
Towards a Standardized Evaluation of APIs
Non-Functional Requirements Focused on
Completeness and Soundness Qualities

Joanna Alvarado-Uribe1, Ari Y. Barrera-Animas2, Miguel Gonzalez-Mendoza1,
Ariel Lucien Garcia-Gamboa1, Neil Hernandez-Gress1

1 Tecnologico de Monterrey,
School of Engineering and Sciences, Monterrey,

Mexico

2 Universidad Panamericana,
Facultad de Ingenierı́a, Mexico City,

Mexico

{joanna.alvarado, mgonza, ariel.garcia, ngress}@tec.mx, aribarrera@up.edu.mx

Abstract. Nowadays, well-designed user
documentation plays a relevant role in the development
and delivery of high-quality software products. It
minimizes software maintenance costs either for
developers and managers by following quality standards
during software life-cycle process. In this research
work it is proposed an assessment approach consisting
of a set of metrics, a methodology, and a guideline
focused on supporting the testing of non-functional
requirements of Application Program Interfaces (APIs).
An emphasis is made on the evaluation of soundness
and completeness qualities of the official documentation
of APIs to support its evaluation of documentation’s
usability. Furthermore, a straightforward criterion is
proposed to rate the soundness and completeness
qualities in an easily readable way.

Keywords. Automation testing, non-functional
requirements, quality, completeness.

1 Introduction

International standards for software documentation
revision stand out that well-designed
documentation not only assists users and helps
to reduce training and support costs, but also
enhances the reputation of the final product.

Through processes, such as verification,
validation testing, and expert review of

content during the development of a software
product, developers and managers obtain
valuable feedback about the accuracy and
usability of their work [20, 27]. Throughout
the State-of-the-Art, it has been stated that
non-functional requirements are a key aspect to
the success of a project [1, 11, 10, 28].

For example, the non-functional requirements
related to usability issues [10, 28, 23, 22,
26], such as usability and system testing of
documentation [20].

Notwithstanding, it is also known that the
requirements engineering community has
not established a definition for non-functional
requirements as well as a methodology or process
that allows eliciting, documenting, and validating
them [6, 5, 11, 12, 9, 25] in an easy and transversal
multidisciplinary manner.

Therefore, this article aims to address one of
the gaps previously mentioned: a methodology
that supports the assessment of a non-functional
requirement through a set of metrics and a
qualification criterion.

This approach directly benefits development
enthusiasts, software development companies,
the engineering community and researchers
in general who seek to maintain adequate
documentation based on internationally accepted

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

ISSN 2007-9737

Fig. 1. General structure of the proposed
evaluation guideline

guidelines and standards without having to prepare
different documents depending on a particular
evaluation agency.

Specifically, the proposed metrics and
methodology allow any software development,
including those services that comprehend any
integration of Artificial Intelligence algorithms, to
have a suitable, fast, and multidisciplinary way
to accelerate the incorporation of improvements
through the life cycle of a product and guarantee
its quality.

The main contributions of this article are
four-fold:

– A set of metrics to evaluate soundness and
completeness qualities of documentation related
to the installation of an API.

– A methodology focused on assessing
non-functional requirements incorporating
the proposed metrics.

– A guideline for each evaluation of the soundness
quality and the completeness quality that
comprehends the proposed evaluation metrics.

– A criterion for rating the documentation
soundness and completeness based on the
proposed evaluation metrics.

The rest of the article is organized as follows.
Section 2 provides the State-of-the-Art related
to software quality, emphasising concepts
and definitions associated with functional and
non-functional requirements, and evaluation
standards focused on testing software as well
as documentation.

Later, Section 3 presents the proposed
evaluation metrics and guideline to support
the testing of documentation according to the
non-functional requirements: soundness and
completeness. Finally, Section 4 provides the
conclusions of this research.

2 State of the Art

Nowadays, software products offer increasingly
robust functionality in both within applications and
across multiple platforms. In order to offer this,
software designs include underlying programming
mechanics, rules, calculations, and algorithms that
are only discernible through several testings. In
consequence, user documentation endures as an
essential component of software products [27].

As previously stated, there is a need
for a standardized evaluation metric and/or
methodology that can be used transversally in the
different application fields of the documentation
of an API. Consequently, this section presents
the foundations and standards that support this
research work.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Joanna Alvarado-Uribe, Ari Y. Barrera-Animas, Miguel Gonzalez-Mendoza, et al.890

ISSN 2007-9737

2.1 Software Quality

The ISO (International Organization for
Standardization [17]) 9000:2000 standard defines
quality as “degree to which a set of inherent
characteristics fulfills requirements”, where a
requirement is defined as a “need or expectation
that is stated, generally implied or obligatory” [9].

On the other hand, software quality is defined
by the Institute of Electrical and Electronics
Engineers (IEEE [14]) as the “degree to which a
system, component, or process meets specified
requirements” and the “degree to which a system,
component, or process meets customer or user
needs or expectations”.

Thereupon, aspects of software quality were
included in the definition; being defined as
“Conformance to explicitly stated functional
and performance requirements, explicitly
documented development standards, and
implicit characteristics that are expected of all
professionally developed software” [8].

Finally, a commonly used extended definition
of the software quality assurance is provided by
IEEE as “a systematic, planned set of actions
necessary to provide adequate confidence that the
software development process or the maintenance
process of a software system product conforms to
establish functional technical requirements as well
as with the managerial requirements of keeping
the schedule and operating within the budgetary
confines” [8].

According to the definitions given above, the
requirements that must be met are generally
classified into two types: functional and
non-functional. This research work focuses
on non-functional requirements.

2.1.1 Non-Functional Requirements

The term non-functional requirements were first
used in 1985 by Roman, G-C. [25] to refer to the
constraints in the software’s design complexity.

That is, the non-functional requirements restrict
the types of solutions might be considered.
Moreover, the term is also referred to as quality
attributes, goals, extra-functional requirements,
and non-behavioral requirements [9, 6, 5, 11, 12,
28, 22, 4, 1].

Table 1. Metric Category: General Overview

Metric
1 Is versioned.
2 Includes the release date.
3 Has a table of contents.
4 Establishes the versions of the software it applies to.
5 Specifies the target user.
6 Presents the highlighted or listed changes from

previous versions.
7 Uses simple vocabulary familiar to the users.
8 Specifies terms and/or acronyms included in a glossary.
9 Includes links to additional information when needed.

10 Presents the tasks in the order in which they are performed.
11 Provides a general description of the APIs.
12 Indicates the skills required by the installer user.
13 Properly describes the list of supported platforms.

However, a formal specification of the
requirements that can be classified into the
non-functional category is difficult to obtain. In
the literature, the non-functional requirements
are those requirements that are not considered
or categorized as functional requirements. For
example, the response to failure and human factors
are requirements whose solution can not be known
until performing empirical evaluations [25, 6, 5].

Notwithstanding, several works have been
performed in the aim to characterize and classify
the non-functional requirements [9, 6, 5, 11, 12,
28, 22, 4, 3, 26, 1]. The first taxonomy in the
literature that proposed a classification is the one
presented in [25] which includes the following
constraints: Interface, performance, operating,
life-cycle, economic, and political.

Later on, a costumer-oriented and
technically-oriented classification for
non-functional requirements was published by the
Rome Air Development Center (RADC) [6]. The
quality attributes that the classification embraces
are efficiency, integrity, reliability, survivability,
usability, correctness, maintainability, verifiability,
expandability, flexibility, interoperability, portability,
and reusability.

As previously mentioned, despite the fact that
several research works propose a taxonomy or a
classification scheme, there is no formal definition
or a complete list of non-functional requirements
or either a universal classification scheme that fits
different application domains [9, 25, 6, 5, 11, 28, 4,
3, 26, 1].

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Towards a Standardized Evaluation of APIs Non-Functional Requirements Focused ... 891

ISSN 2007-9737

Table 2. Metric Category: Installation

Metric
1 Steps are ordered.
2 Summary of steps is provided.
3 Steps are easy to follow.
4 Steps/commands are complete.
5 Tracking of progress is shown.
6 Steps for software dependencies are provided.
7 Supported versions of software dependencies are specified.
8 Required ports are indicated.
9 Installation on different platforms is correctly executed.

10 Software prerequisites are specified.
11 Security issues that may apply (firewall, irreversible

actions, etc.) are indicated.
12 Hardware prerequisites are specified.
13 Exception messages are displayed

(i.e. when not enough resources are found).
14 Required resources are defined.
15 Requirement of administrative privileges is specified.
16 A log file for all messages is integrated (or these messages

are displayed within the installation process).
17 Logs location is provided.
18 Confirmation messages on critical operations are specified.
19 Installation process is complemented

with examples and figures.
20 If the installation process fails: Error feedback is provided.
21 If the installation process fails:

Instructions to recover from error are provided.
22 If the installation process fails: The recovery process

is indicated and it allows completing the installation.
23 If the installation process is not achieved, it could

be because the installation is not possible at all.
24 If the installation process is not achieved, it could

be because the procedure is too complex.
25 If the installation process is not achieved, it could

be because the procedure takes more than one working day.
26 A large number of installation steps are presented.

2.2 Evaluation Standards

The International Organization for Standardization
(ISO [17]), the International Electrotechnical
Commission (IEC [13]), the Institute of Electrical
and Electronics Engineers (IEEE [14]) Standards
documents, IEEE Societies, and the Standards
Coordinating Committees of the IEEE Standards
Association (IEEE-SA [15]) Standards Board are
committed to the development of international
standards through a consensus development
process that is approved by the American National
Standards Institute (ANSI [2]) [20, 27].

The following standards define some
minimum requirements to be considered
when designing, developing, and reviewing
the software’s documentation.

However, the standards only provide
informational guidelines and examples of its
use in some organisations and do not provide a
consensus checklist of qualities.

– Systems and Software Engineering -
Requirements for Designers and Developers
of User Documentation (ISO/IEC/IEEE
26514:2010).

The standard provides the requirements for
the design and development of software user
documentation and defines the documentation
process from the documentation developers’
point of view. The minimum requirements for
the structure, information content, format of user
documentation, and informative guidance for
user documentation style are provided [27].

– Systems and software engineering -
Requirements for testers and reviewers
of information for users (ISO/IEC/IEEE
26513:2017).

The standard is oriented to supporting the
need to provide consistent, complete, accurate,
and usable documentation to software users.
This test involves the use of documentation
alongside the corresponding test software to
verify that the documentation is consistent with
the software [20].

– Software and Systems Engineering - Software
Testing - Part 3: Test Documentation
(ISO/IEC/IEEE 29119-3:2013).

This part belongs to the standard
ISO/IEC/IEEE 29119 which aims to define
an internationally-agreed set of standards for
software testing. The standard identifies as
required contents that need to be included
in test policies the following: the overview
information, document specific information,
introduction, and test policy statements [21].

The presented standards identifies and
provide some guidelines to check and verify that
documentation of software is technical accurate
and consistent. That is, these standards helps
to determine if the documentation is technically
accurate (verify), but does not determine whether
the documentation is usable (validate) [20].

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Joanna Alvarado-Uribe, Ari Y. Barrera-Animas, Miguel Gonzalez-Mendoza, et al.892

ISSN 2007-9737

Thus, these standards are centred to help
technicians/developers in the life-cycle of a
software product. To verify if a software’s
documentation is usable, then the usability testing
of the documentation is performed. The usability
testing of the documentation helps to determine
if the information embraced in the documentation
meets the users’ needs; such as if it is
understandable and if they can apply it [20, 19].

Furthermore, common metrics used for usability
testing from Common Industry Format for Usability
Test Reports [16] are efficiency, effectiveness,
and satisfaction [20]. From State-of-the-Art it
is noticeable that it is a need to enhance and
increase the metrics and guidelines that are used
to verify not only the documentation that are used
by technicians during the life-cycle of the product
development, but also the documentation that are
at disposal of end-users of a product.

The pursuit of metrics that help to ensure
to complete non-functional requirements in
documentation test is important to attain an
international standard. This presents an
opportunity to enhance the documentation
verification by not only check for its consistency,
but also for their usability for both experienced
users (technicians, developers, etc) and common
users (general public).

3 Proposed Evaluation Metrics

As pointed out in the State-of-the-Art, the process
of documentation evaluation involves several
qualities (aspects) that developers or specialists
must take into account to ensure the overall quality
of the documentation.

This article provides metrics focused on
the evaluation of end-users’ documentation
by supporting the testing of non-functional
requirements of Application Program Interfaces
(APIs). Specifically, this proposal allows evaluating
the soundness and completeness qualities of the
documentation available on the official websites
of APIs.

The proposed metrics aim to help the
development of an accurate, usability, and
completeness users’ documentation of APIs within
the life-cycle of product development.

Table 3. Metric Category: Troubleshooting

Metric name
1 Troubleshooting section is provided.
2 Common possible errors are listed with

instructions to solve them.

Table 4. Metric Category: Functional Test Sub-Process

Metric name
1 Instructions to launch/start the API are provided.
2 Arguments that can be provided at the start-up

command are detailed.
3 Sanity check procedure is clearly described.
4 The system works as expected.

It is noteworthy to mention that, as similar to
the ISO/IEC/IEEE standards previously described,
the proposed evaluation metrics can highlight
problems with the evaluated API; however,
resolving these problems is out of the scope of this
research work.

The proposed metrics aim to maintain an
accurate and useful content comprehended in the
APIs’ documentation. Furthermore, to facilitate
the documentation evaluation, a guideline that
comprehends the metrics is proposed.

This guideline aims not only to help developers
and/or specialists to ensure an accurate and
complete evaluation of the documentation of APIs
during the life-cycle of product development but to
ease the tasks during the usability evaluation.

To achieve this goal, several previously
presented aspects are concentrated in a
guideline in a structured form that facilitates
both the evaluation of documentation during the
non-functional evaluation and the management
and control of updating tasks. The general
structure of the proposed guideline is shown in
Figure 1.

To seek clearness and fluency, the proposed
metrics are concentrated in four categories
according to their evaluation purpose. The four
established categories are: General overview,
Installation, Troubleshooting, and Functional test
sub-process.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Towards a Standardized Evaluation of APIs Non-Functional Requirements Focused ... 893

ISSN 2007-9737

Table 5. Metrics Involved in the Completeness and
Soundness Quality Evaluation

Metric category Metric # for
Completeness Soundness

General overview. 1-4, 6-10, 13 1-8, 10-13
Installation. 2, 6, 7, 10-12, 2, 6-8, 10-12,

14, 17, 19 14, 17, 19
Troubleshooting. 1, 2 1, 2
Functional test 1, 3 1-3
sub-process.

Table 6. Rating Scale of the Completeness and
Soundness Quality

Rating Score range
Completeness Soundness

Very Poor/Bad. 0 - 3 0 - 4
Poor. 4 - 7 5 - 8
Fair. 8 - 11 9 - 13

Average. 12 - 15 14 - 17
Good. 16 - 19 18 - 22

Very Good. 20 - 22 23 - 26
Excellent. 23 27

The categories and their respective metrics are
detailed in Table 1, Table 2, Table 3, and Table 4.

The structure of the evaluated aspects in each
category is concentrated in four columns to ease
the evaluation process.

– Column 1: Metric number. A numeric
value that identifies the metric in its
corresponding category.

– Column 2: Metric. The metric that is evaluated.

– Column 3: Metric value. A value that represents
the measurement of the metric. Only one of the
following values can be selected at a time: Yes,
No, Partially, or Not Available (NA).

– Column 4: Comments. A section where any
relevant comment about the metric that is being
evaluated can be placed.

Once the metrics that help in the evaluation
of non-functional requirements are defined and
a guideline is provided, metrics for evaluating

the completeness and soundness qualities of
documentation must be selected.

In consequence, the evaluation metrics taken
into account need to be mapped regarding
their purpose of evaluating these two qualities.
The selection of metrics that integrates
the completeness and soundness qualities
measurements were based on the standards
presented in Section 2.

Despite that all metrics concentrated in the
guideline are relevant for the overall documentation
evaluation, not all of them are required to
evaluate the two previously introduced qualities.
Therefore, 23 metrics were considered to evaluate
the completeness quality and 27 metrics were
contemplated to measure the soundness quality.
The metrics to evaluate the completeness and
soundness qualities are detailed in Table 5.

Afterward, a criterion must be contemplated to
give a rating to the tested documentation. This
rating will serve as an easily readable base-line
for users and developers to notice the quality of
the documentation that is reviewing. The main
goal of this rating is to simplify the process of
reviewing documentation of software, specifically
APIs documentation.

Hence, a straightforward criterion that adds only
the positives values of the metrics in each quality
is applied. That is, the rating score of the qualities
will be established by adding only the “Yes” values
of each metric that embrace that quality.

Metrics values of “No”, “Partially”, and “NA”
are not taken into account since these values
represent that the corresponding information
evaluated for that metric is incomplete or is
missing. Consequently, the maximum value of the
criterion for the completeness quality is 23 and for
the soundness quality is 27.

The addition of these qualities by themselves
does not help to get an insight into the
documentation’ quality. Therefore, a seven
rating scale is chosen to provide an abstraction
and clearance about the quality of the
documentation tested.

The rating scale scores are: 1) “Very Poor/Bad”,
2) “Poor”, 3) “Fair”, 4) “Average”, 5) “Good”, 6)
“Very Good”, and 7) “Excellent”.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Joanna Alvarado-Uribe, Ari Y. Barrera-Animas, Miguel Gonzalez-Mendoza, et al.894

ISSN 2007-9737

This representation is friendly-user and easy
to understand by both developers and general
users of the documentation. Moreover, the seven
rating scale clearly defines the status of the
documentation qualities.

Following the straightforward approach, the
maximum value of each quality is divided into this
seven rating scale to obtain the ranges that will
determine each score on the scale. The ranges
of the ratings of the completeness and soundness
qualities are concentrated in Table 6.

As noticed from Table 6 the “Excellent” rating is
the only one that has no range of scores, being
achievable only if it has all metrics covered with the
“Yes” value. By scoring the maximum rate in this
form, the quality evaluation of the documentation
ensures that there is no lack or deficiency in any
aspect of the content.

On the opposite, the minimum rating can not
be expressed through the zero value for both
qualities. The zero value itself could represent
that the documentation does not have any single
metric with the “Yes” value or that there is no
documentation at all.

Thus, to concentrate both representations with
no distinctions for the purposes of evaluation, the
zero-score is integrated into the range of the “Very
Poor/Bad” rating.

4 Conclusion

From the State-of-the-Art, it can be noticed that
there is a need for the engineering community,
to reach a consensus and define a methodology
that can evaluate the non-functional requirements
of a project in an easy, multidisciplinary, and
standardized manner.

This will allow a fast and reliable way to review
and integrate improvements in the documentation
during the development of software products.
In this regard, the proposed approach aims to
obtain an accurate and complete non-functional
evaluation of completeness and soundness
qualities of any API.

The proposed metrics, the methodology,
and the guideline allow delivering high-quality
documentation of APIs to developers within the
minimum time required.

This is achieved by taking care of relevant
metrics that are of interest to developers during the
development of documentation in the software’s
life-cycle process. Therefore, the proposed metrics
concentrated in each guideline make it possible to
ensure a comprehensive review of the soundness
and completeness qualities of the documentation
since these metrics are based on the standards
introduced in the State-of-the-Art.

Moreover, another advantage of following the
approach proposed in this work is that after
evaluating the API’s documentation with the
proposed metrics concentrated on the proposed
guideline, several relevant qualities and aspects
related to the usability of the documentation will
also be covered before performing a process of
usability evaluation by itself.

Consequently, the APIs’ documentation will
require less effort in the validation and correction
tasks during the usability evaluation. Thus,
developers and end-users can rely on to have an
accurate, useful, and friendly API’s documentation.
Consequently, the proposed approach can be
applied to other types of domains that need to
evaluate their software documentation.

Finally, the approach of this proposal supports
following one of the recommendations established
in the standard ISO/IEC 26514:2008 [27]; that is,
to obtain high-quality software documentation, its
development, verification, and evaluation should
be an integral part of the software life-cycle
process and should not be regarded after the
software’s implementation.

Further work could focus on developing a form
of pilot evaluation to provide a complete and
reliable non-functional evaluation model. For
this, the incorporation of more evaluation metrics
related to other qualities of the documentation
would have to be addressed, thus achieving a
complete evaluation of properties related to the
non-functional evaluation, such as usability.

Moreover, standards and frameworks related
to risk management and governance of
developments incorporating Artificial Intelligence,
such as [18, 24], will be included to strengthen
the proposed metrics and evaluation methodology.
Furthermore, to test the proposed approach,

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Towards a Standardized Evaluation of APIs Non-Functional Requirements Focused ... 895

ISSN 2007-9737

the cloud-based technological platform called
FIWARE [7] will be considered.

The test case will focused on testing the
installation manuals of the FIWARE Generic
Enablers (GEs) [7], whose task is also relevant to
the FIWARE initiative itself [7], by using the set of
metrics, the qualification criterion, the assessment
methodology, and the guideline proposed in
this research.

Acknowledgments

The authors would like to thank the FI-NEXT
project, FIWARE Foundation, and Tecnologico
de Monterrey for the support to carry out this
research; the FI-NEXT project is co-funded by the
EU’s Horizon2020 programme under agreement
number 732851 and the CONACYT’s agreement
number 274451. We really appreciate the
participation, collaboration, and review of the
people involved in this research work.

References

1. Aiello, M., Fiorini, L., Georgievski, I.
(2021). Software engineering smart energy
systems. Handbook of Smart Energy Systems,
pp. 1–29. DOI: 10.1007/978-3-030-72322-4
21-1.

2. ANSI (2023). American national standards
institute. https://www.ansi.org/.

3. Bhowmik, T., Quoc-Do, A. (2019).
Refinement and resolution of just-in-time
requirements in open source software
and a closer look into non-functional
requirements. Journal of Industrial Information
Integration, Vol. 14, pp. 24–33. DOI:
10.1016/j.jii.2018.03.001.

4. Casamayor, A., Godoy, D., Campo, M.
(2010). Identification of non-functional
requirements in textual specifications:
A semi-supervised learning approach.
Information and Software Technology,
Vol. 52, No. 4, pp. 436–445. DOI:
10.1016/j.infsof.2009.10.010.

5. Chung, L., do Prado-Leite, J. C. S.
(2009). On non-functional requirements in
software engineering. Conceptual Modeling:
Foundations and Applications, pp. 363–379.
DOI: 10.1007/978-3-642-02463-4 19.

6. Chung, L., Nixon, B. A., Yu, E.,
Mylopoulos, J. (2012). Non-functional
requirements in software engineering.
Springer Science+Bussiness Media.

7. FIWARE Foundation (2023). FIWARE.
https://www.fiware.org/foundation.

8. Galin, D. (2004). Software quality assurance:
From theory to implementation. Pearson
Education Limited.

9. Glinz, M. (2005). Rethinking the notion of
non-functional requirements. Proceedings of
the Third World Congress for Software Quality,
Vol. 2, pp. 55–64.

10. Glinz, M. (2007). On non-functional
requirements. 15th IEEE International
Requirements Engineering Conference (RE
2007), pp. 21–26. DOI: 10.1109/RE.2007.45.

11. Gómez-Sotelo, K. I., Baron, C.,
Esteban, P., Gutiérrez-Estrada, C. Y.,
Laredo-Velázquez, L. J. (2018). How
to find non-functional requirements in
system developments. IFAC-PapersOnLine,
Vol. 51, No. 11, pp. 1573–1578. DOI:
10.1016/j.ifacol.2018.08.272.

12. Grimshaw, D. J., Draper, G. W. (2001).
Non-functional requirements analysis:
Deficiencies in structured methods.
Information and Software Technology,
Vol. 43, No. 11, pp. 629–634. DOI:
10.1016/S0950-5849(01)00171-9.

13. IEC (2023). IEC: International Electrotechnical
Commission.

14. IEEE Advancing Technology for Humanity
(2023). The professional home for the
engineering and technology community
worldwide.

15. IEEE SA Standards Association (2023).
Standards IEEE.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Joanna Alvarado-Uribe, Ari Y. Barrera-Animas, Miguel Gonzalez-Mendoza, et al.896

ISSN 2007-9737

16. International Organization for
Standardization (2023). Software
engineering – Software product Quality
Requirements and Evaluation (SQuaRE) –
Common Industry Format (CIF) for usability
test reports.

17. ISO International Organization for
Standardization (2023). ISO: Global
standards for trusted goods and services.

18. ISO/IEC 23894:2023 (2023). Information
technology — Artificial intelligence —
Guidance on risk management. International
Organization for Standardization.

19. ISO/IEC JTC1/SC7 Working Group
26 (WG26) (2023). Software Testing.
International Organization for Standardization.

20. ISO/IEC/IEEE 26513:2017 (2017). Systems
and software engineering – Requirements for
testers and reviewers of information for users.
International Organization for Standardization,
pp. 1–126.

21. ISO/IEC/IEEE 29119-3:2013 (2013). Software
and systems engineering – Software testing
–Part 3: Test documentation. International
Organization for Standardization, pp. 1–138.

22. Kopczyńska, S., Nawrocki, J., Ochodek,
M. (2018). An empirical study on
catalog of non-functional requirement
templates: Usefulness and maintenance
issues. Information and Software
Technology, Vol. 103, pp. 75–91. DOI:
10.1016/j.infsof.2018.06.009.

23. Metsa, J., Katara, M., Mikkonen, T.
(2007). Testing non-functional requirements

with aspects: An industrial case study. Seventh
International Conference on Quality Software
(QSIC 2007), pp. 5–14. DOI: 10.1109/QSIC.
2007.4385475.

24. National Institute of Standards and
Technology (2023). NIST AI RMF playbook.
Information Technology Laboratory.

25. Roman (1985). A taxonomy of current
issues in requirements engineering.
Computer, Vol. 18, No. 4, pp. 14–23. DOI:
10.1109/MC.1985.1662861.

26. Thakurta, R. (2013). A value-based approach
to prioritise non-functional requirements during
software project development. International
Journal of Business Information Systems,
Vol. 12, No. 4, pp. 363–382. DOI: 10.1504/
IJBIS.2013.053213.

27. The Institute of Electrical and
Electronics Engineers, Inc (2011).
IEEE standard for adoption of ISO/IEC
26514:2008 systems and software
engineering–requirements for designers
and developers of user documentation. DOI:
10.1109/IEEESTD.2011.5712775.

28. Zou, J., Xu, L., Yang, M., Zhang, X.,
Yang, D. (2017). Towards comprehending
the non-functional requirements through
developers’ eyes: An exploration of stack
overflow using topic analysis. Information and
Software Technology, Vol. 84, pp. 19–32. DOI:
10.1016/j.infsof.2016.12.003.

Article received on 09/06/2023; accepted on 21/09/2023.
Corresponding author is Miguel Gonzalez-Mendoza.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 889–897
doi: 10.13053/CyS-27-4-4780

Towards a Standardized Evaluation of APIs Non-Functional Requirements Focused ... 897

ISSN 2007-9737

