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Abstract. Machine Learning is being used worldwide in 
the deployment of API's (Application Programming 
Interface). The development of machine learning 
presents: techniques, algorithms, sequences, logic 
based on facts, and predictions of future errors in various 
processes of organizations such as the process of 
deployment of API's/functionalities/software. A 
systematic literature review (SLR) was conducted on 
machine learning for the process of API/functionality 
deployment/error detection. The search strategy 
identified 176378 papers in digital libraries such as: 
Scopus, ProQuest, ScienceDirect, IEEE Xplore, Taylor 
& Francis Online, Web of Science, Wiley Online Library 
and ACM Digital Library; which were filtered by exclusion 
and quality criteria obtaining as final result, for review 
and analysis, 85 papers. The results of the systematic 
review have focused on machine learning papers 
recently published in recent years regarding the 
deployment of API's, software, monitoring and control 
tools, error detection where machine learning offers 
alternatives to improve and be more efficient in those 
processes that fail regularly today. The RSL has allowed 
a broad view on the studies and findings presented in 
this study. 

Keywords. Artificial intelligence, machine learning, 
deployment, APIs, finance, systematic literature review. 

1 Introduction 

The detection of errors in the deployment 
processes either at the level of API's development, 
software using machine learning significantly 
reduces the implementation costs of these new 
requirements because their deployment dates 

would be prolonged by not being able to detect 
these errors in time.  

Machine learning is evolving over the years in 
the IT area, companies are successfully 
implementing its use in business processes that 
involve return on investment in the short term, it is 
currently used to detect errors in systems before 
they happen, its method of action is proactive and 
not reactive because it is based on concrete facts 
and depending on it makes an internal analysis 
and determines the best way forward, this guided 
not only by Artificial Intelligence but also by a 
analyst who validates the proper functioning of 
the implemented. 

To use machine learning it is first necessary to 
define whether it will be supervised or 
unsupervised [10, 5], once the type of machine 
learning to be used has been identified, it can be 
validated if a framework can be used or the 
development can be created from scratch, also the 
best known machine learning algorithms can be 
used such as linear regression [79], logistic 
regression [46, 57], decision tree [22, 23] among 
others, in order to meet the needs of what 
is presented.  

The main objective of this study is to identify the 
state of the art of machine learning and its impact 
on API/software deployment processes and early 
error detection. 

The paper is organized as follows. Section II 
presents the Background and related works, 
Section III details the Review Method, Section IV 
presents the Results and Discussion. 
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Finally, Section V presents the Conclusions and 
Future Research. 

2 Background and Related Work 

The advancement of new developments 
deployments, Internet of Things, big data and 
mobile computing with new technologies leads to 

the need for intelligent services that enable context 
awareness and adaptability to their changing 
contexts [97], offering products and services as in 
today's business world, providing reliable customer 
service is as important as offering better products 
to maintain a sustainable business model [87]. 

Data is the foundation of today's technologies 
and researchers, especially in machine learning 
and deep learning [92] require greater detail of the 

 

Fig. 1. RSL process proposed by Kitchenham 

Table 1. Research Questions and Objectives 

Research Question Objetive 

RQ1: What are the most widely used algorithms in 
Machine Learning research? 

Determine the most commonly used algorithms in 
Machine Learning research. 

RQ2: What are the Cooccurring Keywords in Machine 
Learning Research and their Impact on API Deployment? 

Identify and select the keywords that present 
Cooccurrence in Machine Learning research and their 
impact on API Deployment. 

RQ3: Which are the publications with the highest 
Objectivity in their Abstracts, by country, on Machine 
Learning and its impact on the Deployment of API's? 

To know the publications that present a greater 
Objectivity in their Abstracts, by country, on Machine 
Learning and its impact on the Deployment of API's. 

RQ4: Which types of Machine Learning are most 
commonly used in experimental research? 

Identify which types of Machine Learning are most 
commonly used in experimental research. 

RQ5: What are the named entities (NERs): people, 
organizations, places, time expressions and quantities 
that are most frequently presented in Machine Learning 
Research Abstracts and their impact on API Deployment? 

Determine the named entities (NERs): people, 
organizations, places, time expressions, and quantities 
that occur most frequently in Machine Learning 
Research Abstracts and their impact on API 
Deployment. 

RQ6: What are the most used and relevant Machine 
Learning keywords and their impact on API Deployment? 

Identify the most used and relevant Machine Learning 
keywords and their impact on API Deployment. 
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data. Security in data processing must give 
confidence to users so that they can interact with 
the various applications coming out of the 
emerging technology market, as well as machine 
learning [94] can detect anomalous user activities 
by analyzing sequences of user session data [89]. 
In financial institutions the problem in detecting 
online credit card fraud in e-commerce systems. 

It has always been a concern that poses a 
major challenge for financial institutions and online 
merchants regarding financial losses [88], before 
these problems arise various solutions including 
the power to implement machine learning in their 
processes that have more risk to mitigate and 
reduce these threats in a short time, having real 
time information helps to identify in less time the 
existing threat, this in turn leads to the 
customization of products, services, provided to 
customers, to meet their needs, this has become a 
strategy to increase the added value of companies. 

This study identifies a process within an 
organization that is deficient and how machine 
learning can help improve that process. 

In this systematic review, information was 
collected to show the implications of the 
implementation of machine learning in 
organizations, as an improvement, in turn prevents 
possible errors by detecting them in time, 
depending on the configuration you have. 

Likewise this review aims to provide the first 
literature review on the deployment of 
API's/software, error detection using Machine 
Learning, therefore to address the gap in the 
literature were used RQ's (Research Questions) 
on NER (named entity recognition) as people, 
organizations, locations, expressions of time and 
quantities that are most frequently presented in the 
abstracts, discussions and conclusions of the 
research, likewise it is considered important to 
mention that there are papers whose abstracts, 
discussions and conclusions are characterized by 
their high objectivity and low polarity on Machine 
Learning in the deployment of API's, software, 
error detection. 

The research has been supported by 
technological tools such as Mendeley bibliographic 
manager and the Artificial Intelligence (RAj) 
technological tool authored by Dr. Javier Gamboa 
Cruzado, which was used to process the 
collected data. 

3 Review Method 

The present research was conducted by adopting 
the systematic review approach defined by 
Kitchenham [86], where the literature is collected 
and analyzed. 

According to the study guidelines, it consists of 
3 main phases: planning, conducting and 
documenting the review. The phases are shown in 
Figure 1 below. 

Table 2. Search Descriptors and their Synonyms 

Descriptor Description 

Machine learning 

Independent Variable Artificial intelligence 

Deep learning 

API Development 
Dependent Variable 

Deployment 

 

Fig. 3. PRISMA Flow Diagram 
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3.1 Research Problems and Objectives 

In conducting a systematic literature review, the 
research questions assist in the search, extraction 
and analysis of data, as shown in Table 1 below. 

3.2 Information Sources and Search Strategies  

The libraries that were used to search for the 
required research papers are: Scopus, Web of 
Science, IEEE Xplore, ACM Digital Library, 
ProQuest, ScienceDirect, Taylor & Francis Online, 
and Wiley Online Library. The search strategy 
included searching for keywords relevant to the 
study (see Table 2). 

The search procedure was carried out using 
search equations for the study, as shown in 
Table  3. 

3.3 Identified Studies 

At the end of the search for papers, the quantities 
shown in Figure 2 are obtained. 

3.4 Exclusion Criteria 

The Exclusion Criteria (EC) have been defined to 
accurately assess the quality of the literature. The 
papers that were formulated and used are: 

EC1: The papers are older than 5 years. 

EC2: The papers are not written in English. 

EC3: The keywords of the papers are not 
very appropriate. 

EC4: The papers were not published in journals 
or congresses. 

EC5: The abstract of the papers is not 
very relevant. 

EC6: The full text of the paper is not available. 

EC7: The papers are repeated. 

3.5 Study Selection 

Originally 176378 papers were obtained based on 
the search performed using the keywords relevant 
to the study. 

 

Fig. 2. Number of Papers in Relevant Sources 

Table 3. Information sources and search equation 

Source Search equation 

Scopus 

(ALL ( ( "machine learning" OR 
"artificial intelligence" OR "deep 
learning" ) ) AND ALL ( ( "Api 
development" OR deployment ) ) ) 

Web of 
Science 

("machine learning" OR "artificial 
intelligence" OR "deep learning") (All 
Fields) AND ("Api development" OR 
deployment) (All Fields) 

IEEE 
Xplore 

("All Metadata":"machine learning" OR 
"All Metadata":"artificial intelligence" 
OR "All Metadata":"deep learning") 
AND ("All Metadata":"Api development" 
OR "All Metadata":deployment) 

ACM 
Digital 
Library 

[[All: "machine learning"] OR [All: 
"artificial intelligence"] OR [All: "deep 
learning"]] AND [[All: "api 
development"] OR [All: deployment]] 

ProQuest 

("machine learning" OR "artificial 
intelligence" OR "deep learning") AND 
("Api development" OR deployment) 

ScienceDir
ect 

("machine learning" OR "artificial 
intelligence") AND ("Api development" 
OR deployment) 

Taylor & 
Francis 
Online 

[[All: "machine learning"] OR 
[All: "artificial intelligence"] OR 
[All: "deep learning"]] AND [[All: "api 
development"] OR [All: deployment]] 

Wiley 
Online 
Library 

"("machine learning" OR "artificial 
intelligence" OR "deep learning")" 
anywhere and "(“Api development” OR 
deployment)" anywhere 
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The selection and filtering steps used were 
as follows: 

Step 1: Apply exclusion criteria to obtain only 
the most relevant ones. 

Step 2: Apply quality assessment to include 
papers that give the best answers to the research 
questions posed. 

The final result of applying the steps described 
above is 85 papers, as shown in Figure 3. 

3.6 Quality Assessment 

The quality rules helped to obtain a list of more 
specific results in the papers included for review. 
The quality criteria (QA's) that were formulated to 
evaluate the quality of the papers are: 

QA1: Is the purpose of the research clearly 
explained? 

QA2: Are the research findings detailed? 

QA3: Is there a possibility to consult 
the researchers? 

QA4: Is the research conducted in 
financial institutions? 

QA5: Does the research detail unit tests? 

QA6: Was the research conducted during 
the pandemic? 

QA7: Does the investigator have a 
postgraduate degree? 

During this stage, the quality of the research 
submitted by the 85 studies that had met the 
exclusion criteria was assessed. The investigators 
jointly conducted an analysis of the papers and 
applied each of the criteria to assess the quality of 
the papers. The primary studies evaluated met 
each of the QA's. 

 

Fig. 4. Managing papers with Mendeley 

 

Fig. 5. Distribution of published papers by Year 

 

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1107–1124
doi: 10.13053/CyS-27-4-4371

Systematic Literature Review on Machine Learning and its Impact on APIs Deployment 1111

ISSN 2007-9737



3.7 Data Extraction Strategies 

The final list of papers was used at this stage to 
extract the information needed to answer the set of 
research questions. 

The information extracted from each paper 
included the following fields: paper ID and title, url, 
source, year, country, number of pages, authors, 
affiliation, number of citations, abstract, keywords, 
and sample size. 

Not all the papers helped to answer all the 
research questions. Mendeley was used to 
perform the data extraction as shown in Figure 4. 

3.8 Synthesis of Findings 

The information extracted for research questions 
RQ1-RQ6 are presented as qualitative and 
quantitative data to perform a descriptive and 
inferential statistical analysis to obtain the research 
answers; on the other hand, the development or 
analysis of the statistics obtained allowed the 
finding of certain research patterns occurred during 
the last 5 years (2017-2021). 

4 Results and Discussion 

In this section, it is expected to address the key 
findings obtained through the systematic review of 
the literature, as well as an interpretative 
discussion on these findings in the context of the 
impact of machine learning on the implementation 
of APIs. Here is a general breakdown of what could 
be included in this section: 

4.1 General Description of the Studies 

The paper selection process resulted in a total of 
85 papers, these were selected for data extraction 
and analysis. Figure 5 shows the chronological 
distribution of published studies from 2017 to 2022. 

The graph represents the evolution when 
applying Machine Learning for processes involving 
deployments in both productive and pre-productive 
environments independent of the organization and 
how this technology has been growing in the 
IT domain. 

According to author Yildiz [91] the most 
profitable year for Machine Learning publications 
in the current field, especially with the internet of 
things and new technologies emerging, was 2018 
with a total of 2071 publications. 

According to the authors Chai et al. [92], the 
year that could be leveraged the most in terms of 

 

Fig. 6. Quantity of papers on Machine Learning 
Deployment in the last 5 years by Country 

 

Fig. 7. Number of papers on Machine Learning by 
Source of Information 

 

Fig. 8. Keywords with Cooccurrences in Machine 
Learning Research 
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machine learning papers on application 
development scenarios was 2020. 

As time and technology progresses each year 
has significantly increased the productivity of 
papers regarding Machine Learning. 

Figure 6 shows that the United States 
contributed the most papers on Machine Learning 
with respect to the set of questions of the present 
research, US contributed 20 papers followed by 
China with 12 papers. 

According to the authors Salod and Singh [93] 
identified the US as the country that has published 
the most on Machine Learning in prediction 
processes in the last 5 years with 803 papers, 
followed by China with 394, UK with 209, Canada 
with 169 and Germany with 147. 

Likewise, the authors Akbari and Do [94] 
validate that the US is the country that has 
published the most on Machine Learning in the last 

decade on logistics process improvement, followed 
by Hong Kong, UK and Germany. 

Figure 7 below shows the distribution of the 
sources that published the most papers on 
machine learning as a result of the search 
performed with the equations used. 

As can be seen, Wiley Online Library is the 
bibliographic source that has made the greatest 
contribution to this research with 22.4% of the 
papers, followed by ACM Digital Library with 
15.3%, Taylor and Francis Online with 15.3%, 
Scienci Direct with 14.1%, Web of Science with 
11.8%, Scopus with 10.6%, Proquest with 9.4% 
and finally IEEE Xplore with 1.1% of the 
papers, respectively. 

The authors Nair et al. [95] consider Scopus as 
one of the largest databases for searching papers 
as they have papers whose publishers are 
internationally renowned. 

Table 4. Number of papers per publication and year 

Name of Publication 20
17

 

20
18

 

20
19

 

20
20

 

20
21

 

20
22

 

T
o

ta
l 

IET Software  3 6 3 7  19 

Journal of Information and 
Telecommunication 

 2 4 1 6  13 

Proceedings of the ACM on Programming 
Languages 

  3 5 5  13 

Machine Learning with Applications     12  12 

IEEE Transactions on Industrial 
Informatics 

 1  1 1  3 

Sensors     3  3 

Cybersecurity     2  2 

IEEE Transactions on Control of Network 
Systems 

1  1    2 

Advanced Intelligent Systems     1  1 

Computer Speech and Language      1 1 

Control Engineering Practice    1   1 

Electronic Markets     1  1 

Electronics     1  1 

Eurasip Journal on Wireless 
Communications and N… 

    1  1 

Frontiers in Neuroscience     1  1 

IEEE Transactions on Automation 
Science and Engineering 

   1   1 

IEEE Transactions on Cybernetics    1   1 

…       … 

Total 1 6 14 18 44 2 85 
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Likewise, the authors Huang et al [96] use Web 
of Science as a bibliometric source; they consider 
this source for its quality of published papers 
because it helped them in their research. 

Table 4 shows the number of papers by 
publication name (Journal or Congress) and by 
year in ascending order, detailing the number of 
research papers on Machine Learning from 2017 
to 2022. 

IET Software leads with 19 papers, followed by 
Journal of Information and Telecommunication 
with 13 papers and Proceedings of the ACM on 
Programming Languages; Machine learning with 
Applications with 12 papers, IEEE Transactions on 
Control of Network Systems and Sensors with 3. 

The authors Kousis and Tjortjis [97] mention 
that the publication media where Machine Learning 
publications were made, elaborated a ranking 
where IEEE Access leads followed by Sensors in 
second place, and Sustainable Cities and Society 
and Wiley Disciplinary Reviews are in the 
last positions. 

Likewise, the authors [96] detail that the 
publication media that most helped their paper on 
Machine Learning in improving implementation in 
a pre-production environment was the 
International Journal of Production Research 
followed by Expert Systems with Applications. 

4.2 Answers to the Research Questions 

In this section, clear and well-founded answers to 
the posed research questions are provided. This 
segment is crucial for demonstrating how the 
carried-out research has addressed the 
proposed questions. 

Principio del formulario. 

RQ1: What are the most widely used algorithms in 
Machine Learning research? 

According to the results of the literature review, 
Table 5 shows the most used algorithms on 
machine learning, highlighting Decision tree with 

Table 5. Most used algorithms using machine learning 

Algorithm Reference 
Qty. 
(%) 

Linear regression [10] [23] [26] [29] [69] [70] 6 
(7.5) 

Logistic regression [2] [10] [22] [23] [24] [25] [26] [27] [29] [46] [57] [66] [70] [84] 14 
(17.5) 

Decision tree [1] [10] [22] [23][26] [28] [29] [30] [33] [36] [55] [66] [70] [78] [79] 
[80] [84] 

17 
(21.25) 

SVM [7] [10] [79] 3 
(3.75) 

Naive Bayes  [33] 1 
(1) 

KNN  [79] 1 
(1) 

K-means [4] [11] [12] [22] [28] [29] [33] [36] [53] [66] [68] 77] [78] [79] [83] 
[84] 

16 
(20) 

Random forest  [27] 1 
(1) 

Dimensionality reduction  [3] [24] [29] [30] [33] [36] [57] [75] [77] [84] [85] 11 
(13.75) 

Gradient boosting  [10] [23] [26] [27] [28] [29] [30] [47] [69] [79] 10 
(12.5) 
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17 papers, followed by K-means with 16 papers, 
Logistic regression with 14 papers, Gradient 
Boosting with 10 papers. The other algorithms are 
also used but in a lower percentage. 

According to the authors Udayakumar et al. 
[98], the algorithm that gave them the highest 

accuracy in their research results was the SVM 
with 86.80% and the least accurate was the 
Randon Forest. 

RQ2: What are the Cooccurring Keywords in 
Machine Learning Research and their 
Impact on API Deployment? 

 

Fig. 9. Objectivity in the Abstracts of papers by Country 

 

Fig. 10. Type and number of NERs in Abstracts 

 

Fig. 11. Type of NER's in Abstracts of papers by Source 
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According to the results of the literature review, 
the keywords such as "artificial intelligence", 
"machine learning", "internet of things" and 
"industry 4.0" are the ones that presented 3 
concurrences each. (See Figure 8). 

Keywords such as "artificial intelligence", 
"machine learning", "internet of things" and 
"industry 4.0" presented higher co-occurrences in 
the papers, but keywords such as "deep learning", 
"data mining", "finance", "digital financial", 
"systematic testing", "reiforcement learning" and 
"robotics" had 2 co-occurrences. 

Authors Monteiro and Barata [99] detail that the 
keywords most commonly used to obtain papers 
on Machine Learning are: "artificial intelligence", 

"machine learning", "deep learning", and 
"neural networks". 

RQ3: Which are the publications with the highest 
Objectivity in their Abstracts, by country, on 
Machine Learning and its impact on the 
Deployment of API's? 

According to the results of the literature review, 
Figure 9 shows the United States (US) and China 
as the countries with the highest objectivity in the 
abstracts of their papers which shows that it is in 
line with their technological advancement over the 
other countries; this study was conducted between 
the year 2017 to 2022. 

Table 6. Most used types of machine learning 

Types of Machine Learning 
Reference 

Cant. 
(%) 

Supervised Learning [5] [10] [22] [24] [29] [30] [31] [32] [33] [36] [40] [47] [54] 
[58] [62] [66] [70] [71] [75] [77] [79] [78] [80] [84] 

24 

(62) 

Unsupervised Learning [5] [22] [24] [29] [40] [57] [62] [63] [66] [68] [70] [78] [79] 
[80] [82] 

15 

(38) 

 

Fig. 12. Number of NERs in abstracts of papers per year 

 

Fig. 13. Most used keywords for the search of solutions with Machine Learning 
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The authors Rejeb et al. [87] detail that the 
country that published the most on Machine 
Learning with respect to API, software, error 
detection deployments in the last 4 years was the 
US with 29% followed by China with 10% leaving 
Switzerland and Finland with a 2% share. 

RQ4: Which types of Machine Learning are most 
commonly used in experimental research? 

According to the results of the literature review, 
Table 6 shows the most used machine 
learning algorithms. 

The most commonly used type of machine 
learning is Supervised Learning, according to 
Sharifi et al. [90] implemented in their paper on 
Signal Detection Robot with constrained 
computational resources. 

RQ5: What are the Named Entities (NER): people, 
organizations, places, time expressions and 
quantities that are most frequently 
presented in Machine Learning Research 
Abstracts and their impact on 
API Deployment? 

After performing a detailed analysis of the 
abstracts of the papers reviewed, using natural 
language processing (NLP) techniques, a series of 
NERs were obtained. The most frequent ones are 
shown in Figure 10. 

According to the results of the literature review, 
the Organization type NERs were found very 
frequently in the abstracts of the papers with 54%, 
the Location type with 21%, the Percentage type 
with 18%, the Date type with 11.3% and the Person 
type with 8% of the total percentage. 

It is considered necessary to emphasize that 
the answer to this type of question cannot be 
compared with other papers since it is considered 
unique, this in order to be able to contribute to the 
research on Machine Learning so that it can be 
used as a reference in future papers. 

On the other hand, Figure 11 shows the NERs 
that were identified in the paper abstracts. They 
are shown ordered by bibliographic source, and 
the bibliographic source whose papers have the 
most NERs is Wiley Online Library, followed by 
Scopus. IEEE Xplore is the source with the fewest 
NERs in the abstracts of its publications. 

Finally, Figure 12 shows that in the years 2020 
and 2021 the NERs of type Organization were 
presented more frequently in 21 and 40 abstracts 
of their papers respectively. 

RQ6: What are the most used and relevant 
Machine Learning keywords and their 
impact on API Deployment? 

According to the results of the literature review, 
Figure 13 shows the main keywords used in the 
research on machine learning solutions and their 
impact on API Deployment. To detail this, Figure 
14 shows the number of keyword repetitions. 

In the authors' paper Hasan et al. [100] include 
the keywords such as "machine learning", "big data 
analytics", "predictive analytics" among others. 

Also [94] state that the most used keywords in 
their research were "machine learning", "artificial 
intelligence", "logistic", among others. 

After the analysis of these 2 randomly selected 
systematic literature review papers, it is observed 
that the most repeated keyword is "machine 
learning" and "artificial intelligence" and it is found 
within the evaluation carried out. 

 

Fig. 14. Number of most used keyword repetitions 
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5 Conclusions and Future Research 

In conclusion, this study applies systematic 
literature review (SRL), which is an iterative 
process that combines the existing literature on a 
specific topic. 

The objective was to address the issues by 
identifying, critically evaluating, and integrating the 
findings of all relevant individual high-quality 
studies that address one or more 
research questions. 

This review has determined how far current 
studies on the use of machine learning have 
progressed in organizations that have successfully 
implemented it. It has also helped to formulate 
general statements, develop theoretical and 
practical implications, and make suggestions for 
future research. 

We have answered, in detail, each of the RQs 
formulated, based on a thorough review of the 96 
papers selected, discussed gaps and future 
directions. This review has some limitations that 
future research can address as it has a time limit 
for the papers that were reviewed from 2017 
to 2021. 

Therefore, future research should consider 
more recent publications to keep up with new 
technologies, methods, algorithms, and 
frameworks that may come out for machine 
learning in the future. 
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