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ABSTRACT
Catch and fishing effort data are generally available, hence 
surplus production models are commonly used to conduct 
assessments. However, hyperstability resulting from spaw-
ning aggregations (SA) pose challenges to determine status 
and inform management of many fisheries resources. Using 
data from 1991 to 2019, we develop a method to study hy-
perstable fished stocks relaxing the assumption of constant 
catchability, hence direct dependence of catch-per-unit-
effort and biomass. Information criterion was used to choose 
the best model including a Cobb-Douglas function for gulf 
corvina (Cynoscion othonopterus), a sciaenid fish endemic 
to the gulf of California, managed through annual quotas. 
Bionomic stock-reduction models were fit using catch, effort, 
published natural mortality, virgin biomass, and economic 
structure. Models were solved using maximum likelihood 
and the best model chosen with Akaike information crite-
rion. Current fishing effort is beyond bionomic optimum. This 
deserves a precautionary approach to protect this endemic 
species and sustain the fishery.
Key words: hyperstability, Cobb-Douglas, stock reduction, 
gulf corvina

RESUMEN
Generalmente se disponen de datos de captura y esfuer-
zo para evaluar stocks usando modelos de producción 
excedente. Sin embargo, la hiperestabilidad resultante de 
agregaciones de desove (AD) genera retos en muchos recur-
sos pesqueros; entonces se recomienda usar funciones de 
producción no lineal. Utilizando datos de 1991 a 2019, desar-
rollamos un método para evaluar pesquerías de recursos hip-
erestables, relajando el supuesto de capturabilidad constan-
te y dependencia directa de captura-por-unidad-de-esfuerzo 
y biomasa. Usamos criterios de información para determinar 
el mejor modelo usando una función Cobb-Douglas. Ejem-
plificamos con la pesquería de corvina "golfina" (Cynoscion 
othonopterus), un pez endémico al golfo de California con 
un sistema de cuotas anuales. Los modelos bionómicos se 
ajustaron utilizando captura y esfuerzo anuales, tasas de 
mortalidad natural, biomasa virgen y estructura económica. 

Ajustando por máxima verosimilitud, el mejor modelo se 
eligió con el criterio de Akaike. El esfuerzo de pesca actual so-
brepasa el óptimo bionómico. Esto implica adoptar enfoques 
precautorios para proteger esta especie endémica y sostener 
la pesquería.

Palabras clave: hiperestabilidad, Cobb-Douglas, reduc-
ción de stock, corvina del golfo.

INTRODUCTION
Sound assessments of fishing resources are critical for ma-
nagement (Melnychuk et al., 2017). However, a pervasive 
challenge is scarcity of data (Hilborn et al., 2020). Often, 
catch-effort series are used to fit models because catch-
per-unit-effort (CPUE) indicates abundance, despite caveats 
(Harley et al., 2001; Haggarty and King, 2006). However, CPUE 
may remain high even if abundance decreased; this is known 
as hyperstability and typically happens when dioecius fish 
aggregate to reproduce (Erisman et al., 2011).

The gulf corvina (Cynoscion othonopterus) is a marine 
fish endemic to the gulf of California (henceforth, the gulf ), 
commercially fished within a biosphere reserve under an 
annual quota regime. Assessing this species remains a chal-
lenge because it does not lend itself to standard assessments 
due to hyperstability, that results in spawning aggregations 
which increases its vulnerability to fishing. This might indeed 
be resulting in biased estimates, crucial to allocate quotas. 

From January to May, corvina forms spawning aggrega-
tions (SA) in shallow (< 50 m) waters at the upper gulf, resulting 
in increased vulnerability to fishing. Over 4,000 ton per year 
are taken by ~700 small-scale vessels. Management based on 
a total annual catch is done since 2012 (Mendívil-Mendoza 
et al., 2018). Corvina grows relatively fast, reaching maturity 
in two years (Gherard et al., 2013). An average female lays 
~1´670,000 eggs per spawn (Román-Rodríguez, 2000; Cote-
ro-Altamirano et al., 2018), associated with high productivity 
of the area (Gherard et al., 2013). 

Hyperstability challenges stock assessments and 
management (Mackinson et al., 1997). A good example 
was the collapse of northern cod (Gadus morhua) stock off 
Newfoundland and Labrador (Rose and Kulka, 1999). One 
way to overcome this problem is using ancillary, fisheries-in-
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dependent information; another desirable way to improve 
modelling is relaxing assumption of direct proportionality of 
CPUE and abundance (Ulltang, 1996; Walter and Porch, 2012). 
The latter can be done by replacing the production function  
where Y is yield, q is constant catchability, f is fishing effort 
and B is biomass of the fishing resource. An alternative pro-
duction function (Cobb and Douglas, 1928) is  (i.e., Y/fµ = Bγ) 
where μ and γ reflect relation between CPUE and abundance 
(Harley et al., 2001). When µ and γ <1, either yield is affected 
as effort increases, or catchability increases as biomass de-
creases, respectively. When both µ and γ = 1, the production 
function is equivalent to Schaefer’s function, widely used to 
assess fished stocks. It is also useful to conduct stock reduc-
tion analysis (SRA) (Kimura and Tagart, 1982) which, based on 
annual catches, seeks to solve Baranov’s catch equations sys-
tem (Baranov, 1918) linked to natural mortality M, biomass, 
recruitment, and a biomass reduction ratios. 

The gulf corvina has high economic value: flesh, swim 
bladder and gonads are commercialized; this strongly 
increases market demand. In open access (de facto or de 
jure) regimes, economic value can stimulate fishing effort 
and stock depletion to risky levels; this is particularly true 
for stocks, such as corvina, which form SA. In such cases, 
bionomic models can provide information useful for man-
agement (Pascoe et al., 2016). Some types of models consider 
age or size structure (Jensen, 1974; Schnute, 1987; Martell et 
al., 2008; Methot and Wetzel, 2013) which, in comparison to 
aggregated models, allow more realistic analyses, for exam-
ple the influence of natural or fishery-induced variability at 
different ages. Such models are highly demanding in terms 
of data and information, while biomass-aggregated models 
are widely used for stock management, particularly in data 
poor situations (Haddon, 2011). Here, we follow an approach 
of information theory and test six different model scenarios, 
all based on the assumption of aggregated biomass. We 
assess the gulf corvina (henceforth, corvina) through a bion-
omic evaluation of its fishery using SRA with a Cobb-Douglas 
function (Hannesson, 1983). This allowed consideration of 
catchability as a function of stock biomass, hence accounting 
for hyperstability. 

MATERIALS AND METHODS
Annual corvina catch data (1991 to 2019) were obtained from 
research centers (IMIPAS, CIBNOR) and effort (2013 to 2019) 
from Mexico’s federal fishing authority (CONAPESCA) (Fig. 1). 
Effort is mean number of boats operating during a fishing 
season. Corvina beach price and effort costs were collected 
through interviews with fishers and by Environmental Defen-
se Fund of Mexico (EDF). All prices refer to year 2019. 

The SRA (Kimura and Tagart, 1982) was used to assess 
the corvina. Data consisted of annual catch series, two esti-
mates of natural mortality rates M = 0.26 and 0.38year-1 (Eris-
man et al., 2014) and virgin biomass ranging between 15,000 
to 30,000 tons. SRA solves n+1 (n = # of years) simultaneous 
nonlinear equations for catch (Ci), biomass (Bi) and biomass 
depletion rate (P) observed in n years of fishing:

Ci=(BiFi(1–exp(–Fi–Mi ) ⁄ (Fi+M)
Bi=Bi–1 exp(–Fi–M)+R
P=Bn+1 ⁄ B1  (1)

where, for year i, Fi = instantaneous fishing natural mor-
tality rate, and R=constant recruitment. We used fixed values 
of M, B1 and P, and solved for R, F1, … , Fn restricting solution 
to values of B1 and P that intersected virgin biomass (B1), 
recruitment and exploitation rate (E ̅     = F/(Fi+M) = 0.825; 0.794, 
0.858 95% CI) for years 2013 to 2015 (Erisman et al., 2014; 
2020). Biomass was then projected after 2019, changing Fi to 
test catch quota scenarios.

For the bionomic analysis, the Cobb-Douglas function 
was fitted to annual biomass data (2014-2019) estimated 
with SRA using M = 0.26, restricted to  E ̅     = 2013-2015 = 0.825, and 
observed catch-effort. Six production function were fitted: 

Case 1) - ∞ < μ < +∞ and - ∞ < γ < + ∞; 
Case 2) μ = 1 and- ∞ < γ < +∞; 
Case 3) - ∞ < μ < +∞ and γ = 1; 
Case 4) μ = 0 and- ∞ < γ < +∞; 
Case 5) - ∞ < μ < +∞ and γ = 0; and 
Case 6) μ = 1 and γ = 1 

Note that case 6 is Schaefer’s model which could a priori 
be discarded in the case of corvina, due to hyperstability. 
However, it was included because in case of being a “loser” 
model, it should be disregarded in fisheries management 
decisions. Models were fitted using maximum likelihood 
assuming lognormal residuals; the “best” model was chosen 
using the Akaike criterion for small sample size (AICc) (Burn-
ham and Anderson, 2002).

The Cobb-Douglas function was equated to biological 
SRA yield function and solved for f to estimate fishing effort:

B[e−F−M − e−F] + R = A ∗ fμB𝛾𝛾 (2)
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Figure 1. Catch series of Cynoscion othonopterus at the upper gulf of 
California.
Figura 1. Serie de capturas de Cynoscion othonopterus en el alto golfo de 
California.
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 fPEC = (B
1−γ[e−F−M − e−F] + B−γR

A )
1
μ

  (3)

fPEC is equilibrium effort to obtain a sustainable yield, B is 
biomass in equilibrium.

Total income was obtained multiplying corvina beach 
price by sustainable biological yield; costs were estimated 
multiplying cost per unit effort by total effort. Total net 
income (πt) was obtained subtracting cost income: πt=p[A*fμ 
Bγ]–cf. Solving for f and equating total net income to zero, 
effort in economic equilibrium fEEC was estimated as:
       
fEEC = [pAB

γ

c ]
( 1
1−μ)

  (4)

fEBE occurs when fPEC = fEEC. Effort for maximum economic 
yield fMEY was obtained equating the income function to zero 
and obtaining the first derivative as a function of f:
       
fMEY = [ C

pμABγ]
( 1
μ−1)

 ° (5)

Table 1. Results of the SRA model for gulf corvina (Cynoscion othonopterus) con-
sidering two values of annual natural mortality rate (M) restricted to  E ̅     2013-2015.
Tabla 1. Resultados del modelo SRA para curvina golfina (Cynoscion otho-
nopterus) considerando dos valores de tasa de mortalidad natural anual (M) 
restringida por E ̅     2013-2015.

M P B1 E ̅     2013-2015
R

0.26 0.235 No solutions

0.240 19,465 0.847 4,444

0.253 20,000 0.825 4,579

0.276 20,814 0.794 4,768

0.38 0.250 No solutions

0.300 No solutions

0.330 14,881 0.824 4,678

0.345 15,632 0.794 4,884

RESULTS
Stock Reduction Analysis (SRA)
With M = 0.26 y-1, solutions to the catch equation system were 
found for a biomass decline ratio ≥ 0.24 (Table 1) for constra-
int  E ̅     = 2013-2015 = 0.825 and 0.794; no solutions where possible 
when  E ̅     = 2013-2015 = 0.858. With M = 0.26 and restrictions of  
E ̅     = 2013-2015, solutions were found for biomass depletion ratio 
between 0.24-0.276; initial biomass ranged between 19,465-
20,814 ton, and annual recruitment 4,444-4,768 ton. With 
M = 0.38, solutions were limited to biomass depletion rate 
between 0.330-0.345. 
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Figure 2. Total (A) and relative (B) biomass of Cynoscion othonopterus using 
SRA considering two natural mortality rates and restrictions in exploitation 
rates E2013-2015.
Figura 2. Biomasa total (A) y relativa (B) de Cynoscion othonopterus usando 
SRA considerando dos tasas de mortalidad natural y restricciones en las ta-
sas de explotación E2013-2015.

Estimates of B1 differed for both M values (Fig. 2A). Final 
biomass varied slightly regardless of M: 4,500 - 5,700 tons. 
Current biomass relative to B1 for both M values showed a 
similar pattern of decline; at the end of the series relative 
biomass estimates with M = 0.26 were nearly 0.25*B1. Solu-
tions with M = 0.38 suggest declining biomass between 0.33 
- 0.345 of B1 (Fig. 2B).

With M = 0.38 y-1 and both restrictions of   E ̅     2013-2015, SRA 
yielded F estimates higher than with M = 0.26. However, at 
the end of 2019, with restrictions in either M and  E ̅     2013-2015 
resulted in F to vary between 1.5 - 2.7 (Fig. 3), higher than 
F0.5B1,M 0.26 = 0.35 or F0.5B1, M 0.38 = 0.61. F increased sharply from 
2012-2016 and dropped in 2017, coinciding with decreased 
fishing due to a “payment for not fishing” policy implemen-
ted to which most fishers subscribed. The highest F was for 
2016, when the largest catch was recorded.

Relative biomass from 2019 - 2025 using M = 0.26 y-1 
increased under scenario of 3,000 and 3,500 tons of annual 
catch quota (Fig. 4A); for a 4,000 tons quota scenario, relative 
biomass increased less. A catch quota greater than 4,200 ton 
yielded a biomass depletion of 25 % B1 by 2025. Using M = 
0.38 yielded more conservative biomass depletion. Relative 
biomass increased with annual catch quotas ≤ 4,000 ton.

Production Function
Function # 5 was a “clear winner”, having the lowest AICc and 
weight Wi greater than 90 % (Table 2). This function was:
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Yt=1,099.08ft
0.226  (6)

Yield is related to effort but not to stock biomass: μ = 
0.226 implies existence of congested fishing effort, indicating 
that an increase unit effort decreases mean CPUE.

Bionomic Analysis
Price per kilogram of corvina between 2011 and 2019 was 
MXN 12.5 and remained almost stable during that period, 
mean price of gas bladder was MXN 279 per kg and fluctua-
ted slightly, and mean price of gonad was MXN 87 per kg and 
showed a slight increase over time (Licón-González et al., 
2023). The average catch per trip of a fishing boat is 1,135 kg 
and over 90 % of the cost structure belongs to variable costs. 
Out of a total of MXN 2,895 per kg, 40 % and 35 % correspond, 
respectively, to gasoline and gutting (EDF, 2016). 

Since catch is independent of biomass, fPEC and fEEC do not 
converge, which reflects lack of bionomic equilibrium (Fig. 5). 
fEEC constant = 2,379 fishing units, never reached equilibrium 
because fPEC approaches 557 when biomass approaches zero. 
In a free access scenario, effort would grow until the corvina 
is exhausted, before reaching bionomic equilibrium. fMEY is 
reached with 348 small boats (Fig. 6). A remarkable result is 
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Figure 3. Estimated instantaneous fishing mortality rate of Cynoscion oth-
onopterus at the upper gulf of California from 1991 to 2019. The number 
above the dashed line is an F value out of scale. Horizontal lines represent 
the F value required for a constant stock of 0.5K for two values of M.
Figure 3. Tasa instantánea de mortalidad por pesca estimada de Cynoscion 
othonopterus en el alto golfo de California desde 1991 a 2019. El número so-
bre la línea discontinua es un valor F fuera de escala. Las líneas horizontales 
representan el valor de F requerido para un stock constante de 0.5K para dos 
valores de M.

Table 2. Parameters and model selection of six Cobb-Douglas production 
function cases. A in case 6 is catchability q. Bold numbers are predetermined 
values. The winning model parameters are in bold in the Wi.
Tabla 2. Parámetros y selección de modelo entre seis casos de la función de 
producción Cobb-Douglas. A en el caso 6 es capturabilidad q. Los números 
en negritas son valores predeterminados. Los parámetros del modelo gana-
dor están en negrita en el Wi.

Case Parameters A µ ν AICc ΔAICc Wi

1 4 1,099.8 0.226 0.00000 115 20.0 0.0
2 3 1046,675.34 1 0.00000 158 63.6 0.0
3 3 0.49 0.073 1 103 7.8 2.0
4 3 31.21 0 0.57 102 7.1 2.8
5 3 1,099.8 0.226 0 95 0.0 95.3
6 2 0.0019 1 1 113 18.3 0.0
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Figure 4. Projected relative biomass of gulf corvina (Cynoscion othonopterus) 
from 2019 to 2025 using parameter estimates of SRA and assuming different 
annual catch quota scenarios.
Figura 4. Biomasa relativa proyectada de curvina golfina (Cynoscion oth-
onopterus) de 2019 a 2025 usando estimaciones de parámetros de SRA y 
asumiendo diferentes escenarios de cuotas anuales de captura.

Figure 5. Population equilibrium (PEC) and economic equilibrium (EEC) 
curves for the gulf corvina (Cynoscion othonopterus) fishery in the upper gulf 
of California.
Figura 5. Curva de esfuerzo en equilibrio poblacional (PEC) y de equilibrio 
económico EEC para la pesquería de curvina golfina (Cynoscion othonopter-
us) en el alto golfo de California.
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that fPEC at 0.25B1 with only 477 small boats, meaning that 
increased fishing effort compromises sustainability of the 
fishery.

DISCUSSION
Despite problems of CPUE known since decades ago 
(Coppola and Pascoe, 1998; Maunder et al., 2006), surplus 
production models will likely continue in use because catch-
effort are easy to collect (e.g., Urías-Sotomayor et al., 2018; 
Alam et al., 2021; Angelini et al., 2021; Meissa et al., 2021). 
We highlighted how assessments can be done with ancillary 
fishery-independent data. When fish form aggregations 
that increase catchability and CPUE, use of a Cobb-Douglas 
production function can overcome problems associated with 
hyperstability. For our case study, we were able to derive 
meaningful management information for the gulf corvina. 
This is important because official annual assessments use 
Schaefer’s production function (e.g., Ruelas-Peña et al., 2013).

Our approach captured interannual dynamics of corvi-
na. Fluctuations of ca. eight years seem to indicate cyclical 
events. Within a fishing season, tidal cycles also influence 
availability of corvina (Román-Rodríguez, 2000); hence mid-
term cycles and lunar effects could be linked and influence 
corvina. The only lunar cycle with a period of 8.85 y is displa-
cement to the east of the lunar perigee; this produces intense 
spring tides approximately every 4.4 y (Haigh et al., 2011). 
Such variability should be considered in modelling to inform 
management of corvina.

Although SRA is a deterministic procedure, using two 
estimates of M and an interval of 25 % and 75 % of 2013-2015 (see 
below) allowed to address uncertainty of assessments. B1 es-
timates in this work might be considered “virgin” biomass (Bv) 
because initial catch represents a relatively low fishing effort. 
Thus, estimates of ratio of final to initial biomass means that 
stock biomass of corvina at the upper gulf of California is 
between 25 % and 34.5 % of Bv, being both lower than 0.5Bv 
estimated by Enciso-Enciso (2014). 

Lower stock size is associated with M = 0.26 y-1 and 
higher wit M = 0.38 y-1; thus, a good M estimate is important 
to assess this fishery. The two M values used in the present 

study were estimated by Erisman et al. (2014) from empir-
ical formulas of Pauly (1980) and Jensen (1996). Both were 
the best of 30 formulas for assessments with limited data 
(Kenchington, 2014). With M = 0.26, solutions to SRA catch 
equations were restricted to the range of exploitation rates 
estimated by Erisman et al. (2014) for 2013 - 2015 (from 25 % 
to 75 %). In contrast, with M = 0.38, no solutions were possi-
ble for the entire range of  E ̅    2013-2015 used. Solutions were only 
found when mean value and lowest of these exploitation 
rates were used. The only viable solution with M = 0.38 was 
found using as constraint the lowest estimated exploitation 
rate during the 2013 - 2015 seasons. Consequently, the value 
of M for this species is closer to 0.26 than 0.38 y-1. Because of 
this, true biomass at the end of 2019 may be closer to 0.25Bv 
than 0.35Bv. 

The gulf corvina stock is in worst condition than previ-
ously estimated by Enciso-Enciso (2014) who considered to 
be optimal, close to 0.5Bv. A condition of the gulf corvina 
between 0.25Bv and 0.35 Bv is of concern since the lowest 
has been a biomass level where all common functions of 
stock-recruitment predict depensation or reduced recruit-
ment (Beverton and Holt, 1957; Ricker, 1975; Barrowman and 
Myers, 2000), which could be defined as limit reference point 
for management (Caddy and Mahon, 1996).

Our results agree with Mendívil-Mendoza et al. (2018): the 
fishery is unsustainable because it is based on mega-breed-
ers. In other words, this fishery’s profitability and continuity 
relies heavily on aggregated fish and therefore cannot be 
considered as a fishery where random distribution of fish 
plays a key role. Results of Erisman et al. (2020) coincide with 
ours. They estimated that yield per recruit was 73 % of maxi-
mum possible for this population. Erisman et al. (2014) found 
contradictory results regarding stock status in 2012. The low 
abundance of mega-spawners and an analysis of spawning 
potential indicated overexploitation; but increasing average 
corvina sizes in catches related to regulations of mesh size 
indicated sustainability. From 2009 to 2019, however, catch 
size gradually decreased at a rate of 1 cm y-1 (INAPESCA, 2021).

This fishery has been managed with annual quotas be-
tween 4,000 and 4,500 tons between 2015 and 2020; in 2021 
this was increased to 5,128 tons. Our projections with SRA 
show that a < 4,000 tons quota recover the stock. Catches 
above 4,000 tons are only possible if M = 0.38 y-1 but the stock 
status remains close to the limit point 0.25Bv.

The best Cobb-Douglas production function indicated 
that as effort increases fishers compete, reducing their over-
all catchabilities. The zero-exponent obtained for biomass 
indicates that catch is independent of abundance; it depends 
on effort, which supports the hypothesis of hyperstability. 
For the same reason, fPEC and fEEC do not converge, indicating 
absence of a bionomic equilibrium, and that under open 
access fishing effort can deplete the stock. 

Spawning aggregations can withstand increased catch 
rates despite stock reduction until the fishery collapses. Al-
though catch is independent of biomass, a reduction lower 
than 0.25B1 compromises sustainability of the stock, achieved 

Figure 6. Total revenues and costs in the gulf corvina (Cynoscion 
othonopterus) fishery in the upper gulf of California.
Figura 6. Ingresos y costos totales en la pesquería de curvina golfina 
(Cynoscion othonopterus) del alto golfo de California.
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with a fishing effort of 477 boats. In 2019, 450 boats oper-
ated close to the limit. Currently, 737 boats possess fishing 
permits for gulf corvina; this threatens the fishery because all 
too often quotas are not enforced (Mendívil-Mendoza et al., 
2018). Even if quotas were not exceeded, excess fishing units 
beyond economic optimum signifies reduced catch rates 
and, most likely profits, due to effort crowding. 

Stimulus to increase catch follows a concomitant in-
crease in market prices. When catches increase early in the 
fishing season, market saturates and price plummets. Recent 
interest to market gonads and crops increases income, which 
increase catches (EDF, 2016). 

In 2016, catches concentrated in the first month of the 
season, saturating the market and lowering the price from 
$15,000.00 MXN/ton (USD 779.22) to $8,000.00 MXN/ton 
(USD 415.58); in the following month catches decreased by 
a third (EDF, 2016). This indicates that the price reduction 
observed in 2015 can reduce effort due to low profitability. 

Our economic analysis assumed constant prices and 
costs; an elastic price could change these results. Market 
saturation in the first month causes reduction in price (EDF, 
2016). However, in recent years the price of gutted product 
seems to follow a supply-demand relationship, but price 
stabilizes complementing with sale of swim bladders and 
gonads.

Annual quota disregards hyperstability, which can be 
overcome using nonlinear production functions and fisher-
ies-independent data. With this approach, we found that the 
gulf corvina biomass is close to 25 % of virgin stock, which 
calls for precautionary management to avoid economic 
collapse to the fishery and reduced viability of this species. 
Quotas need be precautionary strict enforcement is needed.

CONCLUSIONS
Disregarding spawning aggregations can prevent accurate 
assessments that may cause stocks to collapse.

Hyperstability can be included using non-linear produc-
tion functions such as the Cobb-Douglas. Ancillary informa-
tion can also be used in data-poor situations.

The gulf corvina (C. othonopterus) forms seasonal spaw-
ning aggregations which increase its vulnerability. Currently, 
assessment and estimation of annual catch quotas are done 
disregarding hyperstability of the stock. This can be over-
come using nonlinear production functions and ancillary, 
fisheries-independent data. 

We found that the gulf corvina biomass is close to 25% 
of virgin stock, which requires precautionary measures to 
avoid economic fishery collapse compromising viability of 
this endemic species. 

The gulf corvina fishery continues to occur and yields 
revenues not because of the randomness of common fishe-
ries, but because of the spawning aggregations it relies upon. 
Costs of fishing are reduced and, therefore, profits are positi-
vely influenced by the gregarious nature of mega spawners 
in a relatively small space. Therefore, fishers and managers 
should reduce current fishing mortality and determine a 

maximum size limit so that mega spawners can continue to 
contribute to annual recruitment. A maximum size limit in 
combination with an annual quota need to strictly be enfor-
ced so that this endemic species can continue to be the basis 
of an important social and economic activity.
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