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RESUMEN

Las lluvias monzónicas de verano en la India (junio-septiembre) a escala regional son de vital importancia 
para la agricultura y la gestión del agua. El estudio actual presenta la relación entre rayos y lluvia durante los 
eventos de El Niño (sequía) y La Niña (inundaciones) durante el monzón de verano sobre India central. Los 
resultados muestran que el recuento de destellos, la relación de Bowen, la temperatura máxima de la super-
ficie, el flujo de calor total, la profundidad óptica del aerosol (AOD, por su sigla en inglés), la temperatura 
de la superficie del mar (SST) y el índice Niño 3.4 aumentan en 36, 62, 19, 12, 46, 4.7 y 0.30% (más cálido), 
mientras que las precipitaciones disminuyen 15% durante los años de El Niño respecto a los años normales. 
El recuento de destellos, el índice de Bowen, la temperatura máxima de la superficie y la AOD disminuyen 
en 15, 11, 3.5 y 11.1% durante los años de La Niña, mientras que las precipitaciones, el flujo de calor total, 
la SST y el índice Niño 3.4 aumentan en 2.4, 1.72, 0.36 y –0.68% (más frío) durante los años de La Niña 
respecto a los años normales. El aumento del recuento de ráfagas y la reducción de precipitaciones están 
asociados con la fase cálida de El Niño Oscilación del Sur (ENSO) y el debilitamiento del monzón indio de 
verano. La disminución del recuento de ráfagas y el aumento de precipitaciones se debe a la fase fría ENSO 
(La Niña) y está asociada con el fortalecimiento de la temporada de monzones en la India. El aumento en el 
número de días de descanso y de sistemas de baja presión también desempeña un papel importante durante 
los años de El Niño y La Niña, respectivamente, en la India central durante el monzón de verano.

ABSTRACT

The Indian summer monsoon rainfall (June-September) on a regional scale is critically important for agri-
culture and water management in India. The current study presents the lightning-rainfall relationship during 
El Niño (drought) and La Niña (flood) events in the Indian summer monsoon over central India. The results 
show that the flash count, Bowen ratio, surface maximum temperature, total heat flux, aerosol optical depth 
(AOD), sea surface temperature (SST), and Niño 3.4 index are increased by 36, 62, 19, 12, 46, 4.7%, and 0.3 ºC 
(warmer), whereas the rainfall is decreased by 15% during El Niño years with respect to normal years. The 
flash count, Bowen ratio, surface maximum temperature, and AOD are found to decrease by 15, 11, 3.5, 
and 11.1% during La Nina years, whereas the rainfall, total heat flux, SST, and Niño 3.4 index are found to 
increase by 2.4, 1.72, 0.36%, and  –0.68 ºC (cooler)  during La Niña years with respect to normal years. The 
increase in the flash count and the reduction in rainfall are associated with the warm phase of El Niño-Southern 
Oscillation (ENSO) (El Niño), which causes the weakening of the Indian summer monsoon. The decrease 
in flash count and increase in rainfall is due to the cold phase of ENSO (La Niña) and is associated with 
the strengthening of the Indian monsoon season. The increase in the number of break days and low-pressure 
systems also plays an important role in El Niño and La Niña years, respectively, over central India during 
the Indian summer monsoon.
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1.	 Introduction
The Indian summer monsoon season (June-Septem-
ber) is a vast weather event that is crucial to the 1.39 
billion people who live in the country. India receives 
approximately 80% of its rainfall during the summer 
monsoon months. The amount of rainfall varies from 
year to year during the Indian summer monsoon sea-
son. Several studies have been reported on the deficit 
and excess of rainfall during the monsoon season over 
the Indian region (Pal and al-Tabbaa, 2010; Gadgil 
et al., 2019; Mishra et al., 2020). El Niño and La 
Niña are opposite phases of the El Niño-Southern 
Oscillation (ENSO) cycle (Sahu et al., 2022), which 
is the result of fluctuations in temperature between the 
ocean and atmosphere in the east-central equatorial 
Pacific Ocean. El Niño is the warm phase and La 
Niña is the cold phase of ENSO (Alexander et al., 
2014; Guha et al., 2017).

ENSO was identified as an important predictor for 
the Indian summer monsoon (June to September) in 
the early 1900s. A clear indication of the weakening 
of the ENSO and Indian summer monsoon rela-
tionship has been observed since the 1970s. A clear 
restoration between ENSO and the Indian summer 
monsoon relationship was found in 1999-2000 (Ku-
mar and Kamra, 2012; Yang and Huang, 2022). The 
two opposite phases (El Niño and La Niña) play an 
important role during the Indian summer monsoon 
(Gadgil et al., 2019). ENSO occurs due to changes 
in sea surface temperature (SST) and wind patterns. 
The El Niño phase is a climate pattern that describes 
the unusual warming of surface waters in the eastern 
tropical Pacific Ocean. The warming of the tropical 
Pacific Ocean weakens the southeast trade winds 
flowing to the Inter-Tropical Convergence Zone 
over India. These winds are the main driving force 
for the weakening of the Indian summer monsoon. 
Hence, El Niño events are associated with a weak 
monsoon with lower rainfall than the average value. 
La Niña causes the opposite effect to El Niño, which 
is responsible for flood monsoons and rainfall above 
normal values (Gadgil et al., 2019). ENSO is one 
of the main factors driving lightning and rainfall 
during the Indian summer monsoon (Kamra and 
Athira, 2016). The strength of El Niño and La Niña 
events during the Indian summer monsoon plays an 
important role in lightning and rainfall (Ahmad and 
Ghosh, 2017; Guha et al., 2017; Tinmaker et al., 

2017). Williams (1992) reported that the lightning 
flash rate varies with surface temperature; in par-
ticular, the interannual flash rate increases with the 
warm phase of ENSO. Guha et al. (2017) reported a 
56% increase in the flash count in 2010 with respect 
to 2009 in northeast India. Their study revealed that 
the rapid transition during the middle of the year of 
El Niño (2009) into the early months of the next La 
Niña year (2010) is due to the modification in var-
ious local meteorological and cloud microphysical 
parameters that helped to increase the flash count in 
year 2010. Saha et al. (2017) found that the increase/
decrease in the lightning flash count is due to an 
increase/decrease in convection during El Niño/La 
Niña, which has a direct relation with the warming 
(cooling) of the atmosphere to change the patterns of 
regional climate over South/Southeast Asia. Ahmad 
and Ghosh (2017) reported that during the El Niño 
years (2004-2005 and 2009-2010) the total flash 
count increased by 10 and 18%, whereas during the 
La Niña years (2010-2011 and 2011-2012) the total 
flash count decreased by 19 and 28%, respectively 
over the Indian region. The Indian Ocean Dipole 
(IOD) also plays an important role in the telecon-
nection between the Indian summer monsoon and El 
Nino Southern Oscillation (ENSO). The year-to-year 
variation in the Indian summer monsoon rainfall is 
considered to be related to the tropical Indian Ocean 
associated with the IOD (Behera and Ratnam, 2018; 
Cherchi et al., 2021).

The intensity and frequency of lightning and the 
severity of tropical thunderstorm clouds are closely 
related to deep convection. The supply of heat and 
moisture in the lower atmosphere with changes in 
atmospheric circulations are strongly linked to the El 
Niño and La Niña events during the Indian summer 
monsoon season (Subrahmanyam and Wang, 2011; 
Saha et al., 2017; Tinmaker et al., 2017). The maxi-
mum land surface temperature is a good indicator of 
energy partitioning at the land surface and atmosphere 
boundary (Parasnis and Goyal, 1990). It also provides 
energy distribution into sensible heat and latent heat 
flux, thus contributing to the most important param-
eters in the physical process, such as total heat flux 
(Chate et al., 2017; Li et al., 2020a). Total heat flux 
(sensible heat flux + latent heat flux) plays a vital role 
during El Niño/La Niña years with high/low lightning 
activity (Chate et al., 2017; Tinmaker et al., 2017, 
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2021a). The surface maximum temperature, which de-
pends upon the amount of radiant energy, is converted 
into sensible heat flux, which plays an important role 
in triggering the deep convection for the formation of 
thunderstorm clouds during El Niño events (Tinmaker 
et al., 2021a). On the contrary, the low insolation with 
shallow convection plays an important role during La 
Niña events (Tinmaker et al., 2021b). The Bowen ratio 
(ratio of sensible heat flux to latent heat flux) indicates 
the available energy flux, hence it is important in deter-
mining the microclimate and regional climate (Chate et 
al., 2017; Tinmaker et al., 2017, 2021a, b). The Bowen 
ratio plays an important role in the energy circulation 
in the atmosphere by the transportation of momentum, 
heat flux, and moisture from the boundary layer to the 
free atmosphere. The vertical transport of momentum, 
heat flux, and moisture helps in the development of 
convective clouds (Zheng, 2019). The high/low values 
of the Bowen ratio are strongly related to El Niño/
La Niña during the Indian summer monsoon season 
(Tinmaker et al., 2017, 2021a, b). The aerosol optical 
depth (AOD) is one of the most important parameters 
related to aerosols, which describes the extinction of 
light over the vertical column of the atmosphere and 
is directly related to the aerosol climate forcing (De-
vara et al., 2019). The aerosols in the atmosphere are 
emitted from both natural (dust particles, volcanic ash, 
sea salt) and anthropogenic sources (fossil fuel, black 
carbon, biomass burning). Aerosols play an important 
role in episodic events through atmospheric warming/
cooling, which may lead to droughts/floods over the 
Indian region (Lau et al., 2009; Manoj et al., 2012; 
Devara et al., 2019).

The phases and strengths of El Niño and La Niña 
phenomena are linked to the Niño 3.4 index, which typ-
ically uses a five-month running mean, and El Niño or 
La Niña are defined when the SSTs exceed by ±0.4 ºC 
for a period of six months or more (Tinmaker et al., 
2017). The tropical disturbances formed over the 
Indian seas (Bay of Bengal [BoB] and Arabian Sea 
[AS]) are known as low-pressure systems (LPS). The 
deep convection and LPS develop in the tropics when 
SSTs cross 28 ºC during the monsoon season (Jaswal et 
al., 2012; Tinmaker et al., 2014; Praveen et al., 2015). 
They contribute significantly to monsoon rainfall 
patterns in India (Krishnamurthy and Ajayamohan, 
2010). These synoptic-scale tropical disturbances 
forming periodically in the quasi-stationary monsoon 

trough during the Indian summer monsoon from 
June to September (JJAS) are considered to be the 
main rain-bearing systems that produce more rainfall 
(Tinmaker et al., 2014). During the Indian summer 
monsoon season, a break in monsoon (dry period) 
occurs, and it is defined as a standardized rainfall 
anomaly over central India which is seen to be less than 
–0.5 mm for at least four consecutive days (Rajeevan 
et al., 2010). The break monsoon over the rest of India 
has positive anomalies of rainfall over the foothills of 
the Himalayan and southeastern peninsula (Rajeevan 
et al., 2010; Pai et al., 2016; Rao et al., 2016). Mandke 
et al. (2007) studied the active/break days by analyzing 
precipitation anomalies over the area of CI, which is 
considered an Indian core region for summer monsoon. 
The contrast in differential land-ocean heating triggers 
the monsoon development (Chate et al., 2017; Tin-
maker et al., 2017). The main objective of the present 
research is to study the lightning-rainfall relationship 
and its association with different weather parameters 
during El Niño (drought) and La Niña (flood) events 
in the Indian summer monsoon for the study period 
1998-2014 over central India.

2.	 Study region, data and methodology
2.1 Study region
Central India (CI) (21º-25º N, 73º-80º E) represents the 
monsoon core region (Mandke et al., 2007). The CI 
region is shown in Figure 1. The frequency of extreme 
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rainfall events (daily rainfall ≥ 150 mm) over CI has 
increased by about 75% during the period 1950-2015 
(Roxy et al., 2017). The variability of rainfall is thus 
characterized by “active” periods with high rainfall 
over CI for monsoon troughs over northern plains 
and “break” periods with weak or no rainfall over CI 
with high rainfall over northern India and monsoon 
troughs over the foothills of the Himalaya (Abhilash 
et al., 2014). Low-pressure systems are responsible 
for up to 60% of the summer monsoon rainfall over 
CI (Praveen et al., 2015; Sørland and Sorteberg, 2016) 
while producing around 40% of the summer monsoon 
rainfall over the country (Hunt and Fletcher, 2019). 
Much of the monsoon rainfall over CI stays associated 
with LPS developing over the north Bay of Bengal and 
moving onto the subcontinent along a west-north-west-
erly track (Sørland and Sorteberg, 2016; Guha et al., 
2017; Patwardhan et al., 2020).

Figure 2 shows the yearly variation of the number 
of monsoon break days and a number of low-pressure 
systems that occurred during the Indian summer mon-
soon in the course of the study period (1998-2014). It 
is seen from the overall study that the increase in the 
number of monsoon break days and decrease in the 
number of low-pressure systems plays an important 
role during El Niño years with high lightning activity 
and low rainfall, indicating the drought years during 
the Indian summer monsoon (Mandke et al., 2007; 

Tinmaker et al., 2014; Pai et al., 2016). The increase 
in the number of LPS and decrease in the number of 
monsoon break days that occurred in La Niña years 
with low lightning activity and excess rainfall denotes 
the flood years during the Indian summer monsoon 
over central India (Tinmaker et al., 2014; Praveen 
et al., 2015).

2.2 Data and methodology
The Lightning Imaging Sensor (LIS) is a satel-
lite-borne instrument that detects lightning flashes 
over the Earth’s surface (Christian et al., 1999; Bond 
et al., 2002). It is deployed onboard the Tropical Rain-
fall Measuring Mission (TRMM) satellite as part of 
the National Aeronautics and Space Administration’s 
(NASA) Earth Observing System (EOS). The LIS is 
designed with higher sensitivity and spatial accuracy 
than the optical transient detector (OTD). It detects 
lightning flashes with storm-scale (spatial) resolution 
(4 to 7 km) over a large region (600 × 600 km) of the 
Earth’s surface. The TRMM satellite was launched on 
November 28, 1997, reaching an altitude of 350 km. 
After August 2021, it was boosted from an average al-
titude of about 350 km to 400 km. The higher altitude 
gives a correspondingly larger field of view for each 
sensor pixel and the swath. Also, the LIS detection 
threshold settings remained unchanged after the boost 
to a higher altitude, which increased the total flash 
counts but not the flash rates (Cecil et al., 2014). The 
inclination of the orbit is 35º, which allows the LIS 
to observe lightning activity in the tropical regions 
of the globe with a detection efficiency of 90% and 
a negligible regional bias (Boccippio et al., 2000) for 
the flash count with a detection efficiency of 93 ± 4 
and 73 ± 11% during night and day, respectively. The 
monthly mean lightning flash count grid data (0.5º 
× 0.5º) during the Indian monsoon season (June 1 to 
September 30) for a 17-year period (1998-2014) over 
CI were retrieved from the LIS-TRMM satellite data 
(Tinmaker et al. 2014, 2022; Chate et al., 2017). The 
monthly mean rainfall data over CI for the study peri-
od was obtained from the Indian Institute of Tropical 
Meteorology (IITM). The monthly mean SST data for 
the AS (8º-20º N, 68º-80º E) and the BoB (8º-20º N, 
80º-98º E) for the study period were extracted from 
the Climatic Data Center of the National Oceanic 
and Atmospheric Administration (NOAA). The mean 
surface maximum temperature data over CI for the 
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study period were retrieved from NOAA’s archives. 
The monthly mean aerosol optical depth (AOD) at 
550 nm (over 0.5º × 0.5º) for the period 2000-2014 
and the monthly mean total heat flux (sensible heat 
flux and latent heat flux) for the study period (1998-
2014) over CI were retrieved from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
onboard the Terra satellite. The Bowen ratio was 
calculated from the retrieved fluxes. The LPS and 
the number of break days were obtained from daily 
weather reports of the India Meteorological Depart-
ment (IMD) for the study period. Data for the Niño 
3.4 index for the study period was retrieved from the 
Climate Prediction Center (NOAA). The Niño 3.4 
index identifies the ENSO warm and La Niña cold 
episodes, which are a three-month running mean of 
SST anomalies in the Niño 3.4 region (5º N-5º S, 
120º-170º W). The warm and cold episodes based 
on a threshold of ±0.5º C for the Niño 3.4 index 
were obtained from the National Weather Service 
for Climate Prediction Centers for the study period. 
In the present study, the El Niño years (2002, 2004, 
2006, 2009, and 2014), La Niña years (1998, 1999, 
2007, 2010, and 2011), and normal years (2000, 
2001, 2003, 2005, 2008, 2012, 2013) were retrieved 
from studies by Gouda et al. (2017) and Kutta et al. 
(2018). The total number of break days and LPS that 
occurred during the monsoon season for the period 
1998-2014 over CI is shown in Figure 2.

To evaluate the dependence of lightning-rainfall 
in El Niño and La Niña events and its association 
with different meteorological parameters during the 
Indian summer monsoon season over CI, the Pear-
son correlation coefficient (given below) has been 
calculated. 

The Pearson correlation coefficient between two 
variables (series) x and y, usually denoted by r(x, y) 
or r, is a numerical measure of a linear relationship 
between them. The Pearson correlation coefficient 
is given as if (xi, yi), i = 1, 2, 3…n are n pairs of 
observation on variable x and y, where x̅ and y̅ are 
the mean of x and y. Then, the Pearson’s coefficient 
between x and y, denoted by r, is defined as the ratio:
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The value of r always lies between +1 and –1. 
When values of r > 0 (positive correlation), as the 
value of one variable increases, so does the value of 
the other variable, whereas in values of r < 0 (negative 
correlation), when the value of one variable increases 
the other variable decreases. When the values of r are 
between –0.1 to –0.3, –0.3 to –0.5 and –0.5 to –1.0, 
they indicate weak, moderate, and strong negative 
correlation coefficients, respectively. On the other 
hand, when the values of r lie between 0.1 to 0.3, 0.3 
to 0.5, and 0.5 to 1.0, they refer to weak, moderate, and 
strong positive correlation coefficients, respectively.

The hypothesis for Pearson’s correlation coeffi-
cient is to examine whether or not a correlation exists 
between two variables. To solve this uncertainty of 
the results for two variables, a t-test is carried out, 
which is given below:
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In the t-test formula, x̅1 and x̅2 are the means 
of the two variables being compared, µ1 and µ2 
hypothesize the difference between the population 
of variables, σ1 and σ2 are the standard deviations 
of the two variables, and n1 and n2 are the number 
of observations.

3.	 Results
Figure 3a-c describes the mean value of flash counts, 
rainfall, Bowen ratio, surface maximum temperature, 
AOD, SST, and Niño 3.4 index during El Niño, La 
Niña and normal years over CI during the Indian 
summer monsoon (June-September) for the study pe-
riod (1998-2014). The increase/decrease percentage 
of lightning and rainfall and their association with 
different weather parameters during the El Niño and 
La Niña years with respect to normal years during the 
Indian summer monsoon over CI is shown in Table I. 
It can be seen from Figure 3a-c and Table I  that the 
flash count, Bowen ratio, surface maximum tempera-
ture, total heat flux, AOD, SST, and Niño 3.4 index 
are increased by 36, 62, 19, 12, 46, 4.7%, and 0.30 ºC 
(warmer), whereas the rainfall is decreased by 15% 
during El Niño years with respect to normal years. 
The flash count, Bowen ratio, surface maximum 
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temperature, and AOD are found to be decreased by 
15, 11, 3.5, and 11.1% during La Niña years, whereas 
the rainfall, total heat flux, SST, and Niño 3.4 index 
are found to be increased by 2.4, 1.72, 0.36%, and 
–0.68 ºC (cooler) during La Niña years with respect 
to normal years. The major finding of the obtained 
results during the study period is described in the 
following subsection.

3.1 Lightning-rainfall relationship and its associa-
tion with different weather parameters during the El 
Niño and La Niña events during the Indian summer 
monsoon over central India
The lightning-rainfall relationship and its association 
with different weather parameters play an important 
role during the El Niño and La Niña events during 
the Indian summer monsoon over CI. The strength of 

Table I. Percentage increase/decrease of flash count and rainfall with different weather parameters during El Niño 
years and La Niña years with respect to normal years during the Indian summer monsoon season (June-September) 
for the study period (1998-2014) over CI.

Parameters El Niño years La Niña years

Flash count 36% increase with respect to normal years 15% decrease with respect to normal years
Rainfall 15% decrease with respect to normal years 2.4 increase with respect to normal years
Bowen ratio 62% increase with respect to normal years 11% decrease with respect to normal years
Surface maximum 
temperature 19% increase with respect to normal years 3.5% decrease with respect to normal years
Total heat flux 12% increase with respect to normal years 1.72% increase with respect to normal years
AOD 46% increase with respect to normal years 11.1% decrease with respect to normal years
SST 4.7% increase with respect to normal years 0.36% increase with respect to normal years
Niño 3.4 index 0.30 ºC (warmer) with respect to normal years –0.68 ºC (cooler) with respect to normal years
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El Niño/La Niña events indicates the drought/flood 
situation through the weakening/strengthening of the 
monsoon rainfall occurring during the Indian summer 
monsoon over CI for the study period (1998-2014). 
Figure 4 shows the annual mean flash count, rainfall, 
Bowen ratio, and surface maximum temperature over 
CI for the study period. It can be seen from Figure 4 
that the flash count, Bowen ratio, and surface max-
imum temperature are found to be higher during El 
Niño years as compared to La Niña years. The rain-
fall is found to decrease/increase during El Niño/La 
Niña years, whereas the flash count, Bowen ratio, 
and surface maximum temperature decrease during 
La Niña years. The high Bowen ratio during El Niño 
years is mainly due to the high sensible heat flux, 
which is the major source of heat energy delivered 
to the atmosphere (Dalal et al., 2012; Tyagi et al., 
2014; Tyagi and Satyanarayana, 2015). During El 
Niño years, the increase in the number of monsoon 
break days with an increase in surface maximum 
temperature and the high Bowen ratio correspond to 
stronger sensible heat flux and a high lifting conden-
sation level (LCL), which produces more buoyancy, 
leading to boundary layer growth and instability in 
the atmosphere. This is essential for the development 
of thunderstorm clouds with high lightning activity 
and less rainfall during the El Niño years, i.e., drought 
monsoon years (Parasnis and Goyal, 1990; Balaji 
et al., 2017; Thomas et al., 2018; Chen et al., 2019; 
Shi et al., 2019; Li et al., 2020b; Liu et al., 2020; 
Tinmaker et al., 2022; Sahu and Tyagi, 2022).

Praveen et al. (2015) found that the rainfall linked 
to LPS accounts for 60% of monsoonal precipitation 
during the La Niña years. The low Bowen ratio (less 
than 1) with a decrease in sensible heat flux and an 
increase in latent heat flux, low surface maximum tem-
perature, moderate updraft speed, shallow convection, 
an increase in the number of LPS, less ice and graupel 
particle formation in the mixed phase region, a slow 
charging mechanism, and low cloud electrification, 
lead to less lightning activity with high rainfall during 
La Niña years, i.e., flood monsoon years (Virts and 
Houze, 2016; Guha et al., 2017; Morwal et al., 2017; 
Tinmaker et al., 2021a, b, 2022). The statistical anal-
ysis shows that the correlation coefficients of flash 
counts with Bowen ratio are 0.90618 and –0.72291 
during El Niño and La Niña years, respectively, where-
as flash counts and surface maximum temperature are 

0.832 and –0.86007, respectively, in the same time 
period. Correlation coefficients between rainfall and 
Bowen ratio are –0.81312 and –0.8737, whereas they 
are –0.8763 and –0.86485 between rainfall and surface 
maximum temperature in El Niño and La Niña years, 
respectively, during the study period, being significant 
at 0.05% level, as shown in Figure 5a-d.

Figure 6 shows the annual mean rainfall, flash 
count, AOD, and total heat flux during the monsoon 
season for the study period (1998-2014) over CI. Total 
heat flux plays an important role in converting con-
vective available potential energy (CAPE) into kinetic 
energy, which accelerates upward with strong updrafts 
to form deep convective clouds that further help to de-
velop thunderstorm clouds with high lightning activity 
(Yano et al., 2005; Yuan and Qie, 2005; Chaudhuri, 
2008, 2010; Satori et al., 2009; Chaudhuri et al., 2013, 
2020; Zheng and Rosenfeld, 2015; Chate et al., 2017; 
Takahashi et al., 2023). The aerosols that serve as 
cloud condensation nuclei (CCN) and ice nuclei (IN) 
can modify the microphysical structure and behavior 
of convective storms by altering the cloud droplet size 
distribution (Devara et al., 2019). During El Niño years, 
this increase affects the initial size distribution of cloud 
droplets and ice crystals, resulting in the production 
of more small cloud droplets, which have difficulty 
forming raindrops due to low collision-coalescence 
efficiency, thereby inhibiting the warm rain process. 
These small cloud droplets are transported above the 
freezing level by a stronger updraft, which increases 
the supercooled water content in a thunderstorm, 
significantly enhancing the ice-phase process. The 
freezing process releases more latent heat to develop 
convection, allowing more ice particles to participate in 
the electrification process of collision-coalescence and 
charge separation, thereby enhancing lightning activity 
with reduced rainfall during El Niño years (Berdeklis 
and List, 2001; Yuan et al., 2011; Guo et al. 2016; Shi 
et al., 2018, 2019; Zhao et al., 2020; Sreenath et al., 
2021; Tinmaker et al., 2022).

During the La Niña years, the increase in total 
heat flux is due to the increase in latent heat flux and 
reduction in sensible heat flux. The high water va-
por content available in an air column rises upward, 
and condensation of moisture, with more release of 
latent energy and convergence of moisture produces 
high rainfall (Liu et al., 2020; Goswami, 2021). The 
higher AODs during the monsoon are mainly due to 
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the hygroscopic growth of water-soluble aerosols 
and the transport of large-size aerosols, such as dust 
and sea salt particles with favorable wind conditions 
(Ramachandran and Kedia, 2013). The excess rainfall 
with low lightning activity during the active phase of 
the monsoon season in La Niña years is responsible 
for the aerosol washout, which results in a decrease in 
aerosol loading of natural and anthropogenic particles 
(Chate et al., 2003; Rosenfeld et al., 2008; Lau et al., 
2009; Srivastava et al., 2011; Tinmaker et al., 2017, 
2022; Zhu et al., 2021; Gautam et al., 2022). The sta-
tistical analysis shows that the correlation coefficients 
of flash counts with AOD are 0.81704 and –0.83611 
in El Niño and La Niña years, whereas the correlation 
coefficients between flash count and total heat flux 
are 0.91333 and –0.73358, respectively, in El Niño 
and La Niña years during the period of study (1998-
2014). The correlation coefficients between rainfall 
and AOD are –0.69507 and –0.67925 in El Niño and 
La Niña years, whereas the correlation coefficients 
between rainfall and total heat flux are –0.8669 and 
0.8591, respectively, for El Niño and La Niña years 
during the period of study, being significant at 0.05% 
level, as shown in Figure 7a-d.

Figure 8 shows the annual variation of rainfall, 
flash count, SST, and Niño3.4 index for the period 
of 17 years (1998-2014) during the Indian summer 
monsoon. SST is a crucial parameter that plays an 
important role in air-sea interaction and has a strong 
relationship with instability (Kotroni and Lagouvar-
dos, 2016; Tyagi et al., 2022). Zhang (1993) reported 
that deep convection develops above warm water with 
sea surface temperatures > 26 ºC. Tropical storms and 
deep convection have a direct link to the transpor-
tation of heat flux, moisture, and momentum in the 
atmosphere (Williams, 1992; Kandalgaonkar et al., 
2010; Tinmaker et al., 2014; Miglietta et al., 2017; 
Zeng and Zhang, 2020). During an El Niño year, the 
warmer SST (27.5 ºC) enhances sensible and latent 
heat fluxes from the sea surface towards the adjacent 
air mass, increasing the temperature at the lower at-
mosphere and inducing a steeper environmental lapse 
rate, which, in combination with cool air aloft (which 
helps to enhance convection and hence high lightning 
activity) reduces the amount of rainfall during El 
Niño years (Kandalgaonkar et al., 2002; Tinmaker et 
al., 2014; Kotroni and Lagouvardos, 2016). The high 
positive anomalies of the Niño 3.4 index are strongly 
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associated with El Niño, the warm phase of ENSO 
characterized by an increase in the average SSTs in the 
eastern Pacific Ocean and a higher air pressure in the 
western Pacific Ocean than in the eastern Pacific Ocean 
(Sreenath et al., 2021). A positive Niño 3.4 index also 
leads to high lightning activity during the El Niño year 
of the Indian summer monsoon. The positive value of 
Niño 3.4 index with an increase in break days and a 
decrease in LPS during the monsoon season indicates 
a higher flash count with reduced rainfall during the 
El Niño year of the Indian summer monsoon over CI 
(Manohar et al., 1999; Tinmaker et al., 2017, 2021a, b).

The warmer SST and high latent heat flux help 
to sustain deep and intense convection, which is the 
major source for the vortex cores seeding the mon-
soon low-pressure systems (Tinmaker et al., 2014; 
Praveen et al., 2015; Samanta et al., 2018). During the 
La Niña year, the increase in the number of LPS, high 
latent heat flux, and high relative humidity helps the 
hygroscopic growth of water-soluble aerosols leads 
to the formation of large cloud coverage in the lower 
layers of the atmosphere (Ramachandran and Kedia, 
2009, 2013). During the active monsoon period, the 
reduction in sensible heat flux, increase in latent heat 

flux and high relative humidity, weak updraft speed, 
low ice particle formation, slow charging mechanism, 
and low cloud electrification leads to low lightning 
activity with high rainfall during La Niña years (Ros-
enfeld et al., 2008; Srivastava et al., 2011; Tinmaker 
et al., 2014, 2021a, b; Sun et al., 2021). The statistical 
analysis shows that the correlation coefficients of 
flash counts with SST are 0.8914 and –0.90223 in 
El Niño and La Niña years, whereas the correlation 
coefficients between flash count and Niño 3.4 index 
are 0.78287 and –0.80179, respectively, in El Niño 
and La Niña during the period of study (1998-2014). 
The correlation coefficient between rainfall and SST 
are –0.7809 and 0.9325 in El Niño and La Niña 
years, whereas the correlation coefficients between 
rainfall and Niño 3.4 index are –0.82358 and 0.94423, 
respectively, for El Niño and La Niña years during 
the period of study (1998-2014), being significant at 
0.05% level as shown in Figure 9a-d.

4.	 Discussion
The major significant results described in the earlier 
section show that the positive correlation coefficients 
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of flash counts with Bowen ratio and maximum 
surface temperature during El Niño years are due to 
strong surface heating, high sensible heat flux, high 
LCL, strong updraft speed, and moisture contents in 
the lower atmosphere. The high Bowen ratio leads to 
the development of deep convective clouds with high 
lightning activity (Tinmaker et al., 2017, 2022). The 
negative correlation of rainfall with Bowen ratio and 
surface maximum temperature indicates that during 
El Niño years, the sensible heat flux increases with 
an increase in the number of monsoon break days 
and a decrease in the number of LPS (Tinmaker et 
al., 2014, 2017). The negative correlation coefficients 
of flash counts with Bowen ratio and surface maxi-
mum temperature and rainfall with Bowen ratio and 
surface maximum temperature during La Niña years 
are due to low insolation, low Bowen ratio, low LCL, 
increase in latent heat flux with decrease in sensible 
heat flux, decrease in the number of monsoon break 
days, increase in the number of LPS, high relative 
humidity, moderate updraft, low formation of ice 
and graupel particles in the mixed phase region with 
slow charge separation and low cloud electrifica-
tion, which leads to low lightning activity with high 
rainfall during La Niña year over CI (Thomas et al., 
2018; Tinmaker et al., 2017, 2021a, b, 2022). The 
positive correlation coefficients of flash counts with 
AOD and total heat flux during the El Niño years 
are mainly due to an increase in the concentration 
of CCN that enhances cloud amount and suppresses 
collision/coalescence and rainfall. The smaller cloud 
droplets get transported above the freezing level 
with a strong updraft and release more latent heat 
with deep convection. This favors the formation of 
ice-graupel particles via a non-inductive charging 
mechanism, leading to increased cloud electrification 
that produces high lightning activity during El Niño 
years. The lightning flash increases on account of 
the rise in the total heat flux (Chate et al., 2017). The 
negative correlation coefficients of rainfall with AOD 
and total heat flux during El Niño years are due to 
higher AOD results in the production of more small 
cloud droplets and reduced collision efficiencies, 
which can delay the formation of raindrops and 
suppresses the collision-coalescence which leads to 
a reduction in precipitation. The high concentration 
of CCN, with a stronger updraft in the mixed phase 
region, forms more large ice particles. The strong 

updraft, which leads to the formation of ice crystal and 
graupel particles due to the non-inductive charging 
mechanism, enhances cloud electrification with high 
lightning activity and reduces rainfall during the El 
Niño year over CI (Lau et al., 2009; Fasullo, 2012; 
Matsui et al., 2016; Chate et al., 2017; Tinmaker et 
al., 2022). It is also seen from the obtained result that 
there is a negative correlation between flash counts 
with AOD and total heat flux, whereas there is a 
negative correlation between rainfall with AOD and 
a positive correlation between rainfall and total heat 
flux during La Niña years. During the La Niña year, 
the increase in total heat flux is due to an increase 
in latent heat flux. The high water vapor content 
available in an air column is lighter in weight, and 
with strong buoyancy, it produces stronger upward 
motion, which condenses more moisture due to latent 
heat energy. This convergence of moisture produces 
high rainfall with low lightning activity during the 
La Niña year (Liu et al., 2020; Goswami, 2021). The 
positive correlation coefficients of flash counts with 
SST and Niño3.4 index indicate the development of 
deep convection and high vertical development of 
thunderstorm clouds, which leads to higher lightning 
activity during the El Niño years over CI (Kandalga-
onkar et al., 2002, 2010; Tinmaker et al., 2014, 2017). 
The positive relationship between rainfall and SST, 
and rainfall and Niño3.4 index during La Niña years 
is mainly due to an increase in the number of LPS 
formation, a moderate updraft, low insolation, high 
relative humidity, and large cloud coverage during 
the active phase of the monsoon season. These factors 
lead to an increase in rainfall with low lightning activ-
ity during the La Niña years over CI (Trenberth and 
Shea 2005; Niu and Li, 2012; Tinmaker et al., 2017).

These results show that there is a strong correla-
tion between the lightning-rainfall relationship and 
its association with different weather parameters 
during the El Niño years (drought monsoon) and 
La Niña years (flooding monsoon) in the Indian 
summer monsoon over central India for the study 
period (1998-2014). The obtained results support the 
hypothesis that the impact of El Niño and La Niña 
plays an important role during the Indian summer 
monsoon over CI. It also supports the strength of 
El Niño and La Niña during the Indian summer 
monsoon, which plays an important role in lightning 
and rainfall.



713Lightning-rainfall relationship during El Niño and La Niña events

5.	 Conclusion
In the present study, we have discussed the light-
ning-rainfall relationship in El Niño (drought) and La 
Niña (flood) events during the Indian summer mon-
soon over CI for the study period (1998-2014). The 
main highlights of the present study are given below:

The results show that the flash count, Bowen 
ratio, surface maximum temperature, total heat flux, 
AOD, SST, and Niño 3.4 index are increased by 36, 
62, 19, 12, 46, 4.7%, and 0.30 ºC (warmer), where-
as the rainfall is decreased by 15% during El Niño 
years with respect to normal years. The flash count, 
Bowen ratio, surface maximum temperature, and 
AOD decrease by 15, 11, 3.5, and 11.1% during La 
Nina years, whereas the rainfall, total heat flux, SST, 
and Niño 3.4 index increase by 2.4, 1.72, 0.36%, and 
–0.68 ºC (cooler) during La Niña years with respect 
to normal years.

The increase in flash count during the El Niño years 
over CI during the Indian summer monsoon season is 
due to an increase in surface maximum temperature 
and a high Bowen ratio. The consequent high sensible 
heat flux and high LCL lead to deep convection and the 
formation of high vertical convective clouds, which 
produce high lightning activity and reduced rainfall. 
The higher AOD results in the increased production 
of small cloud droplets, which reduces collision effi-
ciencies. The stronger updraft helps to form large ice 
particles in the mixed phase region, which enhances 
cloud electrification and hence high lightning activity 
with a reduction in rainfall during the El Niño years. 
However, during the La Niña years, the increase in 
rainfall during the active phase of the monsoon season 
is responsible for the aerosol washout, which results 
in low lightning activity.

The higher SST during the El Niño years enhances 
the sensible and latent heat fluxes, increasing the 
lower troposphere’s temperature. The steep environ-
mental lapse rate and cool air aloft result in strong 
convection and hence high lightning activity during 
El Niño year over CI. The positive Niño 3.4 index 
specifies the warmer conditions of the east-central 
tropical Pacific coastal region for the formation of El 
Niño events, which strongly impact the Indian sum-
mer monsoon by reducing rainfall over CI. During 
the La Niña years, a decrease in flash counts is due 
to low insolation, low Bowen ratio, and an increase 
in latent heat flux with a decrease in sensible heat 

flux. These factors lead to high rainfall with low 
lightning activity. The increase in the number of LPS 
with a decrease in monsoon break days leads to a 
decrease in flash counts with an increase in rainfall. 
The negative Niño 3.4 index indicates the cooling of 
the east-central tropical Pacific coastal region during 
La Niña events, which shows an increase in rainfall 
during the Indian summer monsoon over CI.
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The monthly mean SST data for the AS (8º-20º N, 
68º-80º E) and the BoB (8º-20º N, 80º-98º E) for the 
study period (1998-2014) were extracted from the 
Climatic Data Center of the National Oceanic and At-
mospheric Administration (NOAA) website (https://
psl.noaa.gov/cgi-bin/data/timeseries/timeseries1.pl). 
The mean surface maximum temperature data was 
retrieved from the NOAA website (https://psl.noaa.
gov/data/gridded/data.cpc.globaltemp.html) during 
the study period (1998-2014) over CI. The monthly 
mean aerosol optical depth (AOD) at 550 nm (0.5º 
× 0.5º) for the period 2000-2014 and the monthly 
mean total heat flux (sensible heat flux and latent heat 
flux) for the period 1998-2014 were retrieved from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Terra satellite website (https://disc.sci.gsfc.
nasa.gov/giovanni/) over CI. The Bowen ratio was 
calculated from the retrieved fluxes. The low-pressure 
systems (LPS) and the number of break days were 
obtained from daily weather reports of the India 
Meteorological Department (IMD) during the study 
period (1998-2014). The warm and cold episodes 
based on a threshold of ±0.5 ºC for the Niño 3.4 index 
were obtained from the National Weather Service 
for Climate Prediction Centers (https://www.cpc.
ncep.noaa.gov/data/indices/) during the study period 
(1998-2014). The data for El Niño and La Niña years 
were obtained from the National Weather Service for 
Climate Prediction Centers (https://ggweather.com/
enso/oni.htm) during the study period (1998-2014). 
In the present study, the El Niño years (2002, 2004, 
2006, 2009, and 2014), La Niña years (1998, 1999, 
2007, 2010, and 2011), and normal years (2000, 2001, 
2003, 2005, 2008, 2012, 2013) were adopted from the 
studies by Gouda et al. (2017) and Kutta et al. (2018).
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