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Elizabeth López-Lozada, David Peréz-Martı́nez, Diana Patricia Barragán-Vázquez,
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Abstract. Blood pressure is a measurement used
to interpret a person’s cardiovascular health. There
are invasive and non-invasive methods of obtaining
it, including oscillometric methods. The challenge in
developing algorithms for estimating blood pressure
is accuracy. This metric can vary depending on
the device used for measurement and the lack of
standard procedures. This work aims to develop an
oscillometric algorithm based on a custom cuff-based
device. The proposed algorithm consists of a filtering
step, then the calculation of the signal envelope, and
finally a series of linear operations have been proposed
to estimate the systolic and diastolic blood pressure.
The presented algorithm achieved a standard deviation
and mean absolute error for systolic and diastolic
blood pressure of 4.42±6.93 and 3.63±5.82 mmHg,
respectively, compared to Omrom’s HEM-7600T.

Keywords. Blood pressure, systolic blood pressure,
diastolic blood pressure, oscillometric method.

1 Introduction

One of the leading indicators of a person’s
cardiovascular health is blood pressure (BP). It is
the pressure that blood exerts on the walls of the
arteries [17]. This measurement varies with each
heartbeat from a minimum, called diastolic blood
pressure (DBP), to a maximum, called systolic
blood pressure (SBP), and is expressed as DBP
over SBP in millimeters of mercury (mmHg) [10].

Even though there are invasive and non-invasive
methods to measure BP, non-invasive techniques,
such as oscillometric, ultrasonic [22], and
cuffless-based techniques [2, 11, 13, 28], are
the most widely used to be less aggressive to
the patient.

The traditional method, which has been used for
decades, involves the use of a brachial pressure
cuff and arterial auscultation to identify Korotkoff’s
sounds [29]. However, compared to automated
devices, this method is more complex, takes
longer, and needs to be able to identify Korotkoff’s
sounds [29].

Although automated devices are widely
accepted for use in patients outside of hospitals
and clinics, mercury sphygmomanometers and
stethoscopes remain the gold standard for BP
measurement [29].

The development of automated devices presents
challenges such as developing portable systems,
reducing noise levels, and improving accuracy [28].

Automated devices often use oscillometric
techniques to measure cuff pressure changes
during compression and decompression for
BP estimation.

These pressure changes feed empirical
algorithms that process small pressure fluctuations
to estimate SBP and DBP from waveform
features [30].
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Fig. 1. BP module used for data acquisition

Fig. 2. Placement of the brachial cuff on the left arm.
Image source [26]

Typically, these algorithms operate on a specific
hardware platform [12, 13, 17], which is a drawback
in obtaining comparable measurements due to the
need for standardized procedures [29]. Their main
disadvantage is that they estimate the BP of a
sample of n subjects during the development or
validation of the device [21].

Among the more popular BP estimation
algorithms are the Maximum Amplitude Algorithm
(MAA) [4, 12, 24] and the Maximum Slope
(MS) [12, 32], which use the oscillometric signal
envelope to detect peaks in the signal pulses.

MAA defines SBP and DBP as the cuff pressure
values where the amplitude is related to the ratios
of the normalized oscillometric signal [4, 12]. In
MS, SBP and DBP are the pressures within the
cuff, with the derivatives being the maximum and
minimum of the signal [4, 12].

In recent years, with the technological
development, it has been possible to develop
and improve sensors for BP estimation, such
as optical sensors (PPG sensors) [5], and thus
popularize the use of deep learning for BP
estimation [8, 14, 18, 25, 31].

Although they have good results, they still need
extensive data [7], to obtain accurate estimates
and to generalize with different training and
validation data. However, because of the validity of
the cuff for measuring BP and because it has been
used routinely in healthcare, the use of the brachial
cuff to estimate blood pressure will be considered
in this paper.

It should be noted that for the development of the
proposed algorithm, a monitoring unit is used with
the aim of testing a functional algorithm that could
later be used in IoT and Smart Cities applications.
The main contribution of this paper is an algorithm
for BP cuff-based, and highlights the following:

1. Algorithm input data do not require an
amplification and filtering electronic stage.

2. The algorithm includes a digital filtering stage
that pre-processes data from the sensor and
simplifies implementation in another device with
a sensor with similar output voltage, resolution,
and sensitivity characteristics.

3. It integrates a series of linear operations on the
output of the Hilbert transform, improving the
estimation with the selected hardware.

4. This algorithm, which uses traditional
computational techniques, does not require
the amount of data required by deep
learning algorithms.

This paper is organized as follows. Section
2 shows a recopilation of the related work
for BP estimation. Section 3 describes the
proposed methodology, including data acquisition
and methods.

Section 4 presents the experimental results,
while Section 5 gives a discussion of the results
obtained and describe some alternatives for future
work. Finally, Section 6 presents the conclusions.

2 Related Work

This paper presents a BP estimation algorithm
implemented in a portable vital signs monitor. The
goal is to provide medical professionals for tracking
the BP of patients.
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For this purpose, this section describes the
proposed methods and technologies in the state of
the art of BP estimation.

Most automated monitors use oscillometric
methods to estimate blood pressure using cuffs or
optical sensors. Often, these methods define their
procedure for estimating pressure values by pulse
oscillations within the cuff [6].

In the case of cuff-based methods, almost all
algorithms follow this procedure [3, 6, 15, 16, 24]:
the oscillometric waveform (OMW) is extracted
from the deflation curve, then the signal envelope
is calculated, and finally the pressure values are
estimated using height or slope criteria [16]. From
the latter, the MAA and MS algorithms and their
variants are implemented [15, 24].

A variant of MAA is the method proposed in [16],
unlike the traditional method where the authors
calculated the signal envelope by identifying the
maximum slope in the pulse in the OMW using
the oscillometric pulse index (OPI) and finally
calculating the pressure values similarly to MAA,
achieving a mean absolute error (MAE) of 4.69 ±
3.70 for SBP and 4.31± 3.48 for DBP.

The authors obtained a similar mean absolute
pressure as the Omron device used as a reference,
and they also suggest that methods based
on OPI are more robust than the traditional
MAA calculation.

On the other hand, the proposal in [15] explored
machine learning algorithms using multiple linear
regression (MLR) and support vector regression
(SVR) for BP estimation, achieving error values
of −0.3 ± 8.6 and −0.6 ± 5.4 from MLR and
SVR, respectively.

In addition, there are other proposals that
use neural networks [3, 24] for BP estimation
or prediction that show results similar to
traditional methods.

For example, using five layers, [24] shows
accurate results with an MAE of 3 and 5 mmHg
for SBP and DBP, respectively.

While [3] presents a proposal using recurrent
neural layers that achieves similar results.
Although the results show accurate behavior,
there are drawbacks, such as the need for
sufficient data for training and validation.

Algorithm 1 Proposed algorithm

1: Apply the high-pass filter to the input signal to
obtain #»x .

2: Apply the Hilbert transform to #»x to get the
analytic signal xa.

3: Compute the absolute values of xa.
4: Get the maximum vector of |xa| and

compute vmmax.
5: Get the minimum vector of vmmin from the

instant frequency.
6: Compute the average of vmmax to get SPB.
7: Compute the average of vmmin and subtract κ

to obtain DBP.

Table 1. Dataset characteristics

Samples Subject Age
Data distribution

SBP/DBP

65 44 20-60 109/68

On the other hand, there are cuffless estimation
methods, which use photoplethysmography (PPG)
signals from optical sensors placed on a patient’s
finger [2, 5, 30, 28]. At least two variants exist to
estimate pressure using this kind of technology.

The first uses electrocardiography to
complement data and obtain an accurate
estimation; the second, more complicated
method uses PPG signals to estimate pressures.
Proposals in this area often use the MIMIC dataset
to train and test their algorithms.

For example, [9] achieves an MAE and STD of
7.16± 10.83 and 3.89± 5.9. There is also the work
of [23], which uses signal features with a pulse train
time method and achieves 7.16± 10.83 and 3.89±
5.9 MAE for SBP and DBP, respectively.

3 Methods

This paper outlines the development of a BP
estimation algorithm with a proposed methodology
divided into four stages: data acquisition, method
development, testing, and validation.
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(a) SBP measurements

(b) DBP measurements

Fig. 3. Data used to validate the performance of the
proposed algorithm

Fig. 4. Cuff deflation curve

Section 3.1 describes the device used for data
acquisition, Section 3.2 describes the proposed
algorithm, and Section 3.3 describes how testing
and validation were done.

3.1 Data Acquisition

Data acquisition was conducted using a mobile
monitoring unit based on a Raspberry Pi Zero
W with a BP measurement module consisting of
an MP3v505 pressure sensor, mini air valve, mini
pump valve, and brachial cuff as shown in Figure 1.

The data acquisition method used consists of
taking a reference measurement with Omron’s
HEM-7600T [19] and then taking pressure
measurement samples with our mobile monitoring
unit. The sampling procedure is described below:

1. The subject is seated.

2. The brachial cuff was placed on the left arm, as
shown in Fig. 2.

3. The subject remained still during the inflation
and deflation of the brachial cuff.

4. The Raspberry Pi Zero recorded the pressure
values from 150 mmHg to 40 mmHg, i.e., until
the brachial cuff was considered deflated.

It should be noted that the pressure values
recorded from 150 mmHg to 40 mmHg are referred
to as the raw signal, which is referred to in the
next section. Finally, 65 samples were taken
from 44 subjects using the procedure described in
this section.

3.2 Proposed Algorithm

The proposed algorithm 1 for BP estimation
consists of a filtering step, calculating the envelope
of the signal, extracting the peaks, and applying a
linear operation.

The filtering step consists of a 0.5 Hz
Butterwoth-type high-pass filter to which the raw
signal is input to eliminate possible noise caused
by some external factor such as sudden movement
of the patient, resulting in the filtered signal # »xf .

Considering that BP fluctuates during different
phases of the cardiac cycle, which involves the
regular contraction and relaxation of the atria
and ventricles to circulate blood throughout the
body, it is important to note that diastole refers
to the relaxation phase and systole refers to the
contraction phase.

Therefore, the peak pressure value recorded
in the arteries during this cycle is known as the
systolic pressure, whereas the minimum value is
referred to as the diastolic pressure. Then the
amplitude of the signal recovered by the sensor
refers to the maximum pressure reached in the
artery during a complete cardiac cycle, while the
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phase is useful to identify specific events such as
the onset of systole or diastole, hence the benefit
of applying the Hilbert transform [27] to the filtered
signal # »xf :

xa = F−1(F (xf )2U) = xf + iy, (1)

where F is the Fourier transform, U the unit step
function, and y the Hilbert transform of xf .

This mathematical function 1 has multiple
applications, one of which is to obtain the
analytical signal that provides information about
the amplitude and phase of the frequency
components of the original signal.

The procedure for estimating SBP and DBP
differs in the last step of the slice to the traditional
MAA. The steps to obtain the SBP are described
below and in Equation 2:

Obtain a vector of maximum values from |xa|,
apply a dot product to the previous vector, and
square the above result, the value of the SBP
corresponds to the average of vmmax:

vmmax =
max(xa)

2

media(max(xa))
. (2)

For another hand, the steps to obtain the
DBP are as follows: compute the instantaneous
frequency, obtain a minimum values vector, obtain
the vector media, and subtract κ, with κ = 10+ # »xf ,
where f = argmax(xa) .

3.3 Testing and Validation

The validation process consisted of three phases:

1. The recorded data was validated using a
manometer in the monitoring unit to verify that
the stored pressure values were correct.

2. Reference data were recorded using the
commercial Omron device [19].

3. The algorithm was tested using the raw signals
recorded in 3.1.

The estimated BP values were compared
with the reference values to verify the
algorithm’s performance.

Table 2. Maximum, minimum and mean values of
validation data in mmHg

Max Min Mean
SBP 92 124 109
DBP 84 53 68.13

Table 3. Comparison of estimated pressure and the
reference values expressed in mmHg. Note: * reference
value measured with Omron device [19]

Parameter Avg Max Min

SBP* 109 124 92

DBP* 68.13 84 53

Estimated SBP 110.58 119.89 100.52

Estimated DBP 71.88 82.37 62.47

4 Experimental Results

This section presents the data used to validate the
performance of the proposed algorithm and the
results obtained.

4.1 Data Characteristics

The device described in Section 3.1 generated the
data used for this study.

Table 1 shows the general characteristics of the
data generated; 65 pressure samples and their
respective reference values were recorded from 44
healthy subjects (22 females, and 22 males).

Fig. 3 shows the distribution of the reference
values; the maximum, minimum and average
reference values are shown in 2. Measurement
acquisition involves controlling the inflation and
deflation of the branchial cuff.

The valuable features are found during the
deflation phase, Fig. 4 shows the set of values
from a recorded sample from the maximum peak
around 150 mmHg to above 50 mmHg.

Table 3 shows relatively similar average
pressure data for the measured and estimated
values. However, the estimated values have a
standard deviation of 5.78 and 5.86 for SBP and
DBP, respectively.
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Table 4. Error and variance between estimated and
reference values

Variance Abs. error Relative error
SBP 18.38 6.93 6.49
DBP 18.44 5.82 8.66

(a) Comparison of SBP measurement vs estimation

(b) Comparison of DBP measurement vs estimation.

Fig. 5. Comparison of reference measurements vs
estimation

4.2 Blood Pressure Estimation

The tables and figures presented in this section
result from the implementation of the algorithm
presented in Section 3. The algorithm was
implemented using Python 3.9 and the data was
filtered using scipy.signal.

Averages, maxima and minima were obtained
from the 65 samples described in the previous
section and their respective estimates using the
proposed algorithm.

Table 4 shows the average absolute and relative
error between the reference and estimated values,
where the estimation has a relative error of 8.66%

for DBP and 6.49% for SBP, with the higher error
trying to estimate de DBP, as it is shown in Fig. 5.
Bar graphs shown in Figures 5a and 5b show each
sample’s reference vs. estimated SBP and DBP.

The reference pressure is shown in blue,
while the estimated pressure is shown in green.
Note that the bars where the light green color
stands out correspond to an estimate above the
reference pressure.

On the other hand, bars, where the color is light
blue, indicate that the estimated value was below
the reference. In 72% of the cases, the estimate of
DBP was above the reference, which is reflected in
the errors shown in Table 4.

To evaluate the performance of the algorithm,
note the MAE and STD shown in Table 5. The MAE
helps to understand the discrepancy between the
values measured by the OMRON device and those
predicted by the proposed algorithm.

While the STD indicates the variance between
the MAE estimates, a high STD indicates a
substantial distance between the measurement
and the MAE. That is, the estimate has an error
that is significantly further from the actual value of
the reference. In this case, the algorithm obtained
an MAE and STD of 6.93± 4.42 and 5.82± 3.93 for
SBP and DBP, respectively.

5 Discussion and Future Work

In summary, this paper presents an algorithm
for BP estimation that has been tested on data
obtained from a vital signs monitoring unit with a
brachial cuff and a pressure sensor.

For the validation of the pressure estimates a
commercial device Omron HEM-7600T was used
as a reference and the results of both devices were
compared. The device used in this work has a
pressure sensor MP3V5050, but it does not have
an electronic module for amplification and filtering.

Therefore, the acquired data enter the algorithm
without previous preprocessing, which is
compensated by digital filtering. Considering
this fact, another device implementing the
algorithm proposed in this work could give
comparable results if it uses a sensor with analog
characteristics. Nevertheless, this will be the
subject of future work.
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Table 5. Comparison of results with cuff-based
proposals. NR indicates that the data was not reported
by the authors

Method
SBP DBP

MAE STD MAE STD
MS [16] 4.99 3.04 4.71 2.46

MAA [16] 4.69 3.70 4.31 3.48
MAA [24] 4.5 NR 8 NR
NN [24] 3 NR 5 NR

MAA [15] 4.5 NR 8 NR
Bagged Tree [1] 4.499 NR 13.069 NR

WKNN [1] 3.52 NR 11.077 NR
LSTM-RNN [3] 3.8 5.9 7.3 8.8

Ours 6.93 4.42 5.82 3.63

Since oscillometry is not a new concept, existing
methods for BP estimation were reviewed. Among
the more popular methods are the MAA and the
MS, which process data and estimate SBP and
DPB through maximum, minimum and average
signal values, and machine learning algorithms
such as neural networks were found.

However, this work led to an oscillometric
estimation method with the MAA improved with
some linear operations for BP estimation with the
selected device. Regarding the results presented
in Section 4.2, it is noticeable that the SBP
estimation has a higher error than the DBP
estimation. In accordance with the results reported
[20], MAE and STD are within the validation criteria
of BP devices.

However, it is essential to note that the works
reported in Table 5 do not provide a conclusive
verdict on the proposed algorithm’s performance,
as each uses different hardware platforms for data
acquisition on which the algorithms have been
validated or trained. In any case, they give an idea
of the performance and accuracy of the proposal
made in this paper.

6 Conclusion

This paper presents an algorithm for estimating
blood pressure. The paper describes the
methodology used for data acquisition, the
proposed algorithm, and the experimental results.

According to the OMS specifications, the results
show that the proposed algorithm is within the
validation criteria of BP devices, and they suggest
that the algorithm can be used as a support tool for
healthcare workers to estimate blood pressure.

However, some points were observed during the
experiments that need to be developed in future
work. At the time of development, the samples
were taken from people in good health, i.e. without
cardiovascular problems such as hypertension.

However, given that hypertension is a disease
that affects approximately 1280 million adults
worldwide, it is expected that the algorithm
can be validated later on a group of people
with this problem, to perform validation tests of
the algorithm on samples of different subjects
and considering samples of subjects with
cardiovascular problems such as hypertension,
thus confirming its correct functioning.
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