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Abstract. Image-Based Flow Cytometry (IBFC) is a
potent tool for the detailed analysis and quantification
of cells in intricate samples, facilitating a comprehensive
understanding of biological processes. This study
leverages the ResNet50 model to address IBFC’s
object-defocusing issue, an inherent challenge when
imaging a 3D object with stationary optics. A dataset
of 604 mouse sperm IBFC images (both bright field and
fluorescence) underpins the exceptional capability of the
ResNet50 model to reliably identify optimally focused
images of the sperm head and flagella (F1-Score of
0.99). A U-Net model was subsequently employed to
accurately segment the sperm head and flagellum in
images selected by ResNet50. Notably, the flagellum
presents a significant challenge due to its sub-diffraction
transversal dimensions of 0.4 to 1 micrometers, resulting
in minimal light intensity gradients. The U-Net model,
however, demonstrates exceptional efficacy in precisely
segmenting the flagellum and head (dice = 0.81). The
combined ResNet50/U-Net approach offers significant
promise for enhancing the efficiency and reliability of
sperm analysis via IBFC, and could potentially drive
advancements in reproductive research and clinical
applications. Additionally, these innovative strategies

may be adaptable to the analysis of other cell types.

Keywords. Deep learning, sperm, segmentation,
classification, image-based flow cytometry.

1 Introduction

1.1 Image-Based Flow Cytometry in
Sperm Analysis

Image-Based Flow Cytometry (IBFC) allows for
quantitative exploration of cellular and subcellular
characteristics such as morphology, protein
distribution, and organelle localization [5].

These capabilities facilitate investigations into
diverse processes like cell differentiation, cell-cell
interactions, and disease-related alterations
[2]. IBFC amalgamates flow cytometry, optical
microscopy, and computational analysis [7].

Its capacity to rapidly capture thousands
of images, positions it as an instrumental
tool for uncovering and comprehending complex
biological phenomena.
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In the analysis of spermatozoa, there is a
growing demand for IBFC due to its versatility
in conducting multiparametric studies on various
conditions and capturing the inherent population
heterogeneity of these gametes.

This has significant implications in reproductive
biology, medicine, as well as in agriculture and
fisheries [6]. However, a limitation inherent to
IBFC is its use of stationary optics to image
tridimensional pseudo-stationary objects, resulting
in a collection of images ranging from sharply
focused to blurred (out-of-focus) [7].

A sharply focused sperm image, which we will
refer to as the focused image for the rest of the
paper, corresponds to an image where the sperm
head and flagellum are clearly visualized. This
focused image was obtained when the sperm is
exactly in the focal plane of the objective lens [22].

On the other hand, if the sperm strays
from the focal plane, which we will refer to
as the out-of-focus image for the rest of the
paper, a defocused or blurred sperm image
forms. Analyzing an out-of-focus image may
result in misinterpretations of the actual size,
morphology, or intensity properties of the observed
specimens [22].

1.2 Deep Learning Network

Deep learning is a subfield of machine learning
that utilizes artificial neural networks [23] as
a foundation to extract information and make
predictions from data.

It has emerged as the leading approach for
tasks like image classification and segmentation
[11] and has demonstrated impressive outcomes
across various domains, including sperm images.

In our study, we specifically investigated two
networks: the ResNet50 for classification and the
U-Net for segmentation of multi-channel images.

ResNet50, introduced by He et al. [9] in 2015,
derives its name from ”Residual Network” due to its
innovative residual block, which sets it apart from
conventional neural networks.

While traditional networks stack layers
sequentially, ResNet50 incorporates residual
connections that enable information to bypass
specific layers, resulting in a more direct flow

of information. This innovative structure tackles
the problem of vanishing gradients, allowing for
training with increased depth without suffering
from performance degradation.

The ResNet50 architecture consists of 50 layers,
including convolutional layers, pooling layers,
and fully connected layers. As input data
progresses through these layers, convolution and
pooling operations are applied to extract significant
features from the image. These features are then
combined and utilized for classification.

ResNet50 has demonstrated outstanding
performance in numerous classification tasks
(Hossain et al. [10], Alnuain et al. [3], Anand et
al. [4]), establishing new benchmarks in accuracy
and robustness.

The U-Net2D architecture, introduced by
Ronneberger et al. [19] in 2015, has a U-shaped
architecture, consisting of an encoding stage
and a decoding stage. In the encoding stage,
convolutional and pooling layers are employed to
extract meaningful features from the input image.

As the layers go deeper, the receptive field
expands due to the pooling layers, enabling
the capture of details at different scales. The
decoding stage is responsible for reconstructing
the segmented image, by using feature maps from
the encoding stage, transpose convolution and
concatenation operations.

This design allows the network to preserve
both rich contextual information and fine details
simultaneously. Moreover, U-Net2D incorporates
skip connections between the layers of the
encoding stage and their corresponding layers in
the decoding stage.

These connections facilitate the direct
propagation of high-level information throughout
the network, aiding in the preservation and
combination of features from different hierarchy
levels. The U-Net2D architecture has been widely
applied in various domains (Punn et al. [17]), and
has proven to be a powerful and efficient choice
for accurately segmenting structures in images.
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1.3 Previous Work

Matamoros-Volante et al. [13] introduced a
semi-automated analysis method that employed
the Image-Based Focusing Criterion (IBFC) to
investigate human sperm physiology.

The method utilized the IDEAS software
(proprietary analysis software provided with the
Amnis cytometry microscope) to detect focused
images and generate a mask covering the head
and flagellum, enabling statistical analysis and
precise subcellular localization of labeling.

To identify the focused images, the method
relied on the Gradient Root Mean Square (RMS),
calculated by averaging the gradient normalized for
intensity variations (Peli et al. [16]).

A threshold value of 62 was applied to the RMS
to select focused images. However, a significant
limitation of this methodology is its dependence
on the threshold value, which can result in the
incorrect inclusion of out-of-focus images.

Additionally, relying solely on the RMS value may
not provide sufficient robustness, as out-of-focus
images can still exhibit large RMS values.

Furthermore, the segmentation mask obtained
through the IDEAS software may detect
out-of-focus areas of the flagellum, which can
potentially impact the biological results.

Recognizing the need for a more comprehensive
approach to accurately detect focused images and
segment the sperm head and flagellum, especially
in sperm cells with diverse morphological features,
our attention turned to the realm of deep
learning methods.

In the realm of deep learning applied to sperm
classification and segmentation, Fraczek et al.
[8] proposed the utilization of Mask R-CNN for
automated segmentation of the sperm head and
flagellum from single-channel images. However,
their results encountered difficulties in accurately
segmenting the flagellum, achieving only a Mean
Average Precision of 50% for the tail.

In another study by Movahed et al. [14],
the segmentation problem was addressed through
image pre-processing to enhance quality. They
employed two independent CNN models optimized
for head and flagellum segmentation, respectively.

Their experiments demonstrated that
CNN-based models outperformed traditional
segmentation algorithms such as SVM, Random
Forest, Naive Bayer, Decision Trees, and KNN.

However, it’s worth noting that their training
dataset consisted of only 20 images, each
containing many sperm.

Additionally, Marin et al. [12] compared the
performance of U-Net and Mask R-CNN for head
segmentation in a dataset comprising 19 images
with a total of 210 sperm cells.

They evaluated two different categories for head
segmentation: nucleus and acrosome. Their
findings indicated that U-Net outperformed Mask
R-CNN in this specific task, although the authors
did not address the segmentation of the flagellum.

Regarding the classification of sperm images, to
the best of our knowledge, there are no previous
works on the use of deep learning for detecting
focused images.

However, Riordon [18] proposed the use of
the VGG16 network to identify different types
of head shapes (normal, tapered, pyriform, and
amorphous), achieving a true positive rate of 94%.

On the other hand, Spencer [20] employed
an ensemble of deep learning networks (VGG16,
VGG19, ResNet-34, and DenseNet-161) to classify
the aforementioned head shapes, achieving
F1-scores of 98.2 and 68.3 for the HuSHeM and
SCIAN-MorphoSpermGS datasets, respectively.

For a comprehensive review of different
techniques for classification and segmentation,
refer to Suleman [21]. This research addresses
the challenges of detecting focused images and
accurately segmenting the sperm head and
flagellum using deep learning.

Our solution involves two key steps. Firstly, we
utilize a ResNet50 convolutional neural network to
classify images as suitable for analysis (focused
images), filtering out irrelevant ones.

Secondly, we employ a second CNN, U-Net
2D, to automatically segment the sperm structures
(head and midpiece) in the selected images. This
comprehensive approach enhances the efficiency
and accuracy of sperm analysis.
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2 Materials and Methods

Figure 1 provides a visual representation
illustrating the main steps of the proposed
methodology used for IBFC analysis. In the
first step (Fig. 1 - Imaging), mouse sperm were
obtained from the epididymis of 3 months old WT
CD1 male mice according to Oliver et al. [15].

Images were acquired using flow-cytometry
microscopy (Amnis® ImageStream®X Mk II
imaging flow cytometer). In the second step
(Fig. 1 - Dataset), the acquired images were
categorized into two sets: focused images and
out-of-focus images.

Additionally, a third set of images was created
by manually segmenting the head and midpiece
from the focused images. Finally, in the third step,
the focused and out-of-focus images were used
to train a ResNet 50 model, while the focused
images with manual annotations were used to train
a U-Net model.

This methodology enables the automatic
analysis of IBFC images (Fig. 1 - Automatic
Analysis). The trained ResNet model was
applied to the image, and if the output suggests
an out-of-focus image, the method rejects the
analysis. Otherwise, if the image corresponds to a
focused image, it is automatically segmented into
midpiece and head regions using an U-Net model.

2.1 Imaging

Under the supervision of the Bioethics
Committee at the Institute of Biotechnology,
UNAM, spermatozoa were collected from the
epididymis of 3-month-old WT male mice. The
motile cell population was isolated using a
swim-up separation technique and subsequently
concentrated by centrifugation at 3000 rpm for
3 minutes.

Prior to image cytometry analysis, the cells
were incubated on ice and stained with fluorescent
probes: FM4-64 (500 nM) to label the membrane
and Sytox blue (1 µM) to assess population
viability. The suspended samples were prepared
using a non-capacitating medium consisting of
PBS (NaCl 137 mM, KCl 2.7 mM, Na2HPO4 10
mM, KH2PO4 1.8 mM).

Image acquisition was performed using the
Amnis® ImageStream®X Mk II imaging flow
cytometer, using the brightfield and fluorescence
acquisition modalities, 405 nm and 561 nm lasers,
a 60x objective, and a numerical aperture (NA) of
0.9. Images were captured over a period of 30
minutes, resulting in a total of over 100,000 images
per experiment.

2.2 Manual Annotated Dataset

2.2.1 Dataset

Utilizing a methodology similar to that of
Matamoros-Volante et al. [13], we employed
the Root Mean Square (RMS) technique to
generate two distinct sets of images: focused and
out-of-focus.

This classification was based on the
fluorescence signals of Sytox Blue and FM4-64
and may contain errors. To further refine the size
of these image sets, we identified a subpopulation
characterized by high FM4-64 fluorescence
(indicating focused images) and low Sytox
fluorescence (indicating out-of-focus images).

Finally, An experienced biologist manually
selected a total of 297 focused images and 307
out-of-focus images from this refined selection
process. Figure 2 visually illustrates examples of
both focused and out-of-focus images.

2.2.2 Segmentation Dataset

We manually annotated the flagellum’s midpiece
and head of 294 focused images of mouse sperm
in order to construct a ground-truth image dataset
for segmentation.

The ImageJ software [1] was used to generate
this dataset. For the midpiece annotation,
we utilized the fluorescence channel and the
”Segmented Line” option from the FIJI line
selection tool. With a line width of 6, we carefully
traced a line along the centerline of the flagellum,
covering both its width and length.

This process resulted in a new image of the
same size as the original, where the midpiece of
the flagellum was clearly marked. Similarly, for the
head masks, we used the brightfield channel and
traced a line using the ”Segmented Line” selection
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Fig. 1. Schematic representation of our proposed approach for IBFC analysis. Imaging: Sperm were obtained from
the mouse epididymis and labeled using Sytox blue and FM4-64. Then, the AMNIS cytometer allowed us to obtain
thousands of mouse sperm images. Dataset: Out-of-focus and focused images were manually selected from the
thousands of images, along with manually annotated focused images. Training: This dataset was used to train ResNet50
for classification and the U-Net model for segmentation. Automatic Analysis: The trained models enable automatic
IBFC analysis

tool with a width of one, accurately following the
boundary of the head to create a closed region.
The selection was then converted into a mask
and filled using Fiji options. To provide a visual
representation of the manually annotated images,
please refer to Figure 3.

2.3 Image Pre-Processing for Deep Learning

Sperm flow cytometry images can have varying
intensity values across different samples,
occasionally containing outliers with extremely
high or low intensities.

These outliers have the potential to impact
the performance of deep learning algorithms.
To address this, a preprocessing step was
employed to ensure consistent and reliable
intensity values.

In this step, we determine the low and high
percentiles of intensity values. Specifically, we
identify the values corresponding to the 1st and
99th percentiles.

Any intensity value below the low percentile
is assigned the lowest value, while any value
exceeding the high percentile is assigned the
highest value. To further enhance comparability
and consistency, the intensity values are then
normalized to a standardized range of [0, 1].

In this normalization process, the low percentile
value is mapped to 0, while the high percentile
value is mapped to 1.

This ensures that all intensity values fall within
the specified range, enabling easier comparison
and analysis. Importantly, this preprocessing step
was performed independently for each individual
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Fig. 2. A visual depiction of three samples representing focused images (2 channels, gray and red) from class
1, accompanied by three samples depicting out-of-focus images from class 2. The first channel (gray) represents
bright-field, while the second channel (red) represents fluorescence

image and channel, allowing for the adaptability to
variations within the dataset and ensuring accurate
normalization of intensity values.

2.4 Training

2.4.1 Default Parameters

Training deep learning models (ResNet50 and
U-Net 2D) was performed on a laptop equipped
with an Nvidia GeForce GTX 1650 graphics card,
which had 4 GB of memory available. The default
parameters to train the networks were Adam
optimizer with an initial learning rate of 0.001 and
using betas set to (0.9, 0.999).

To ensure efficient training, a learning rate
reduction strategy was implemented by decreasing
the learning rate by a factor of 10 when there
was no improvement in the loss function (reduction
on plateau).

The loss function utilized was the sum of
cross-entropy loss and dice loss. The dataset was
randomly divided into training, validation, and test
sets, with proportions of 80%, 10%, and 10% of the
total dataset, respectively.

The batch size and number of epochs were
the only parameters that varied depending on the
specific task. It is important to note that all the
models were trained from scratch. Finally, we
utilized the PyTorch framework to train the deep
learning models.

2.4.2 Classification Deep Learning Model

For the classification task, we utilized the
classification dataset mentioned in the previous
subsection, comprising 297 focused images and
307 out-of-focus images. Since the images in
the dataset had different sizes, we standardized
them by resizing each image to a fixed shape of

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1133–1145
doi: 10.13053/CyS-27-4-4772

Paúl Hernández-Herrera, Victor Abonza, Jair Sánchez-Contreras, et al.1138

ISSN 2007-9737



Fig. 3. Top row depicts input images, consisting of two channels. The first channel (red) represents bright-field, while
the second channel (green) represents fluorescence. Bottom row depicts the corresponding target (ground-truth) image,
also a two-channel image, with the first channel indicating head segmentation and the second channel representing the
flagellum

(224, 224). To train the ResNet50 model, we used
the default parameters, a batch size of 32, and
conducted training for 50 epochs. The ResNet50
model was loaded from the torchvision library, the
code used to train the network and predict images
can be accessed from our GitHub repository at1.

2.4.3 Segmentation Deep Learning Model

For the segmentation task, we utilized the
segmentation dataset discussed in the previous
subsection, which included 294 sperm images.
The target images correspond to the manual
annotations of the flagellum and head.

The U-Net model was trained with default
parameters, a batch size of 8, and trained for 100
epochs. The dataset was divided into 236 training
images, 29 validation images, and 29 test images.

1github.com/paul-hernandez-herrera/image classification p
ytorch

To generate the U-Net model, custom functions
were used, and the code for training the network
and predicting images can be accessed from our
GitHub repository at2.

2.5 Evaluation Metrics

2.5.1 Classification Performance

To evaluate the performance of the ResNet50
network in a quantitative manner, we use the
F1 score. The F1 score is calculated using the
following formula:

F1 score =
2 TP

2 TP + FP + FN
. (1)

In this formula, TP refers to the true positives,
which are the number of images correctly
predicted by the model as belonging to the class
focused image.

2github.com/paul-hernandez-herrera/unet pytorch 2d
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Table 1. Performance result of ResNet50 in 60 test images using 5 fold cross validation

#Run 0 1 2 3 4
F1 score 0.9915 0.9915 1.00 1.00 0.9830
Training time 7min 12s 7 min 13 s 7 min 17 s 7 min 13 s 7 min 14 s

FP represents the false positives, which are
the number of images incorrectly predicted by
the model as focused image class when the
target class is actually out-of-focus; FN represents
the false negatives, which are the number of
images incorrectly predicted by the model as
being out-of-focus when the target class is
focused image.

The sum of FP and FN gives us the total number
of errors made by the model, while TP represents
the total number of correct predictions.

The F1 score is a metric that ranges between
0 and 1, where a value of 0 indicates the
worst performance and a value of 1 indicates the
best performance.

2.6 Segmentation Performance

To assess the performance of the U-Net model in
segmentation tasks, we utilize the dice coefficient,
which provides a qualitative measure. This metric
quantifies the degree of overlap between two
binary images, and it is calculated using the
following formula:

Dice =
2|S ∩G|
|S|+ |G|

. (2)

In this formula, S represents the segmentation
obtained from the U-Net model, and G represents
the ground truth, which is the manually annotated
head and flagellum.

The numerator, |S ∩ G|, denotes the size of the
intersection between the segmentation and ground
truth. The denominator, (|S| + |G|), is the sum of
the sizes of the two images. Like the F1 score, the
dice coefficient ranges between 0 and 1.

A value of 0 indicates no overlap between the
ground truth and segmentation, representing the
worst performance. Conversely, a value of 1
is a complete overlap, indicating that both the
ground truth and segmentation are identical, which
represents the best performance.

3 Results

In this section, we present the qualitative
and quantitative results of our proposed
methodology. To ensure more accurate results
and robust findings, we performed 5-fold
cross-validation. Each fold involved randomly
selecting 80% of the images for training, 10% for
validation, and 10% for testing purposes.

3.1 Classification

Our primary objective in this study was to
identify the appropriate set of images for image
analysis. Specifically, we aimed to distinguish
between focused images suitable for analysis and
out-of-focus images that are not.

To visually demonstrate this distinction, we
provide examples in Figure 2. The figure
showcases three instances of focused images
alongside three instances of out-of-focus images.
The focused images exhibit clear patterns, such
as well-defined head shapes and bright intensity
at the flagellum.

In contrast, these patterns are indiscernible in
the out-of-focus images. Given the distinct visual
differences between the two classes, our aim
was to accurately separate these classes using a
ResNet50 model.

To evaluate the performance of the ResNet50
model, we utilized a test set consisting of
60 images, which accounted for 10% of the
classification dataset.

The evaluation metrics employed were the
F1-score, which measures the model’s accuracy,
and the training time, which assesses the
model’s efficiency.

Table 1 provides a summary of the performance
results for the 5 trained models corresponding to
each fold. The obtained results showcase the
remarkable capabilities of the ResNet50 model.
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Table 2. Performance results µ(σ) of U-Net in 29 test images using 5-fold cross-validation. The average error (µ) and
standard deviation (σ) are reported as evaluation metrics

#Run 0 1 2 3 4

Dice 0.8113 (0.09) 0.8144 (0.12) 0.8011 (0.14) 0.8001 (0.11) 0.8447 (0.07)

Training Time 32m 5s 32m 12s 32m 35s 41m 35s 39m 13s

With an average F1-score of 0.9932, the
model’s performance approached the maximum
attainable F1-score, demonstrating its accuracy in
distinguishing between focused and out-of-focus
images, with a minor standard deviation of
0.0071, underscoring the consistent and reliable
performance of the model.

Out of the 60 test images, the model only
misclassified 1, 1, 0, 0, and 2 images, respectively,
further affirming its efficacy. This result instills
confidence in utilizing the ResNet50 model for
detecting focused images in IBFC.

Additionally, the training time for each model was
relatively quick, with an average of approximately 7
minutes and 14 seconds. This demonstrates the
efficiency of training the ResNet50 network while
still achieving commendable performance levels.

3.2 Segmentation: U-Net

Our second objective in this study was to automate
the segmentation of the flagellum and the head
within focused images.

To visually illustrate this objective, Figure 3
showcases representative images alongside their
corresponding ground truth segmentation.

From the figure, it becomes evident that the
expert biologist primarily focused on the green
region of the image (fluorescence or channel 2).

Additionally, it can be observed that the flagellum
exhibits varying shapes, including curved and
rolled configurations.

However, a common characteristic among most
flagellum shapes is their rectilinear structure.
Similarly, the head appears regular and consistent
across different sperm samples.

To effectively accomplish the automatic
segmentation of these structures, we trained
an U-Net architecture from scratch.

The performance of the U-Net model was
evaluated using the dice similarity coefficient and
training time. Table 2 presents a summary of the
performance results for the 5 trained U-Net models
corresponding to each fold.

Model 3 exhibited the lowest performance with
an average dice score of 0.8001, while Model 4
achieved the best performance with an average
dice score of 0.8447. The average dice score
across all 5 models was 0.8141.

To provide a visual interpretation of the dice
scores, Figure 4 illustrates examples of the results.
In the first column, an image with a low dice score
of 0.46 is displayed.

In this case, the U-Net model struggled to detect
the sperm head, which is visually challenging due
to its out-of-focus appearance. This suggests
that such images should be excluded from the
training set.

The second column of Figure 4 depicts an image
with a dice score of 0.81, which is close to the
average dice score of all models.

This image serves as a representative example
of the average results achieved by the U-Net
model. The output segmentation is visually like
the ground-truth, with minor differences observed
in the smoothness of the head segmentation.

The third column of Figure 4 showcases a test
image with a high dice score of 0.92. Visually, it is
difficult to distinguish any differences between the
ground-truth and the model’s output segmentation.

These results demonstrate that the U-Net model
is capable of accurately segmenting the head and
flagellum of the sperm. Additionally, the U-Net
model exhibited fast training times, averaging at 35
minutes and 32 seconds.
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Fig. 4. A comparison of segmentation results using the dice coefficient, arranged in ascending order of values. Each
row in the figure corresponds to a different test sample, with the columns representing the input image, ground-truth
segmentation, and model output segmentation

4 Discussion

The most relevant previous work related
to our approach is the one presented by
Matamoros-Volante et al. [13]. There are several
key differences between the two approaches.

Firstly, Matamoros-Volante’s methodology
employed human sperm, which has symmetrical
head shape. In contrast, our approach is designed
for mouse sperm, which have a more complex
shape with a distinct hook-shaped head and a
shorter flagellum.

Secondly, Matamoros-Volante’s approach
utilizes the segmentation mask obtained from the
IDEAS software. However, this mask may include
segments where the flagellum is out-of-focus or
regions that are not relevant for the analysis.

For instance, their method employs a fixed
dilation of 13 pixels to obtain the midpiece, without
considering variations caused by rolling flagella or
different sizes.

In contrast, our approach customizes the
segmentation of the midpiece to the manual
annotations, allowing it to adapt to the various sizes
and shapes observed.

Finally, our approach offers the advantage of
automatically detecting focused images, guided by
the manual annotations of an expert biologist.

This automatic detection process is highly
efficient. On the other hand, Matamoros-Volante’s
approach employs a semi-manual method
(thresholding over the RMS value) to identify
focused images, which may introduce errors
during the detection process.
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Considering all of these advantages, our
deep learning-based approach to analyzing IBFC
images has the potential to greatly improve and
innovate the way these images are analyzed.

5 Conclusions

IBFC plays a crucial role in the acquisition of a
large number of images. However, manual analysis
of these images is impractical. In this study, we
propose an innovative approach that leverages
convolutional neural networks (CNNs) to address
this challenge effectively.

Our approach enables the identification and
exclusion of uninformative images, while also
automating the segmentation of the flagellum’s
midpiece and head using the U-Net architecture.

The quantitative results obtained from the
ResNet50 classification exhibit exceptional
performance, achieving an average F1 score of
0.99. This signifies near-perfect classification
accuracy. On the other hand, the U-Net
segmentation demonstrates decent performance,
with an average dice coefficient of 0.81.

The qualitative results reveal a high level
of similarity between the U-Net output and
the ground truth, indicating the effectiveness
of the segmentation approach. Moreover, we
demonstrated that the deep learning approach can
be trained using a laptop, resulting in fast training
times without the need for expensive equipment.

By combining CNN-based classification and
segmentation techniques, our approach presents
a compelling solution for the automated analysis
of flow cytometry images. It offers significant
potential for accelerating research, improving
efficiency, and enabling more comprehensive
biological investigations.

In future work, we plan to optimize the
parameters of the U-Net model further by
experimenting with different loss functions.
Additionally, we aim to increase the size of
the training set and apply data augmentation
techniques to enhance the model’s performance.

Although our results visually appear very
similar to the ground truth, we have not yet
compared them with the methodology presented
by Matamoros-Volante et al. [13].

Therefore, we will conduct comparisons
between the two approaches for IBFC analysis.
Moreover, we intend to apply this methodology
to extract valuable biological insights and draw
conclusions from comparing sperm in different
functional states.

Acknowledgments

This publication has been made possible
in part by CZI grant DAF2021-225643 and
grant DOI doi.org/10.37921/389106ogwyzx
from the Chan Zuckerberg Initiative DAF,
an advised fund of Silicon Valley Community
Foundation (funder DOI 10.13039/100014989).
A.D. thanks CONAHCyT-México for grant
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