432

Boletin Médico del B

Hospital Infantil de México PERMANYER ’ '.) Check for updates

REVIEW ARTICLE

piRNAs: nature, biogenesis, regulation, and their potential
clinical utility

Emilio Eslava-Avilés’? and Francisco Arenas-Huertero®*

"Programa de Posgrado en Ciencias Bioldgicas, Facultad de Medicina, Universidad Nacional Auténoma de México; 2Laboratorio de Investigacién
en Patologia Experimental, Hospital Infantil de México Federico Gémez. Mexico City, Mexico

Abstract

RNASs that interact with PIWI (P-element Induced Wimpy) proteins, called piRNAs, were discovered in 2006. Considered the
“guardians of the genome,” piRNAs were first described in germ cells of Mus musculus and Drosophila melanogaster. Since
then, studies have focused on elucidating their origin, biogenesis, and mechanisms of action. Today, we know some of the
molecules that participate in these processes, but the nature of the molecular processes that they perform remains largely
unknown. However, recent studies have demonstrated that both the piRNAs and their associated proteins are also expressed
in somatic cells, suggesting that their scope of action is much greater than initially thought. In addition, their union to PIWI
proteins generates a silencing complex that represses the transcriptional and post-transcriptional expression of repeated
sequences, including elements known as “transposables’. Finally, a recent discovery revealed that this complex could modu-
late the silencing of specific messenger RNAs (mRNA) necessary for cell regulation. The regulatory function that piRNAs
perform in various cellular processes has led to a diversification in their study concerning various diseases, including cancer,
where there are indications of their potential function as diagnostic tools, biomarkers for prognoses, and future therapeutic
targets. Recently, changes in piRNAs expression have been observed in diseases related to air pollution exposition, such as
respiratory diseases.
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Resumen

Los RNA que interactuan con las proteinas PIWI (P-element Induced Wimpy), conocidos como piRNA, fueron descubiertos
en 2006. Desde entonces, los estudios se han enfocado en dilucidar su origen, biogénesis y mecanismos de accion. En la
actualidad se conocen algunas de las moléculas que participan en estos procesos. Sin embargo, los procesos moleculares
que estas llevan a cabo atn se desconocen. Considerados como los «guardianes del genoma», los piRNA inicialmente se
describieron en células germinales de Mus musculus y Drosophila melanogaster, pero los estudios recientes han demostra-
do que tanto los piRNA como sus proteinas asociadas se expresan también en células somaticas, lo que sugiere que la
accion de los piRNA es mayor de lo que antes se pensaba. Ademds, su union con las proteinas PIWI genera un complejo
de silenciamiento que reprime la expresion de manera transcripcional y postranscripcional de secuencias repetidas,
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incluyendo elementos conocidos como «transponibles». Por ultimo, un descubrimiento ha demostrado que este complejo
puede modular el silenciamiento de ciertos RNA mensajeros necesarios para la regulacion celular. La funcién requladora
de los piRNA en multiples procesos celulares ha contribuido a la diversificacion de su estudio en diferentes enfermedades,
incluyendo el cancer, en el que hay indicaciones de su potencial funcién como herramientas de diagndstico, biomarcadores
de prondstico y, en un futuro, dianas terapéuticas. Recientemente se han observado cambios en la expresion de piRNA en
enfermedades relacionadas con la exposicion a contaminantes ambientales, como las enfermedades respiratorias.

Palabras clave: piRNA. RNA no codificantes. Biomarcadores. Epigenética. Silenciamiento génico.

Discovery of a new class of small RNAs

Our genome codifies hundreds of genes responsible
for a myriad of cellular functions. The regulation of the
levels of expression of these genes is crucial for devel-
opment and homeostasis'. Around 80% of the human
genome has been transcribed, but only 2% codifies for
proteins. One result of the transcription process of
genomes is the production of thousands of non-coding
RNAs (ncRNAs)2. While the number of ncRNAs in the
human genome is unknown, transcriptomic and bioin-
formatic studies suggest that there may be thousands
of them?. ncRNAs are classified into two types: long
non-coding RNAs (IncRNAs), which have a length
greater than 200 nucleotides, and small non-coding
RNAs (sncRNAs), whose length is 20-35 nucleotides?®.
The most widely studied sncRNAs are microRNAs
(miRNAs) and small interference RNAs (siRNAs). In
contrast, due to their recent discovery, the PIWI-
associated small RNAs (piRNAs) have not been studied
in depth at present®.

Both siRNAs and miRNAs associate with the
Argonaute family of proteins to perform their functions
and act as guides that regulate mRNAs stability, protein
synthesis, chromatin organization, and genome struc-
ture®®. The Argonaute family is divided into two
sub-families of proteins: Argonaute (AGO) and PIWI
(P-element Induced Wimpy)'. The proteins of the PIWI
sub-family participate predominantly in specific events
of the germinal line. However, the initial study on the
Drosophila gene PIWI determined that its germline
function depends on somatic cells of the gonad’,
although the functions of this family and the nature of
the piRNAs that serve as guides were unknown then.

Four independent research groups discovered the
piRNAs®!". They were initially isolated from total RNA
extracted from mouse testicles. The first observation in
a gel stained with ethidium bromide® or SYBR gold?®
revealed a group of small RNAs approximately 28-32
nucleotides long. These RNAs abundance in the testi-
cle led to speculation about their association with the
PIWI subfamily of proteins, given that these proteins

have been well documented for their essential roles in
germline development and gametogenesis on various
animal models''2'3. Three PIWI proteins (MIWI/PIWIL1,
MIWI2/PIWIL4, and MILI/PIWIL2) are found in mice and
have essential roles in spermatogenesis, each of them
showing a unique expression pattern'*, although the
expression of MIWI and MILI differs. Initial studies
showed that MILI protein is expressed from the mitotic
stage to the pachytene phase of the meiotic stage.
Meanwhile, MIWI is expressed from the middle stage
of the pachytene phase to the formation of the early
spermatids. The expression of both is observed in the
middle stage of the pachytene phase'®.

Based on this knowledge, immunoprecipitation®
assays were conducted to determine their dependence
on MIWI. Findings showed that the piRNAs bonded to
MIWI but not to AGO2. Meanwhile, assays with MIWI
knockout mice showed that the expression of these
piRNAs decreased. These results suggest that the
expression of this new class of RNAs is dependent on
MIWI. For this reason, they were denominated PIWI-
interacting RNAs (piRNAs)°. Similar studies that
explored the association of MILI with this new class of
small RNAs observed RNAs of 26-28 nucleotides asso-
ciated with MILI”. These findings indicated two classes
of piRNAs: the first, with a length of 28-32 nucleotides,
associated primarily with MIWI, and the second, with a
length of 26-28 nucleotides, associated with MILI.

Upon characterizing these RNAs in greater detail,
findings revealed that piRNAs preferred uracil in the
first position® and were distributed irregularly along the
chromosomes. The piRNAs were found to be codified
as follows: 17.6% in chromosome 17; 11.6% in chromo-
some 5; 10.7% in chromosome 4; and 10.2% in chro-
mosome 2. Only two piRNAs were found in the X
chromosome, and almost none in chromosomes 1, 3,
16, 19, and Y?°. Other observations showed that the vast
majority of piRNAs (96%)® formed groups in short
genomic loci from < 1 kb to > 100 kb in size that con-
tained between 100-4500 piRNAs. These groups are
known as “clusters™.
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Figure 1. Processing of piRNAs, including primary and secondary hiogenesis (ping-pong cycle), and the known molecules

that participate in each step.

Processing of piRNAs

The characteristics and functions of the biogenesis
of piRNAs have been studied principally in Drosophila
melanogaster, Caenorhabditis elegans, and Mus mus-
culus’®'. In contrast to miRNAs and siRNAs, whose
biogenesis depends on Dicer and Drosha enzymes to
convert their double-stranded precursors into small
functional RNAs, piRNAs originate from one sole RNA
strand that does not need Dicer or Drosha enzymes.
However, piRNAs require an alternative type of pro-
cessing composed of two pathways: the primary pro-
cessing pathway and the secondary “ping-pong cycle”
(Figure 1)51819,

Primary biogenesis

piRNAs come from protein-coding genes, clusters,
active transposable elements, IncRNAs, transference
RNAs, and small nucleolar RNAs??*, The precursors

of single-stranded piRNAs are transcribed and pro-
cessed to generate intermediate piRNAs. Later, they
are transported through the nuclear envelope to pro-
cessing sites that reside in the cytoplasm?®. 1t is
believed that their processing in the germinal cells
takes place in multiprotein, perinuclear structures called
“nuages,” or chromatid body, and that delivery of the
transcribed piRNAs from the clusters to the processing
sites requires the DEAD-box helicase associated with
U2AF65 (UAP56, also called Hel25E)?527, In contrast,
in somatic cells of ovaries and testis, the production of
piRNAs is performed in structures called Yb bodies.
These structures are frequently associated with
mithocondria?’.

Intermediate piRNAs are processed at their 5’ end by
the Zucchini/MITOPLD nucleases in D. melanogaster
and M. musculus following their exportation to the cyto-
plasm?8-20, Additional observations have found that pri-
mary biogenesis in these organisms depends on the
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function of other conserved factors, such as Minotaur
(Mino)/GPAT2 and Gasz®'%2. Also, helicase MOV10L1
(mice homolog of Armitage in Drosophila) is associated
with the first cleavage step of piRNA processing, and
its function has been related to remodeling secondary
structures of those precursors®24, Interestingly, all
these proteins, except Armi/MOVO10L1, are localized
in the external mitochondrial membrane, suggesting an
essential function of mitochondria in the primary pro-
cessing of piRNAs32:35-39,

Intermediate piRNAs bind to the PIWI proteins, a
union that requires the Heat shock 90 protein (Hsp90)
and the cochaperone Shutdown (Shu)*%-42. The current
model of the biogenesis of piRNAs suggests that the
characteristic size of mature piRNAs is a consequence
of the union of intermediate piRNAs with PIWI proteins,
followed by clipping performed at their 3’ ends by the
exonuclease Nibbler*.

One report suggests that the Yb protein with Tudor
domains binds directly to intermediate piRNAs via its
N-terminal domain and shows homology with the
DEAD-box helicase**. Since germinal cells do not pos-
sess Yb bodies, their function is probably carried out
by two homologs known as Brother of Yb (BoYb) and
Sister of Yb (SoYb)*4. Vreteno, another protein with
Tudor domains, is essential for the biogenesis of piR-
NAs in germinal and follicular cells by enabling the
correct localization of the PIWI proteing?0:42:44-45,

In the final step, Hen1 methylates the intermediate
piRNAs associated with PIWI at their 3’ ends to generate
mature piRNAs™8, It appears that this modification is
naturally protective since it is found in the majority of the
sncRNAs that guide the Argonaute proteins to their tar-
get sequences via an almost perfect complementarity to
produce the clipping of the transcribed target*347-48,

Secondary biogenesis

Alternatively, mature piRNAs can act as guides for
the generation of secondary piRNAs. Secondary bio-
genesis, first described in D. melanogaster and known
as the ping-pong cycle®, constitutes an adaptive ampli-
fication pathway of piRNAs and initiates the degrada-
tion of the target elements and the transposons mRNA
through post-transcriptional silencing®. Primary piR-
NAs, which typically begin their 5" end with uridine (1U)
and are bonded to Aubergine (AUB), show complemen-
tarity with ten nucleotides of the secondary piRNAs that
usually contain adenosine in position 10 (10A) and are
bonded to Argonaute 3 (AGO3)?”. This complementarity
modulates the amplification that generates new

secondary piRNAs, which occurs in the form of a ping-
pong cycle between the sequences associated with
AGO3 and AUB?749:50,

The antisense primary piRNAs from clusters associate
with AUB and detect and clip RNA transcripts to produce
the 5 end of new sense piRNAs. After binding to AGO3,
this compound recognizes and clips the transcripts from
clusters, thus generating more antisense piRNAs with
sequences similar or identical to the original piRNA,
which can bind again to AUB to complete the ping-pong
cycle®®%1%2, The piRNAs generated in this cycle adapt
to the target through a variation in their sequence® %,
This pathway leads to a target-dependent amplification
of piRNAs and the expansion of diverse piRNA
sequences*6:5%,

A recent study showed that the ping-pong cycle could
function independently of Zucchini used in piRNA pro-
cessing®®. In the absence of Zucchini, a piRNA 5’ is
typically generated via slicing, but its corresponding 3’
end is modified by Nibbler (Figure 1).

Regulation of genic expression

The interaction of piRNAs with the proteins of the
PIWI sub-family generates the formation of a ribonuc-
leoprotein known as the piRNA-induced silencing com-
plex (piRISC), which can recognize and silence
complementary sequences at the transcriptional and
post-transcriptional levels®’%8,

Transcriptional silencing

Various studies have analyzed the role of PIWI pro-
teins in transcriptional silencing in D. melanogaster,
and some have demonstrated that the nuclear localiza-
tion of the piRISC complex is necessary for the silenc-
ing of transposable elements®®. A loss of PIWI proteins
decreases the H3K9me3 mark (trimethylation of the
lysine 9 of the H3 histone) and increases the binding
of Pol Il in the transposable element promoters'®:60,
Together, these findings suggest a model for transcrip-
tional silencing in which PIWI translocates to the
nucleus by interacting with the transcripts, leading to a
heterochromatinic conformation and transcriptional
repression®’. Transcriptional silencing by piRISC also
requires the GTSF-1/Asterix protein, which interacts
directly with PIWI and is necessary for establishing the
H3K9me3 chromatinic mark®63, The union of
Panoramix (Panx, also called Silencio) to PIWI has also
been identified, which helps in forming heterochromatin
through methyltransferase H3K9 Eggless and its
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co-factor, Windei®*%. Recent studies®® have shown
that SUMO ES3 ligase Su(var)2-10 induces local sumoy-
lation, leading to the recruitment of the Eggless/Windei
complex. These results indicated a novel SUMO path-
way in piRNA-related transcriptional regulation.

The piRISC complex generally recruits the heteroch-
romatin protein 1 (HP1) (which binds to methylated
DNA) to maintain and propagate epigenetic silencing
and Su(var)3-9, a methyltransferase histone (HMT)
responsible for the methylation of lysine 9 in histone 3
(H3K9) in specific genomic targets; in this way, it blocks
transcription®06768  |n addition, the lysine-specific
demethylase 1 (Lsd1) removes the dimethylation of the
lysine 4 on histone 3 of the promoter region of the
transposons, thus promoting its efficient suppression®°.
Other observations show that the Maelstrom group of
proteins (Mael) is necessary for the inhibition of Pol Il
and its RNase activity seems dispensable for trans-
poson silencing®®7°,

In mammals, in contrast, transcriptional silencing is
performed by modifying the histones and DNA methyl-
ation, which is one of the primary mechanisms in piR-
NAs silencing properties’”73, The piRNA/PIWI complex
recruits DNA methyltransferase (DNMT) to methylate
genic CpG sites, altering transcriptional activity®°. In
mice, the two PIWI proteins MILI and MIWI are required
for DNA methylation of transposable elements’. In the
testicles of mice embryos, MIWI2 enters the nucleus
through interaction with MILI to promote the establish-
ment of methylation at CpG sites of the transposons
DNA"'7, Studies have also observed that the ping-
pong cycle continues in mutants of MIWI2, while MILI
performs the methylation of DNA via a mechanism that
is independent of MIWI275. A recent study identified a
protein associated with MIWI2 (SPOCD1) required for
piRNA-guided transposable elements methylation and
silencing’®. This study provided the first mechanistic
insight into mammalian piRNA-directed methylation.
Despite all these findings, the cascade of events lead-
ing to transcriptional silencing in mammals is not yet
understood in detail.

Post-transcriptional silencing

The clipping capacity of the piRISC complex contrib-
utes not only to the amplification of piRNA production
but can also effectuate the post-transcriptional silenc-
ing of transposons’”. Various studies have demon-
strated that this post-transcriptional control is not
unique to the RNAs of transposons but also partici-
pates in regulating other RNAs, such as mRNA,

transcribed pseudogenes, and IncRNAs®°. The
post-transcriptional regulation of mRNAs requires the
insertion of transposable elements related sequences
into mRNA untranslated regions (UTR), the production
of piRNAs from genes with similar sequences
(pseudogenes), or low complementarity-based target-
ing of mMRNAs with piRNAs produced from transposable
elements or repeated sequences®’.

An increasing number of noncanonical post-tran-
scriptional mechanisms for piRNAs, besides trans-
poson silencing, have been reported in flies, mammals,
and other species?82-90,

In fly testicles, which led to the discovery of piRNAs,
the Stellate gene linked to the X chromosome is sup-
pressed by a pseudogene in the Y chromosome called
Su(Ste)®". In the absence of Su(Ste), the product of the
Stellate gene accumulates to form a crystalline struc-
ture in the spermatocytes that causes infertility. The
Su(Ste) locus produces piRNAs whose target is the
mRNA of Stellate for its later degradation®'. Significantly,
70% of the piRNAs associated with AUB in fly testicles
are Su(Ste) piRNAs®3,

In a related aspect, piRNAs associated with MIWI in
mammals are responsible for eliminating mRNA in
mouse elongating spermatides®®%2. These piRNAs
form a complex with the CAF1 protein and select their
target mRNA by partial complementarity at the 3’ UTR
end, thus promoting their deadenylation and
degradation3°:86,

Observations show that some PIWI proteins are
localized to P bodies or co-localized with components
of those bodies?%. A study conducted with ovaries of
D. melanogaster demonstrated that a small fraction of
AUB is found in P bodies and that the transposons
transcripts are localized to P bodies in an AUB-
dependent manner®®. Thus, the components of P bod-
ies may contribute to the degradation of the transcripts
that are targets of AUB. Similarly, studies showed that
MIWI2 is also localized in P bodies®®%, but this effect
is not seen on mice deficient in piRNAs biogenesis®.
This finding suggests that piRNAs are necessary for
the localization of MIWI2 to P bodies. To date, these
findings are still valid* (Figure 2).

Alterations in piRNAs expression and
associated diseases

Diverse studies have demonstrated that alterations in
piRNAs expression can either promote or inhibit the
development of diverse diseases, especially certain
types of cancer, including breast, gastric, lung,
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Figure 2. Transcriptional and post-transcriptional regulation performed by the piRNA-induced silencing complex (piRISC)
complex, the main molecules that intervene, and how they act on their targets (histones and DNA in transcriptional

regulation, mRNA in post-transcriptional regulation).

prostate, colorectal, renal, and bladder cancer, and
multiple myeloma (Table 1)8.9°-1°, However, research
on piRNAs and their participation in diseases unrelated
to cancer, such as respiratory ailments, is scarce.

Respiratory diseases and piRNAs

Air pollution is an ongoing challenge for humans
because various epidemiological studies associate
exposure with adverse effects on health—especially on
the pulmonary system—including pulmonary inflamma-
tion, more susceptibility to respiratory infections, and
increased risks of cancer, asthma, and chronic obstruc-
tive pulmonary disease (COPD). Numerous recent
studies have associated changes in the expression of
ncRNAs with the development and progression of
these diseases'"'?2, Most studies have focused on

analyzing IncRNAs and miRNAs, while only a few have
examined the changes in the expression of piRNAs in
these diseases. One study used bronchial smooth
muscle cells from patients with asthma and healthy
subjects'?®. Observations showed a differential expres-
sion (FC = 1.3, p < 0.05) of five piRNAs (DQ596390,
DQ597484, DQ595186, DQ582264, DQ597347) that
could be employed as potential markers of asthma.
Another study evaluated the expression of small
RNAs in CD4 T lymphocytes by sequencing'?*. Their
findings showed that 12.3% of the sequences obtained
corresponded to piRNAs. Those authors validated the
expression of one piRNA (DQ570728) by RT-gPCR (FC
> 1, p < 0.05) and northern blot and then evaluated its
function by over-expression in CD4 T lymphocytes to
test its effect on cytokines. They observed that
DQ570728 significantly reduced (FC = 1, p < 0.05) the
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Table 1. Research showing piRNAs differential expression in different types of cancer and their potential clinical

utility

piR-4987 Breast cancer
piR-20365
piR-20485
piR-20582

piR-36712

piR-651 Gastric cancer
piR-823
piR-41927

piR-38581

piR-651 Lung cancer

piR-34871

piR-52200

piR-35127

piR-46545

piR-651 Prostate cancer
piR-823

piR-18849 Colorectal cancer

piR-19521

piR-17724

piR-1245

piR-32051 Renal cancer
piR-39894

piR-43607

piR-34536

piR-51810

piR-594040 Bladder cancer

piR-823 Multiple myeloma

expression of IL-4 and IL-5, which are involved in the
development and maintenance of Th2 lymphocytes.
They further analyzed the clinical importance of these
results by evaluating the expression of DQ570728 and

High
High
High
High

Low

Low
Low
High
High
High
High
High
Low
Low
High
High
High
High
High
High
High
High
High
Low
Low

Low

High

Diagnostic tool Huang et al.%®
Prognosis biomarker
Prognosis biomarker
Prognosis biomarker

Prognosis biomarker/ Tan et al.%
therapeutic target

Diagnostic tool Cui et al.'®
Therapeutic target

Diagnostic tool/ Lin et al.'”!
prognosis biomarker

Diagnostic tool/
prognosis biomarker

Diagnostic tool/ Li et al.'®?
prognosis biomarker

Diagnostic tool/ therapeutic target Reeves et al.'®
Diagnostic tool/ therapeutic target

Diagnostic tool/ therapeutic target
Diagnostic tool/ therapeutic target

Therapeutic target Oner et al.’
Therapeutic target

Diagnostic tool/ Yin et al.'®
prognosis hiomarker

Diagnostic tool/
prognosis hiomarker

Diagnostic tool

Therapeutic target Weng et al.'%
Prognosis biomarker Li et al.'”
Prognosis biomarker

Prognosis biomarker

Prognosis biomarker Zhao et al.'®
Prognosis biomarker

Diagnostic tool/ therapeutic target Chu et al.'®

Prognosis biomarker/ therapeutic target Yan et al.""?

IL-4 in the serum of patients with asthma and healthy
subjects. In this case, they observed that the expres-
sion of DQ570728 was significantly lower (p < 0.01) in
asthma patients, while the expression of IL-4 was
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significantly higher (p < 0.01) than in healthy individu-
als. The altered expression of DQ570728 correlated
inversely with the expression of IL-4 (r = 0.63) in asthma
patients.

Another study analyzed the effect of the respiratory
syncytial virus on exosomes composition in cells from
the A549 cell line'?®, Their results showed that the con-
tent of the piRNAs increased in the cells infected with
the virus (34.7%) compared to control cells (3.9%),
demonstrating that the virus infection on A549 cells
was associated with changes in the content of piRNAs
in the exosomes.

Furthermore, a separate study utilized small airway
epithelial cells exposed to a condensate of cigarette
smoke to determine the small RNAs’ composition in the
extracellular vesicles'?®. The authors identified a
decrease in the expression (p < 0.05) of five piRNAs
(piR36705, piR37183, piR59260, piR36924, piR52900),
and an increase in the expression (p < 0.05) of two
piRNAs (piR31985, piR50603) concerning controls.

Similarly, Sundar et al. analyzed the extracellular ves-
icles’ content in the plasma of smokers, patients with
COPD, and non-smokers'?”. They selected the piRNAs
that were expressed differentially (p < 0.01) to compare
the three study groups. They identified three piRNAs
(piR004153, piR020813, piR020450) in smokers and
non-smokers; two piRNAs (piR012753, piR020813) in
non-smokers and COPD patients; and four piRNAs
(piR004153, piR020813, piR020450, piR016735) in
smokers and COPD patients.

These studies demonstrate the differential expres-
sion of piRNAs in various diseases, although only one
study performed a functional analysis that demon-
strated the capacity of piRNAs to regulate the function
of other genes. Therefore, this analysis is essential to
understand piRNAs function in the development and
progression of these diseases and the possibility of
utilizing them as biomarkers and therapeutical tar-
gets'?8129 Unlike other ncRNAs—for example, the
IncRNAs—piRNAs are not easily degraded and can
efficiently pass through the cell membrane'®. These
characteristics allow piRNAs to be detected in samples
that are easy to collect, such as serum, plasma, blood,
and urine. One study demonstrated that the piR-57125,
implicated in renal cancer, is readily detected in serum
and plasma samples'®'.

Perspectives

As the discovery of piRNAs occurred a decade ago,
many functions of the proteins that participate in their

biogenesis are still unknown. However, we know that
numerous factors participate in carrying out the tran-
scriptional and post-transcriptional regulation of trans-
posons and mRNA. The precise mechanisms involved
in these functions are still under study, with most pub-
lished reports focusing on attempts to elucidate them
while setting aside analyses of the expression of these
piRNAs in different cell lines under distinct types of
stress, for example, components of environmental con-
tamination in general.

In recent years, evidence has shown that many envi-
ronmental contaminants alter the epigenome by modi-
fying the state of DNA methylation, histones, or the
expression of ncRNAs. Two of the main questions that
need to be answered are how the action of different
contaminants affects the expression of piRNAs and
whether this expression has any functional importance
for the diseases associated with prolonged exposure
due to differential piRNAs expression. The answers to
these questions will help understand better part of the
complex mechanisms through which environmental
contaminants generate changes in the genome.

Finally, it is essential to emphasize the potential use
of piRNAs as therapeutic targets in various diseases,
whether by blocking their expression or taking advan-
tage of their characteristics through synthetic piRNAs
capable of blocking protein synthesis by binding to
mRNA. These possibilities represent another opportu-
nity with potential applications in the fields of both bio-
medicine and clinical medicine.
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