en la acción de Miguel.
Las posibilidades de inferencia de Miguel se encuentran relacionadas con las particularidades de la situación, sus anticipaciones, reglas de acción e invariantes operatorias. Sus razonamientos apuntan a la necesidad de adaptar y complementar los recursos para su clase, y a que estas acciones fortalezcan el sistema de recursos del profesor a lo largo del tiempo.
El ESR_M involucra también una serie de procesos e interacciones (ver figura 4) en los cuales se priorizan las relaciones entre el sistema de recursos con las invariantes operatorias del esquema y las acciones encaminadas a adaptar y complementar los recursos para anticipar la configuración didáctica de la clase, es decir, las maneras en que el profesor dispone los artefactos (y recursos) en la clase (Drijvers, Kieran & Mariotti, 2010).
Por supuesto, la interacción del sistema de recursos del profesor, con el universo de recursos disponibles, le permite al profesor ampliar y fortalecer su sistema. Al respecto, Miguel considera que el acceso a Internet (una de sus reglas de acción) es una oportunidad importante de fortalecer su propio sistema de recursos.
Una de las interacciones mostradas en la figura 4 que queremos subrayar, tiene que ver con el paradigma de la geometría elemental que sirve de referente para la acción de Miguel, dado que se promueven razonamientos de validación empírica (que se relacionan con la experiencia de los niños “en el mundo real”), por medio de la superposición de figuras (mediante el arrastre) y la medición. Aunque la geometría elemental se explicita como parte de los invariantes operatorios, también se hace presente en la estructura misma del sistema de recursos y en la manera en cómo el profesor los adapta para la clase.
Sin embargo, Miguel también integra algunos elementos de la geometría axiomática natural, como el uso de símbolos geométricos, debido a su interés por el estudio de las transformaciones (como aplicaciones en el plano) y de la congruencia como propiedad invariante. Para ello, incluye tareas para trabajar la composición (o suma) de transformaciones en GeoGebra.
Así pues, durante el estudio de caso, fue posible analizar varias versiones de los mapas de sistema de recursos que Miguel usa para enseñar geometría, generadas a lo largo de un par de meses, a partir de su reflexión sobre su proceso de selección. En su última versión del mapa de su sistema de recursos mostrada en la figura 5, Miguel reconoció algunos aspectos sobre la variedad de recursos de los que dispone y su organización:
Para llegar a esta última versión del mapa de su sistema de recursos, Miguel reflexionó durante un tiempo (durante la entrevista posterior a sus clases de geometría a lo largo de 4 semanas) sobre qué recursos usa para sus clases, por qué son importantes, cómo se organizan y qué aportan a su trabajo. Le recomendamos utilizar varios colores para diferenciar las ideas y usar notitas para incluir sus comentarios cuando explicaba su producción. Miguel gustaba de hacer borradores de sus mapas y pulirlos posteriormente. Respecto a su último mapa (figura 5) Miguel expresó lo siguiente:
Miguel: A medida que vas enseñando, vas guardando material; las cosas buenas usted las conserva y las usa otra vez y las va mejorando cada año... A mí me gusta yo hacer mis cosas, ese es el trabajo de uno... y te vas haciendo a los materiales; uno los hace con los estudiantes [se refiere al geoplano], otros se van consiguiendo, pero eso no es trabajo solo mío, sino también de la escuela que le pregunta al profesor: “vea, ¿usted qué necesita?”.
En las declaraciones de Miguel hay varias cosas interesantes. Primero, reconoce que es trabajo del profesor diseñar recursos, irlos mejorando y adaptando a lo largo del tiempo. También expresa estrategias para acceder a los recursos, hacerlos en clase, como hizo el geoplano con los estudiantes, o contar con el apoyo de la escuela. Este último es un elemento que Miguel siempre resalta.
Por otro lado, algunos elementos interesantes de esta última versión del mapa del sistema de recursos de Miguel, es la existencia de una organización a partir de dos grandes categorías de recursos: recursos para planear la clase (el proyecto educativo de la escuela, el plan anual de matemáticas de la escuela, planeaciones de años anteriores, cuadernos, etc.); y recursos para hacer geometría durante la clase, con énfasis en herramientas para construir (regla, escuadras, GeoGebra).
Estas dos grandes categorías de recursos de Miguel obedecen a la intencionalidad de cada uno. El criterio de organización es la pregunta: ¿para qué lo uso? La exploración de su sistema de recursos puede llegar a permitirle a Miguel ser consciente de la cantidad y variedad de recursos que tiene disponibles y de otros posibles que puede incluir en el futuro.
CONCLUSIONES
Este trabajo buscó indagar sobre el proceso de selección de recursos por parte de un profesor de primaria para enseñar geometría. Al respecto, analizamos el sistema de recursos (Gueudet & Trouche, 2009) que el profesor Miguel usa en sus clases. Para ello, estudiamos cómo se conformó el sistema de recursos de este profesor, a partir de su selección, adaptación, apropiación y complementariedad con otros recursos. El análisis de su trabajo documental, en términos de “qué fue lo que hice, por qué lo hice así, qué resultados se obtuvieron y cómo podría hacerlo de otra forma”, le permitió al profesor ampliar sus perspectivas sobre su práctica.
En el caso de Miguel, su reflexión lo llevó a pensar en los papeles que asigna a los recursos, en sus posturas sobre la enseñanza, en el tipo de geometría que propone en la clase, y en cómo podría disponer la clase y los recursos de una mejor manera. Por ejemplo, respecto a los recursos digitales, Miguel expresa la importancia de contar con materiales que acompañen y orienten el trabajo de los estudiantes, y que promuevan un papel activo de éstos durante la clase en procesos como la construcción y conceptualización.
La identificación de distintas versiones del mapa de su sistema de recursos, le permitió a Miguel reconocer facetas de su práctica antes desconocidas para él y valorarlas. También le brindó una mirada evolutiva de su práctica, al reflexionar sobre los cambios entre las distintas versiones del mapa.
Un elemento interesante que encontramos, es que aparentemente los profesores normalmente no consideran los recursos (ni su papel en la clase) como parte de su planeación o consideraciones posteriores a la clase. Pareciera que los profesores piensan con más regularidad sobre los recursos cuando están en acto, en la clase, sin darse la oportunidad de una reflexión más sistemática a priori. En el caso de Miguel, el ejercicio de la reflexión sobre su práctica le permitió ser más cuidadoso en sus planes de clase y, según él, lograr ambientes de clase más interesantes para sus estudiantes, al usar varios recursos con distintas intencionalidades.
Otro elemento que encontramos fundamental es el diálogo teórico entre las ideas de esquema (Vergnaud, 1998) y paradigma (Kuzniak, 2011) respecto a la identificación del paradigma geométrico dominante bajo el cual Miguel se movilizaba y las tensiones existentes entre paradigmas. La inclusión de ambas miradas en nuestro análisis, nos permitió profundizar en los conocimientos profesionales de Miguel, presentes en su proceso de selección de recursos y que se cristalizan en las invariantes operatorias que pone en juego. Al seleccionar recursos propios del paradigma de la geometría elemental, Miguel podía reconocer qué tipo de recursos le eran más propicios (aquellos relacionados con la construcción). Sin embargo, nuestro análisis mostró la existencia de una tensión en el profesor, al predominar en su práctica el paradigma de la geometría elemental, pero también queriendo hacer presentes algunos elementos de la geometría axiomática natural.
Otro aspecto importante en el proceso de selección de Miguel, fueron sus invariantes operatorias relacionadas con el currículo. Las acciones del profesor fueron coherentes con el currículo propuesto para el contexto escolar en el que se desenvuelve. El considerar aspectos como “el dinamismo de las transformaciones” y el promover actividades como “mover o deslizar el cuerpo”, son ejemplos de las maneras como Miguel entiende algunas de las ideas de Vasco (1992) incluidas en el currículo colombiano.
Así pues, todos los elementos anteriores nos ayudaron a comprender mejor el proceso (y esquema asociado o ESR_M) de selección y uso de Miguel de recursos, particularmente, del recurso digital GeoGebra.
Respecto a la metodología de investigación queremos resaltar tres elementos importantes: la necesidad de estudiar el trabajo del profesor, in situ, durante un tiempo prolongado; el uso de mapas (diagramas, gráficos) como una estrategia para profundizar en la práctica del profesor y el papel de la reflexión como una herramienta que posibilita la re construcción y análisis de su práctica. Consideramos que estos tres elementos fueron fundamentales para explorar, y comprender mejor, las razones por las cuales Miguel realiza determinado proceso de selección de recursos para su clase.
Finalmente, aunque nuestro estudio no buscaba incidir en la práctica de los profesores, la aplicación de la técnica de introspección estimuló a que Miguel reflexionara sobre aspectos de su trabajo docente; en particular, según lo manifestó el profesor, la reflexión incidió en sus futuras planeaciones de clase. Así pues, consideramos que esta técnica de introspección podría usarse (y abrir posibles líneas de investigación) como parte de una estrategia formativa en el desarrollo profesional de los docentes; o también para estudiar otros aspectos del trabajo documental de los profesores (e.g. su orquestación de la clase).