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Allogamy, metaxenia and hybrids in orchids, what do we know about it?
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Abstract
Orchids are a diverse group of plants, also manifested in their great diversity of flowers. Despite this, orchids are pollinated either through 
autogamy or allogamy (geitonogamy and xenogamy). Although there are some autogamous orchids, the majority are allogamous, mainly pol-
linated by xenogamy since they present physical or genetic barriers that prevent self-pollination. In addition, orchids are known for their capacity 
for interspecific pollination, which could influence fruits (metaxenia) and seeds (xenia) production. Its capacity for hybridization represents an 
opportunity to produce organisms tolerant to biotic or abiotic stress, in addition to exhibiting new shapes, colors and fragrances; this would be 
important in horticulture, where the proper selection of parents provides those advantages to the descendant hybrids. This review addresses the 
characteristics of each type of reproduction systems in orchids, as well as their advantages and disadvantages. At the same time, the study of the 
induction effect of metaxenia and xenia in this family is proposed. Finally, the production of orchid hybrids is contextualized and the opportuni-
ties of this approach in the near future.
Keywords: Autogamy, geitonogamy, genetic improvement, pollination, xenogamy.

Resumen
Las orquídeas son un grupo diverso de plantas, manifestado además en su gran diversidad de flores. A pesar de esto, las orquídeas son poliniza-
das ya sea mediante autogamia o alogamia (geitonogamia y xenogamia). Si bien existen algunas orquídeas autógamas, la mayoría son alógamas, 
principalmente polinizadas por xenogamia, ya que presentan barreras físicas o genéticas que evitan la autopolinización. Además, las orquídeas 
son conocidas por su capacidad de polinización interespecífica, la cual podría influenciar la producción de frutos (metaxenia) y de semillas 
(xenia). Su capacidad de hibridación representa una oportunidad para producir organismos tolerantes a estrés biótico o abiótico, además de 
exhibir nuevas formas, colores y fragancias; esto sería importante en horticultura, donde la selección adecuada de los parentales proporciona 
esas ventajas a los híbridos descendientes. En esta revisión se abordan las características de cada tipo de sistema de reproducción en orquídeas, 
así como sus ventajas y desventajas. A su vez, se propone el estudio del efecto de inducción de metaxenia y xenia en esta familia. Finalmente, 
se contextualiza la producción de híbridos de orquídeas, y las oportunidades de este enfoque en el futuro próximo.
Palabras clave: Autogamia, geitonogamia, mejoramiento genético, polinización, xenogamia.
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Orchidaceae is one of the largest family within the flowering plants (Chase et al. 2015, Antonelli et al. 
2023). This family includes approximately 27,000 species grouped in 750 genera (Lu et al. 2019, An-
tonelli et al. 2023). Orchidaceae is subdivided in five subfamilies: Apostasioidae, Vanilloideae, Cypri-
pedioideae, Orchidoideae, and Epidendroideae (Chase et al. 2015). The phylogenetic relation among 

the subfamilies is shown in Figure 1. Orchids are mostly long-lived herbs (Hew & Yong 2004) and are distributed 
worldwide (except for polar and desert regions), particularly diverse in the tropics (Givnish et al. 2015). Most of the 
orchid species are epiphytes (Rasmussen & Rasmussen 2018), however, some of them are terrestrials, rupicolous or 
occur in aquatic environments (Shefferson et al. 2020).

Orchidaceae is considered as the most evolved plant family due their morpho-physiological particularities (Soltis 
et al. 2019, Hietz et al. 2022), such as the presence of pseudobulb and succulent leaves (Ng & Hew 2000), vela-
mentous roots (Zotz & Winkler 2013, Pridgeon 2014), or the presence of crassulacean acid metabolism (Zhang et 
al. 2018). Another interesting feature about the biology of orchids is their seeds. Most orchids produce thousands of 
dust-like seeds with a non-developed embryo and no endosperm (Yeung 2017). For this reason, orchid seeds need to 
establish a symbiotic relationship with a mycorrhizal fungus, enabling germination (Otero et al. 2004, 2007, Porras-
Alfaro & Bayman 2007). Symbiotic interactions between orchid seeds and mycorrhizae are a widely studied topic 
(Rasmussen 2002, Dearnaley 2007, McCormick et al. 2018, Sarsaiya et al. 2019, Favre-Godal et al. 2020, Li et al. 
2021b, Selosse et al. 2022).

Orchids are remarkable by their flower diversity, much appreciated by the ornamental plant market. Among the 
ornamental orchids, the genera Cattleya, Cymbidium, Dendrobium, Phalaenopsis, Phaius, Paphiopedilum and Vanda 
are the most cultivated (Vij & Pathak 2012). Even though the flower is the most appreciated part of the orchids, 
some species such as Vanilla planifolia Andrews produce fleshy fruits, commercialized because of their aromatic and 
flavoring traits (Pérez-Silva et al. 2021, da Silva-Oliveira et al. 2022). Most orchid species exhibit hermaphrodite 
flowers, except for some species from the subtribes Catasetinae and Satyriinae, which produce unisexual flowers 
(Suetsugu 2020), whereas some orchids exhibit flowers whose sexual function is separated in time (Hurskainen et 
al. 2017).

The vast diversity of flowers makes orchids to be highly appreciated among collectors, resulting in overexploita-
tion and trafficking of species. This is the main reason why approximately 1,970 species of orchids are threatened, 
according to the IUCN red list (Hinsley et al. 2018, IUCN 2023). For this reason, Orchidaceae is one of most heavily 
protected plant family, with comprehensive CITES (Convention on International Trade in Endangered Species of 
Wild Fauna and Flora) trade restrictions on the entire family; as a result, orchids represent almost 75 % of all CITES-
listed species (Phelps 2015).

Several studies on orchids have focused on the diversity of floral characters (Pellegrino et al. 2017, Naczk et al. 
2018, Dellinger 2020, Hu et al. 2020), flower rewards and pollinators (Cozzolino & Widmer 2005, Pansarin et al. 2008, 
Pansarin 2016, Fay 2018, Shrestha et al. 2020, Castro et al. 2021, Ray & Gillett-Kaufman 2022), and aromatic and other 
chemical compounds (Bohman et al. 2016, Wu et al. 2019, Ramya et al. 2020, Brzosko & Mirski 2021). In fact, several 
topics on orchid pollination have been studied since Darwin (1862). Here we aim to provide an update on the knowledge 
about the different types of reproduction systems observed in orchids (autogamy, allogamy, and xenia and metaxenia 
induction), along with the production of hybrids, with the purpose of promoting both the conservation and improvement 
of orchids through different pollination strategies.

Pollination. In general, pollination is defined as the transfer of pollen from the anthers to the stigma (Wurz et al. 
2021). In most of the flowering plants, only a portion of the pollen produced by the anther is carried to the stigma 
in a single pollination event (Edlund et al. 2004). This is also true for the orchid subfamily Apostasioideae (Figure 
1), and some Vanilloideae, such as in Cleistes (e.g., Pansarin 2003), in which the pollen is released as free monads. 
Pollination in Apostasioideae is more reminiscent of that observed in other families than in Orchidaceae (Kocyan 
& Endress 2001, Yin et al. 2016, Li et al. 2023). In the most of Orchidaceae subfamilies, the entire anther content 



Pollination types in orchids

648

must be removed by the pollinator (Endress 2016). In addition, one or more entire pollen package (i.e., pollinium) 
are deposited in the stigmatic surface in a single pollination event (e.g., Epidendroideae). As consequence, pol-
lination in orchids has even been considered to be more specialized than other flowering plants (Jersáková et al. 
2006). However, at the same time it is risky: if the pollinarium is removed by an inefficient pollinator, which can 
result in pollen lost, fruit set would be compromised (Cabrera-Reyes et al. 2021). For this reason, orchids com-
monly have specialized traits to attract effective pollinators, in order to ensure fruit set (Jersáková et al. 2006, 
Phillips et al. 2020).

Figure 1. Subfamilies of Orchidaceae. Some differential traits among the subfamilies are highlighted in red. Figure constructed with data from literature 
(Chase 2005, Yin et al. 2016, Hu et al. 2022, Jolman et al. 2022, dos Santos & da Silva 2023, Kim et al. 2023).

In most of the orchids, flowers do not produce any kind of rewards for pollinators, therefore, they are pollinated 
by food deceit (Pansarin et al. 2008), sexual deception or attraction (Cozzolino & Widmer 2005, Mant et al. 2005, 
Shrestha et al. 2020, Luo et al. 2021). Pollinators commonly land on a flower or on an inflorescence in order to 
search for a flower reward, commonly nectar or fragrances, which may or may not be present (i.e., deceptive flowers) 
(Pemberton 2013, Lozano-Rodríguez et al. 2022). Besides the production of a flower resource, pollen is deposited on 
the body of pollinators. Pollen deposition on the stigma occurs when a pollinator carrying pollen visit another flower 
(Pemberton 2013, Hallett et al. 2017). Another important pic in pollination ecology studies is the source of pollen 
(Tremblay et al. 2005, Kropf & Renner 2008), since orchids can reproduce by autogamy, allogamy, or both (Willmer 
2011, Bateman 2020). As consequence, in pollination ecology studies it is recommended to carry out pollination by 
hand, in order to check their reproductive systems, or even to verify whether agamospermy could or could not occur 
(Tremblay et al. 2005, Sao Leao et al. 2019, Wurz et al. 2021). 

Autogamy. Autonomous self-pollination is defined as the transfer of pollen from the anther to the stigma of the same 
flower (Bateman 2020, Johnson & Edwards 2000, Willmer 2011). Several studies have shown that orchids can be 
pollinated with their own pollen and produce fruits and viable seeds (Ackerman et al. 2023). However, the fact that a 
plant could be self-pollinated does not necessarily make it obligatorily autogamous, as the majority of orchids com-
monly show different degrees of facultative autogamy (Talalaj et al. 2017). In contrast, allogamous self-compatible 
species that can be self-pollinated manually are called “frequently cross-pollinated species” (Sasikumar 2010). This 
knowledge is widely applied in V. planifolia, an orchid species self-pollinated by hand (Hernández-Hernández 2018). 
Autogamy guarantees the production of fruits, if that is what is desired, even knowing that the seeds contained may 
not be viable (Sao Leao et al. 2019, Yeh et al. 2021). Another disadvantage observed in self-pollinated orchids is the 
production of albino protocorms, something not commonly observed in orchids pollinated through outcrossing (de 
Paiva-Neto et al. 2022). Endogamy depression can be expressed as auto-pollination or in crosses between closely 
related individuals, as reported by Emeterio-Lara et al. (2018).
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Although orchid flowers are widely adapted to outcrossing, species capable of autogamy are found in several 
Orchidaceae subgroups (Johnson & Edwards 2000). Spontaneous self-pollination is relatively common in Orchida-
ceae compared to other plant families. In fact, 31 % of orchid species set fruits through autonomous self-pollination 
(Evans & Jacquemyn 2020). The occurrence of self-pollination is easy to study in orchids due to its floral architecture 
(Talalaj et al. 2017). In addition, facultative self-pollination is sometimes observed in biotic-pollinated plants when 
the environment is subject to changes such as anthropogenic disturbance (Talalaj & Skiercynski 2015, Talalaj et al. 
2017). This transition has also been recorded in some plants that have migrated to areas outside their previous range 
(Sramkó et al. 2019, Evans & Jacquemyn 2020). However, autogamy is more common among orchids with a weedy 
habit or those found in habitats with marginal pollinator activity (Suetsugu 2015).

Orchids developed barriers to avoid the production of seeds with self-pollen, and these can occur in both before 
and after pollen transfer. Autogamy in orchids is often prevented or limited by various mechanisms to promote out-
crossing, which enhances genetic diversity and consequently more adaptability. Some common barriers to autogamy 
in orchids are 1) Morphological barriers: in many orchid species, the anther and stigma are spatially separated by the 
rostellum, preventing self-pollination (Bory et al. 2008, Sugiura 2013, Zhang et al. 2021). 2) Temporal barriers: some 
orchids exhibit dichogamy, where the male and female reproductive organs mature at different times; this temporal 
separation prevents self-pollination because the receptive stigma is not yet available when pollen is released or vice 
versa (Hurskainen et al. 2017). 3) Genetic barriers: some orchid species possess mechanisms of self-incompatibility, 
where the pollen from a flower is unable to fertilize the ovules of the same flower or other flowers on the same plant; 
this genetic barrier prevents self-fertilization and promotes outcrossing (Zhang et al. 2021). Genetic barriers such as 
self-incompatibility, operate after pollinia transfer by ensuring that the pollen from one flower cannot successfully 
fertilize the ovules of the same flower or other flowers on the same plant (Hurskainen et al. 2017, Zhang et al. 2021). 
4) Other mechanical barriers: orchids typically have specialized pollination structures associated with the pollinia or 
pollinaria, which are often adapted for specific pollinators; these structures may not easily come into contact with the 
stigma of the same flower, reducing the likelihood of self-pollination (Gravendeel et al. 2004). Overall, these barri-
ers to autogamy in orchids contribute to the promotion of outcrossing, which facilitates genetic recombination and 
maintains genetic diversity within populations (Scopece et al. 2014, Suetsugu 2015, Zhang et al. 2021).

Often, autogamy in orchids is facultative, and self-pollination takes place in the final phase of anthesis, mainly 
caused by a low frequency of pollinator visits (Suetsugu 2015, Talalaj et al. 2017). However, self-pollination becomes 
mandatory when the pollinator is ineffective or is no longer in the area (Jin et al. 2014, Pedersen et al. 2018). For 
example, V. palmarum (Salzm. Ex Lindl.) Lindl. opens its flowers and remains available to pollinators, however, it 
also exhibits a mechanism of facultative self-pollination; if biotic pollination does not occur, flowers self-pollinate 
(Pansarin & Ferreira 2021).

The transition between allogamy-autogamy pollination systems is particularly well documented in the terrestrial 
genus Epipactis (Talalaj et al. 2017, Sramkó et al. 2019, Evans & Jacquemyn 2020). Epipactis flowers show a mor-
phology adapted to self-pollination and ensure seed production such as a reduced gynostemium or the occurrence of 
cleistogamy ensure seed production. Autogamy has been recorded in E. atrorubens (Hoffm. Ex Bernh.) Besser, E. 
dunensis Godfery, E. helleborine (L.) Crantz, E. leptochila Godfery, E. microphylla (Ehrh.) Sw., E. muelleri Godfery, 
E. palustris (L.) Crantz, and E. youngiana A.J.Richards ex A.F.Porter (Bonatti et al. 2006, Talalaj & Brzosko 2008, 
Talalaj et al. 2017, Evans & Jacquemyn 2020). Nonetheless, this adaptation has reduced the genetic diversity of the 
populations (Squirrell et al. 2002, Evans & Jacquemyn 2020). Even though the transition from allogamy to autogamy 
has been considered as an evolutionary dead end, due to the consecutive acquisition of individuals with lower genetic 
diversity, and therefore, with less probability of developing mechanisms that allow them to adapt to environmental 
changes, which might lead to narrow the ecological niches and eventually the loss of the species, this is common in 
orchids, since they have strategies to persist (i.e. clonality) (Phillips et al. 2020, Stípková et al. 2020, Evans & Jac-
quemyn 2022, Anghelescu et al. 2023).
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Allogamy. It is subdivided in two types: geitonogamy (the pollen is taken to the stigma of another flower, from the 
same individual), and xenogamy (the pollen is taken to the stigma of another flower, from a different individual) 
(Bateman 2020, de Oliveira et al. 2022, de Paiva-Neto et al. 2022). A graphical comparison between autogamy, 
geitonogamy and xenogamy is shown in Figure 2.

Due to the structure of their flowers, allogamy is the most common breeding system among orchids (Lanzino et al. 
2023). Even Darwin focused on explaining mechanisms that could promote cross-pollination, as he thought that such 
floral adaptations of the orchid were selected as consequence of pollinator pressures (Scopece et al. 2014). Orchid 
flowers commonly exhibit mechanical barriers (i.e., rostellum) that tends to reduce the formation of fruits with self-
pollen (Zhang et al. 2021). This tendency to avoid self-pollination in orchids is due to the fact that self-incompati-
bility is a post-pollination barrier that avoids self-fertilization, however, self-incompatibility does not avoid pollen 
transfer (pollination) (Valdivia et al. 2010, Zhang et al. 2021). In partially self-incompatible orchids commonly occur 
a reduction in the number of seeds per fruit, reduction of the weight and size of the fruits, and a lower number of 
seeds with embryo (Tremblay et al. 2005, de Paiva-Neto et al. 2022). Partial self-incompatibility has been recorded 
in more than 750 species of Orchidaceae, mainly in Chondrorhyncha, Coelogyne, Dendrobium, Lycaste, Notylia and 
Oncidium (Johnson & Edwards 2000, Tremblay et al. 2005).

The first case of allogamy discussed here is geitonogamy. Almost all flowers from an inflorescence usually have 
the same probability of being visited by a pollinator, thus, geitonogamy results in the same effort as observed in 
xenogamy, because pollen is transported between two flowers (Lanzino et al. 2023). However, geitonogamy has 
been considered similar to autogamy, as the pollen transfer occur between flowers of the same individual (Kropf & 
Renner 2008). For this reason, some authors have considered that, in order to increase genetic diversity, geitonogamy 
is undesirable, along with autogamy (Sletvold et al. 2012, Gigant et al. 2016). Besides, it must be considered that 
there are many orchids that produce solitary flowers or racemes whose flowers open successively (one after another), 
which may reduce the probability of geitonogamy (Srimuang et al. 2010). Nevertheless, in some orchid species such 
as Chloraea crispa Lindl., Eulophia alta (L.) Fawc. & Rendle, or Phaius tankervilleae (King & Pantl.) Karthik., 
pollination by geitonogamy results in higher fruit set and seed germination than by autonomous self-pollination 
(Humaña et al. 2008, Johnson et al. 2009, Buragohain et al. 2016), in comparison to autogamy or even xenogamy, 
considered as the best way of pollinating (discussed below).

Figure 2. Comparison between autogamy (A) and allogamy (geitonogamy (B) and xenogamy (C)). Red arrows indicate the direction from pollen donator 
flower to pollen receipt flower. The diagram represents the species Vanilla planifolia, flowers are not in real scale.
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In contrast, pollination by xenogamy is the most widespread type of allogamy in orchids, which is facilitated by 
some floral structures such as the rostellum (Bory et al. 2008, Sugiura 2013, Freudenstein & Chase 2015, Ospina-
Calderón et al. 2015). In truly allogamous orchids this structure is well-developed, while in autogamous species it 
is usually reduced (Suetsugu 2015, Endress 2016). Although today we know that xenogamy is not the only form 
of pollination, previous works, such as Darwin’s statement, mentioned that it must be the main way (Scopece et 
al. 2014).

There is a tendency observed in allogamous plants (not only in orchids) to be pollinated by xenogamy instead of 
geitonogamy (Pang & Saunders 2015, Kundu & Karmakar 2022). It is hypothesized that the lack of nectar evolved 
to reduce geitonogamy, because pollinators (mainly bees), tend to avoid non-rewarding flowers (Johnson et al. 2004, 
Kropf & Renner 2008). A consequence of xenogamy is the genetic variation, allowing a better adaptation than to 
obligatory autogamous species (Willmer 2011). In addition, it provides some defense against natural mutations in the 
genetic material, since if one of the nuclear genomes is damaged, the effects of non-functional alleles may be masked 
by the correct functioning of the equivalent alleles on the chromosome inherited from the other parent (Willmer 
2011, Talalaj & Skiercynski 2015). Autogamy reduces genetic diversity and favors the expression of harmful genes 
(Willmer 2011, Emeterio-Lara et al. 2018).

Pollination by xenogamy can also influence both the fruit set and the seed production (Tremblay et al. 2005). Even in 
self-compatible plants, this mode of pollination commonly increases fruit set (Borba et al. 1999, Caballero-Villalobos 
et al. 2017, Emeterio-Lara et al. 2018, Sao Leao et al. 2019), and improves seed viability (Johnson 2000, Vale et al. 
2010, Caballero-Villalobos et al. 2017, Capó et al. 2022). Several studies have shown that allogamy generally tends 
to be more advantageous compared to autogamy in terms of higher fruit set, as observed in Epidendrum denticulatum 
Barb. Rodr. (Sao Leao et al. 2019), or Vanilla palmarum (Salzm. Ex Lindl.) Lindl. (Pansarin & Ferreira 2021), species 
that exhibited a fruit set between 43-76 % through autogamy, and 82-95 % through allogamy. This advantage stems 
from the genetic benefits associated with outcrossing, such as increased genetic diversity and reduced risk of inbreeding 
depression (Valdivia et al. 2010, Zhang et al. 2021). Cross-pollination increases the chances of successful fertilization 
by introducing genetic diversity and potentially overcoming self-incompatibility mechanisms (Zhang et al. 2019). Also, 
xenogamy generally results in seeds with higher viability compared to autogamy, as recorded in Cattleya coccinea 
Lindl. (Caballero-Villalobos et al. 2017), or Cyrtopodium punctatum (L.) Lindl. (Dutra et al. 2009), since these species 
exhibited a germination percentage ranging from 9 to 65 % through autogamy, and 42 to 97 % through xenogamy.

Many orchid species set fruits exclusively by cross-pollination (Fantinato et al. 2017, Mosquera-Mosquera et al. 
2019, Zhang et al. 2021). Epidendroideae orchids exhibit a greater number of self-sterile species, and few Orchidoi-
deae orchids can be self-fertilized (Fantinato et al. 2017, Sao Leao et al. 2019, Zhang et al. 2021). In contrast, orchids 
from Vanilloideae and Cypripedioideae species can set fruits through self-pollination, although their floral morpholo-
gy promote cross-pollination (Suetsugu & Fukushima 2014, de Oliveira et al. 2022). Finally, Apostasioideae orchids 
might be pollinated by xenogamy (Kocyan-& Endress 2001, Yin et al. 2016). A comparison of pollination systems 
among different orchid subfamilies is shown in Table 1.

If pollination by allogamy (mainly by xenogamy) exhibits so many advantages over autogamy, why are there 
species that remain autogamous? In true autogamy can be an important sexual process of reproduction in flower-
ing plants. Although it is not as effective as xenogamy, pollination by autogamy might exhibit a certain degree of 
genetic recombination (Willmer 2011). Additionally, autogamy does not require a substantial energy investment in 
the reward production (Eckert & Herlihy 2004). The participation of pollinators is no longer necessary, which makes 
pollination by autogamy advantageous in the case of pollinator decline (Pedersen & Ehlers 2000). Many orchids, 
especially in the tropics, show populations with few individuals, and successful cross-pollination events can be rare 
(Bernhardt & Edens-Meier 2010, Cabrera-Reyes et al. 2021). A species under such circumstances would develop 
strategies to ensure its offspring production, where autogamy would serve as a mechanism for this, albeit at the ex-
pense of potential adverse effects as mentioned above. However, cross pollination prevails throughout most members 
of this family and autogamy only happens as a last resort, which could mean orchids prioritize the advantages of 
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Subfamily Main conclusions Cites

Apostasioideae

There are not formal studies about 
pollination ecology within this sub-
family. It is hypothesized that pol-
lination might occur by xenogamy, 

and pollen grains (pollen is not 
agglutinated) might be offered as a 
reward to their pollinator, possibly 

meliponini bees.

Kocyan & Endress 
2001, Yin et al. 2016

Vanilloideae

Although historically hand-polli-
nated through autogamy, the genus 
Vanilla displays physical barriers 

(rostellum) on the flower, suggest-
ing a predisposition to pollination 
by outcrossing rather than autoga-
my. The natural pollinators (when 

available) are euglossini bees. There 
is a single anther, with agglutinated 
pollen which is released as monads 

or tetrads.

Sasikumar 2010, 
Pansarin & Ferreira 
2021, de Oliveira et 

al. 2022

Cypripedioideae

Most of the species are self-compat-
ible, but their flowers are designed 
as one-way traps, and because of 
their morphology, they promote 

cross pollination. They require in-
sects (mainly wild bees) to transfer 

pollen from the anther to the stigma. 
There are two fertile anthers, whose 
pollen is agglutinated and paste-like.

Pemberton 2013, 
Suetsugu & Fuku-

shima 2014

Orchidoideae

It presents authentic pollinia, but 
divisible. There are some self-
compatible species, they do not 

exhibit a rostellum, and if they do, 
it is very narrow or degrades during 
floral opening. However, xenogamy 

is considered as the predominant 
way of pollinating. Pollinators are 

mainly bees and lepidoptera.

Pansarin & Ferreira 
2015, Fantinato et al. 

2017

Epidendroideae

It presents authentic pollinia, and it 
is indivisible. Xenogamy is consid-
ered as the predominant way of pol-
linating since self-compatibility is 

exhibited in most of its species. Epi-
dendroideae orchids have often been 

considered to be nectar-rewarding 
or nectarless, however, some few 
species reward with nectar to their 
pollinators. Pollinators are flies and 
lepidoptera, or even hummingbirds.

Pansarin & Pansarin 
2016, Mosquera-
Mosquera et al. 

2019, Sao Leao et al. 
2019, Zhang et al. 

2021

Table 1. Comparison among the different subfamilies of Orchidaceae regarding main breeding system exhibited.
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cross-pollination over the potential security of fruit and seed production through autogamy, which does not ensure 
the production of viable seeds (Sao Leao et al. 2019, Yeh et al. 2021, de Paiva-Neto et al. 2022).

Metaxenia and xenia. All pollination strategies previously mentioned involve only one species (intra-specific 
pollination). Conversely, in metaxenia and xenia two species are involved (inter-specific pollination). Metaxenia is 
understood as the effect of foreign pollen (different species, but from the same genus) on fruit formation, including 
size increase and changes in traits as texture, shape, scent, flavor, and chemical composition (MacInnis & Forrest 
2020). In addition, biochemical changes are also presented, as an increase in the concentration of different metabo-
lites, highlighting carbohydrates and phenolic compounds (Suaib et al. 2020, Shahsavar & Shahhoseini 2022).

Although there is no explanation regarding the molecular mechanisms related to metaxenia, current hypotheses 
point out to an increase in the concentration of growth regulators such as auxin, cytokinin, and gibberellin from the 
new pollen source, as fruits of larger size in other cultivars tend to exhibit higher levels of these regulators (Cheng 
et al. 2020, Deng et al. 2022). Another hypothesis suggests an enzymatic change in the fruits, particularly those 
enzymes related to processes such as fruit expansion and the production of sugars and phenolic compounds (Deng 
et al. 2022, Shahsavar & Shahhosseini 2022). Besides, chemical signaling related to volatile compounds could be 
another plausible explanation, since some chemical signals produced by the male part of the flower (released by the 
pollen) may interact with female reproductive structures and influence fruit development (Piotto et al. 2013, Deng et 
al. 2022). These hypotheses have been proposed based on observations in other crops of importance (i.e., date, pear, 
plum and tomato); however, these postulates have not been verified in orchids or in wild plants.

A related concept is xenia, sharing the same definition mentioned for metaxenia, but applied to seeds (Sabir 2014). 
It has been reported that xenia seeds usually exhibit greater viability, manifested as greater germination and devel-
opment of seedlings, as well as an increase in size and weight (Sattler et al. 2016, van Esse et al. 2020). Xenia is 
considered the previous step for the formation of hybrids, since compatibility between the species must be observed, 
in addition to observing the immediate effects of the pollen (Sari et al. 2023). It has been considered that these 
changes in the seed could be attributable to greater control of seed development by paternal genes, and that maternal 
genes may lose part of the control, by allowing the formation of large seeds (de Jong & Scott 2007). However, this 
hypothesis was proposed for other angiosperms but the mechanisms of xenia induction in orchids are still unknown.

The study of metaxenia and xenia emerged in the last century, with the study carried out by Swingle (1928) 
focused on the date palm. Metaxenia as a concept is relatively recent, considering that the study of pollination ecol-
ogy formally began in 1793 (Faegri & Pijl 1979). Studies about the effect of xenia and metaxenia induction have 
focused mainly on crops of economic importance, such as apple (Bodor et al. 2008, Militaru et al. 2015), pear (Cheng 
et al. 2020), strawberry (MacInnis & Forrest 2020), date (Swingle 1928, Shahsavar & Shahhoseini 2022), tomato 
(Piotto et al. 2013), cucumber (Olfati et al. 2010), grape (Sabir 2014), hazelnut (Balik & Beyhan 2020), and corn 
(Suaib et al. 2020), among others. In general, a positive effect could be observed regarding fruits and seeds produc-
tion. Therefore, it is recommended to carry out this breeding system to obtain improvements in crops.

No formal studies about xenia and metaxenia have been carried out in Orchidaceae, except for two subfami-
lies: two species from Vanilloideae (V. planifolia and V. pompona Schiede) (Menchaca-García et al. 2011, Barreda-
Castillo et al. 2023a), and three species from Epidendroideae (Bulbophyllum weddellii (Lindl.) Rchb.f, B. involutum 
Borba, Semir & F. Barros, and B. ipanamense Hoehne) (Borba et al. 1999). Regarding the Vanilla species, inter-
specific pollinations were carried out since both vanillas coincide phenologically (Barreda-Castillo et al. 2023a). A 
beneficial effect due to the induction of metaxenia could be observed only in V. planifolia when was pollinated with 
V. pompona, manifested as an increase in size and weight in the fruits in comparison to autogamy in each species, 
while in V. pompona it was the opposite effect, presenting smaller fruits. So, although it is beneficial in most crops, 
the induction of metaxenia does not necessarily provide better results compared to traditional pollination. Moreover, 
Menchaca-García et al. (2011) reported xenia effect on both V. planifolia and V. pompona species, obtaining ger-
mination percentages close to 80 %, which means an increase, considering that V. planifolia presents germination 
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percentages near to 5 % (Yeh et al. 2021), and V. pompona germination has not been reported (Menchaca-García et 
al. 2011). This study was originally called “hybrid production”, however, xenia and hybrid production are related 
concepts, as we discussed in the next section.

Metaxenia and xenia induction are related to interspecific hybrids production, something useful to the most com-
mercially important orchid, and one of the highest yielding crops in the tropics, Vanilla. It is recommended, first 
of all, to continue searching for pollen donor species for V. planifolia, aiming to induce changes in the chemical 
composition of its fruits, as well as an increase in their size (Chambers 2019). In addition, hybrid organisms would 
be obtained indirectly, combining qualities of the parental species (Sari et al. 2023). Furthermore, by selecting pol-
len donor species, these could accompany the cultivation of V. planifolia, which in turn could contribute to breeding 
programs for vanilla species (Watteyn et al. 2023) or even species with agro-economic value.

Regarding the Bulbophyllum species, crosses between B. involutum and B. ipanamense (species with greater genetic 
proximity) exhibited fruit formation rates and seed viability similar to those obtained in intraspecific crosses, whereas 
crosses between B. weddellii with both B. involutum and B. ipanamense exhibited a higher rate of fruit abortion (Borba 
et al. 1999). Therefore, better results are obtained in metaxenia and xenia induction when the species reflect genetic 
proximity. This study was reported as “crossing potential”, although they actually reported metaxenia and xenia effect. 
Research on the effect of xenia and metaxenia in orchids is necessary, given the lack of information that currently exists.

Figure 3. Representative images of hybrid production. In orchids, hybrids can be obtained from species from the same genus, as observed in Vanilla 
planifolia × V. pompona (A), or different genera, as observed in Laeliocattleya (B). L. anceps and C. trianae are illustrative only.

Hybrids. Although the effect of xenia induction has not been properly studied in orchids, the capacity of hybridization 
is well known in this plant family. A hybrid is defined as the organism result of cross fertilization between different 
species from the same genus (Figure 3A) or between species belonging to distinct genera (Figure 3B) (Kishor & 
Sharma 2009, Kempe & Gils 2011, López-Caamal & Tovar-Sánchez 2014, Chambers 2019). Despite metaxenia and 
xenia induction along with hybrids production involve cross pollination, metaxenia effect is just observed in fruit 
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formation (Balik & Beyhan 2020), xenia effect is related to seed production (Sabir 2014), whereas hybrid production 
relates to the new generation of organisms produced (Preston & Pearman 2015, Goulet et al. 2017).

Xenia is directly related to hybrid production, as xenia induction is a process in plant reproduction that involves 
manipulating pollination to produce specific characteristics in the offspring (Olfati et al. 2010). In the context of 
hybrid production, xenia induction is used to ensure the fertilization of an ovule by a specific pollen grain, resulting 
in a hybrid with desirable traits from both parents (Deng et al. 2022). In artificial hybridization, this process is used 
to combine the desirable traits of two different parental entities on the hybrid (Goulet et al. 2017). For example, if 
a hybrid with greater resistance to certain diseases and improved performance is desired, breeders can use xenia 
induction to ensure that the ovules of one plant are fertilized by the pollen of another plant with the desired char-
acteristics.

On the other hand, interspecific and intergeneric hybrids are related to the theory of metaxenia or xenia in the 
context of plant breeding and reproduction. Interspecific hybrids are produced by crossing between two different 
species within the same genus; in the context of metaxenia or xenia, when these hybrids are formed, characteristics 
from both parent species can be influenced by xenia, leading to traits in the offspring that are influenced not only 
by the genetic makeup of the parents but also by the environmental effects on the maternal tissues surrounding the 
embryo sac during pollination and fertilization (de Jong & Scott 2007, Malaviya et al. 2019, Deng et al. 2022). In 
contrast, intergeneric hybrids are produced by crossing two different genera; similarly, in the context of metaxenia or 
xenia, when intergeneric hybrids are formed, the environmental effects on the maternal tissues during pollination and 
fertilization can influence the traits of the resulting offspring, along with the genetic contributions from both parent 
genera (Havkin-Frenkel & Belanger 2018, Li et al. 2021a, Vilcherrez-Atoche et al. 2022).

In the past, it was considered that the production of plant hybrids was useless, since it would not be possible to 
obtain viable organisms, and if any were obtained, they would be weak and inferior to their parental species (Stebbins 
1958). Nowadays, it is known that the hybridization is a viable process observed in several plant groups (Paun et al. 
2011), as it occurs even in natural conditions (Fay et al. 2007, Johnson 2018, Arida et al. 2021, Cantuária et al. 2021).

Natural hybridization in orchids have significant contributions in evolutionary, ecological, and taxonomic pro-
cesses. Regarding evolutionary processes, natural hybridization is a common phenomenon and has long been sus-
pected to be a potent evolutionary force (Li et al. 2021a, Fiorini et al. 2023). It has been suggested that a significant 
number of flowering plants may be of hybrid origin (Cozzolino et al. 2006). Orchid hybrids contribute to the ongo-
ing evolutionary processes by introducing new genetic combinations and variations (Cozzolino et al. 2006, Johnson 
2018, Evans et al. 2023). Also, orchid hybrids can play a role in speciation processes by serving as intermediates 
between parental species (Johnson 2018). Hybridization events can lead to the formation of new species through 
hybrid speciation, where hybrids become reproductively isolated from parental species and establish distinct evolu-
tionary lineages (Fay et al. 2007, Pavarese et al. 2013, Marques et al. 2014). Hybridization is not merely a kind of 
‘‘evolutionary noise’’ with little evolutionary significance but may instead sometimes play a positive role in evolu-
tion, either through hybrid speciation, or through the origin and transfer of novel adaptations (Cozzolino et al. 2006).

Natural hybridization is really common in Orchidaceae (Johnson 2018, Evans et al. 2023), as it has been observed 
in B. × cipoense (B. weddellii × B. involutum) (Borba & Semir 1998), Catasetum × sheyllae (C. boyi Mansf. × C. 
garnettianum Rolfe) (Cantuária et al. 2021), Epidendrum × purpureum (E. denticulatum × E. orchidiflorum Salzm. 
ex Lindl.) (Arida et al. 2021), Laelia × meavei (L. dawsonii (J.Anderson) De B. Crawshay × L. rubescens Lindl.) 
(Cetzal-Ix et al. 2020), L. × oaxacana (L. halbingeriana Salazar & Soto Arenas × L. anceps Lindl.) (Salazar et al. 
2014), Prostechea × chixoyensis (P. cochleata (L.) W.E.Higgins × P. radiata (Lindl.) W.E.Higgins) (Mó et al. 2014), 
Orchis × dietrichiana (O. tridentata Scop. × O. ustulata L.) (Cozzolino et al. 1998), or Vanilla × tahitensis (V. plani-
folia × V. odorata C.Presl), which was believed to be a species (Lubinsky et al. 2008), among others.

Regarding ecological processes, natural orchid hybrids can potentially reproduce with their parent species, leading 
to introgressive hybridization (Marques et al. 2014). This process involves the transfer of genetic material between 
hybrids and parent species, influencing the genetic diversity and adaptation potential of populations (Marques et al. 
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2014). Introgressive hybridization can facilitate the exchange of adaptive traits, contributing to the resilience and 
evolutionary flexibility of orchid populations in changing environments (Pinheiro et al. 2010). However, natural 
hybridization is typically considered deleterious for the conservation of biodiversity (Vereecken et al. 2010, Stull 
et al. 2023). Interspecific gene flow is often seen as a hazard in plant conservation genetics, especially when rare 
species come in contact and hybridize with more common and widespread related taxa as a consequence of habitat 
disturbance (Ferdy & Austerlitz 2002). Hybridization may lead to the loss of rare taxa as a consequence of outbreed-
ing depression and genetic assimilation (Chung et al. 2005). Consequently, specific conservation strategies should 
be designed to protect individuals and hybrid populations, in order to maintain both the natural sources and the new 
organisms for future evolution (Fay 2018, Evans et al. 2023).

Regarding taxonomic contributions, natural orchid hybrids contribute to the overall diversity of the orchid family 
by generating new combinations of traits and morphologies (Goulet et al. 2017, Li et al. 2021a). These hybrids often 
exhibit unique characteristics that may not be present in either parent species, leading to the recognition of additional 
taxa (Bertrand et al. 2021). However, orchid hybrids can also present challenges for taxonomic classification due 
to their intermediate characteristics and complex genetic backgrounds (Cozzolino et al. 2006, Radak et al. 2019). 
Therefore, taxonomists need to carefully evaluate morphological, genetic, and ecological data to accurately classify 
orchid hybrids and understand their evolutionary relationships with parent species.

In addition to natural hybridization, there are several hand-made hybrids between species of different genera, for 
example, Aranda (Arachnis hookeriana (Rchb. f.) Rchb. f. × Vanda lamellata Lindl.), Brassocattleya (Brassovola × 
Cattleya), Laeliocattleya (Laelia × Cattleya), Odontocidium (Odontoglossum × Oncidium), and several interspecific 
hybrids within Cattleya, Cymbidium, Dendrobium or Phalaenopsis (Asociación Mexicana de Orquideología 2005). 
In orchids, the hybrid production is not limited to primary hybrids, since there are secondary hybrids (crossing of a 
hybrid with a species or crossing three species) reported (i.e., Vanilla × manitra ampotony (V. planifolia × V. × tahi-
tensis)) (Grisoni & Nany 2021). In addition, hybrids can be cross-pollinated with other hybrids, and viable seedlings 
can still be obtained, combining more traits in each generation (Devadas et al. 2016).

Among the 25 largest plant families, Orchidaceae is the one with the largest number of known hybrids (Fiorini et 
al. 2023). The lack of endosperm and the phylogenetic closeness that orchids share with each other have been consid-
ered as the main reasons why so many hybrids are obtained in this family (Johnson 2018, Li et al. 2021a). Although 
phenological coincidence is helpful in the formation of hybrids because pollinators might cross-pollinate between 
species (Turchetto et al. 2022), as well geographical coincidence, also called “hybrid zones” (Marques et al. 2014, 
Johnson 2018, Evans et al. 2023), and morphological similarity of flowers (Calevo et al. 2021). However, sometimes 
pollen is preserved in cryogenic conditions to be used later, achieving both formation of fruits as well as viable seeds 
(Divakaran et al. 2016), but this happens under cultivation conditions or in horticulture.

The first list of hybrid orchids reported around 10,000 crosses (Adams & Anderson 1958). The first natural orchid 
hybrid ever recorded was Phalaenopsis intermedia (P. aphrodite Rchb. f. × P. equestris var. rosea Valmayor & D. 
Tiu) in 1853 (Li et al. 2021a), whereas the first hand-made orchid hybrid was “Calanthe” (Calanthe masuca (D. Don) 
Lindl. × C. furcata Bateman ex Lindl.), reported in 1856 (Li et al. 2021a). Nowadays, more than 100,000 orchid 
hybrids (natural and hand-made) are reported worldwide (The Royal Horticultural Society 2023), list that keeps 
growing every day.

In most of the cases, hybridization process results in the production of organisms with better responses to biotic 
and abiotic stress, in comparison to their parental species (Divakaran et al. 2006, Kumar & Singh 2016, Goulet et al. 
2017, Li et al. 2021a). Some benefits of the production of hybrid organisms are reflected in qualities appreciated by 
the market, such as better blooms, larger flowers, long flowering period, or the combination of pigments (Tatsuzawa 
et al. 2004, Edens-Meier et al. 2013, Pramanik et al. 2022). Perhaps this is the main reason why there are so many 
artificial orchid hybrids worldwide.

Improvement of shape, size and aroma of the fruit might not be important for most orchids; however, it is very 
important in the case of vanilla. For this reason, research on hybrids in orchids is of greatest relevance in vanilla, 
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due to its economic importance. For example, V. planifolia × V. pompona hybrids have exhibited a better response 
to water stress (Barreda-Castillo et al. 2023b), and to the exposition to Fusarium oxysporum f. sp. vanillae, its 
main pathogen (Barreda-Castillo et al. 2022). V. × tahitensis (V. planifolia × V. odorata) exhibits a vanillin con-
centration similar to V. planifolia (Brunschwig et al. 2016). V. × manitra ampotony (V. planifolia × V. × tahitensis) 
shows a concentration of vanillin (aromatic chemical marker of vanilla) up to 20 times higher than the observed 
in V. planifolia, in addition to an increase in certain phenolic compounds (Grisoni & Nany 2021). V. × tsy taitra 
((V. planifolia × V. pompona) × V. planifolia) exhibits a better aromatic quality than V. planifolia, along with the 
resistance to F. oxysporum f. sp. vanillae (Varela-Quirós 2010, Havkin-Frenkel & Belanger 2018). More vanilla 
hybrids have been produced between aromatic species, such as V. planifolia × V. phaeantha Rchb. f., V. phaeantha 
× V. pompona, or V. pompona × V. odorata (Hu et al. 2019, Chambers et al. 2021), with the aim of obtaining higher 
quality fruits.

Even though historically so many hybrids have been produced within Orchidaceae, not all of them have been 
viable, or have shown optimal characters (Chambers 2019, Grisoni & Nany 2021). Hybrid production programs as 
a genetic improvement strategy have historically produced hundreds of lines, however, only certain lines of interest 
have been selected (Grisoni & Nany 2021). It is recommended to select the orchid hybrids since seed germination 
(Menchaca-García 2018), or during the development of seedlings (Divakaran et al. 2016), in order to conserve 
the lines with the desired characters, and once selected, multiply them by in vitro culture (Divakaran et al. 2016, 
Menchaca-García 2018). Although genetic improvement of orchids through hybridization is a long-term process, it 
is still the best method to obtain plants with improved qualities without having to resort to the use of transgenics, 
since hybrid organisms are not necessarily result of genetic modification (Chandler & Dunwell 2008, Goulet et al. 
2017, Chambers 2019). 

Finally, it is recommended that in future hybridization programs the species with the most desirable characters 
must be used as ovule donor instead of the pollen donor, due to greater expression of maternal traits in the new 
organisms (Havkin-Frenkel & Belanger 2018, Barreda-Castillo et al. 2023b). There are two main hypotheses about 
the expression of maternal characters in a greater degree in hybrids: 1) It might be due to the inheritance of plastids 
and mitochondria genomes, since both organelles are usually inherited from the maternal parent (Daniell et al. 2021, 
Park et al. 2021) or 2) it might be due to epigenetic regulation, since this mechanism is more sensitive in plants 
(Baulcombe & Dean 2014, Kumar & Singh 2016). However, there is not a real consensus about this topic. All types 
of pollination mentioned so far (as well as the induction of metaxenia and xenia, and production of hybrids) are sum-
marized in Figure 4.

Members of Orchidaceae offer several types of rewards to pollinators or are pollinated by any kind of deception, 
but fruit set by cross-pollination is strongly favored in this family. However, obligatory and facultative autonomous 
self-pollination has evolved independently several times in this huge plant family. Allogamy is favored by pre-zygot-
ic, i.e., floral mechanisms, and post-zygotic (genetic) barriers. Moreover, pollination by xenogamy is more frequent 
than by geitonogamy, because xenogamy offers benefits such as greater genetic diversity.

Although Orchidaceae is well known for its capacity for interspecific pollination and viable production of fruits 
and seeds, there are scarcity of studies about biochemical and morphophysiological changes in fruits (metaxenia) 
or seeds (xenia) in these species. Paradoxically, hybrid production (result of interspecific pollination) is well docu-
mented in this family, since Orchidaceae shows the greatest production of these organisms. It is recommended to 
keep producing hybrids for ornamental and economical purposes, as increasing crop productivity, as in the case of 
Vanilla. Besides, these organisms usually exhibit better traits than their parental species, expressed as greater toler-
ance to adverse conditions such as biotic or abiotic stress.

In summary, although the majority of orchids can be self-pollinated, it is advisable to pollinate them through 
xenogamy when done by hand, since in this way it is possible to promote intraspecific genetic diversity and promote 
seed germination, something necessary in species in risk of extinction. Furthermore, induction of xenia (and hybrid 
production) could promote genetic improvement, and production or organisms with new and desirable traits.



Pollination types in orchids

658

Acknowledgements

We thank to M. Lozano Rodriguez, E. Flachland and J. Santos for sharing several orchid photos used in this article. 
Authors are grateful to the reviewers and the editor of section for their comments.

Figure 4. Breeding systems, induction of xenia and metaxenia, and production of hybrids in orchids. Breeding systems autogamy or allogamy (geito-
nogamy and xenogamy) involves only one species, whereas xenia and metaxenia require two. Although xenia and metaxenia effect only is associated 
with seeds and fruits production, respectively, hybrids production is related to this process, as the new organisms are also result of cross pollination.
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