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Abstract. Explainable artificial intelligence (XAI) is a 
field of research that has attracted the interest of 
researchers in recent years. These algorithms seek to 
provide transparency to artificial intelligence (AI) models. 
One application of these algorithms is in the medical 
area, created as an auxiliary tool for corroborating 
predictions obtained by an AI when classifying 
pathologies, for example, Acute Lymphoblastic 
Leukemia (ALL). The present work evaluates the 
amount of information heat maps provide and how they 
relate to the blood components' morphological 
characteristics. For the assessment, four Convolutional 
Neural Network (CNN) models were retrained and fine-
tuned to classify unsegmented images (ALL_IDB2 
database). Subsequently, their respective heat maps 
were generated with the LRP (Layer-wise Relevance 
Propagation), Deep Taylor, Input*Gradient, and Grad-
Cam methods. The best results were obtained with the 
GoogleNet model and the Grad-Cam heat map 
generation method, having a percentage of 43.61% of 
relevant pixels within at least one cell morphological 
feature present. Moreover, the most significant pixels 
are within the nucleus, with 73.97% of important pixels 
inside. According to the results, the Grad-Cam method 
best relates the relevant pixels generated in the heat 
map to the morphology of the cell of interest to classify a 
healthy or diseased cell. 

Keywords. Explainable artificial intelligence (XAI), 
heatmaps, acute leukemia lymphoblastic (ALL), grad-
cam, cell morphology. 

1 Introduction 

Deep learning applications, surpassing human 
capabilities in tasks like image and speech 

recognition and recommendation systems, have 
received substantial attention.  

Despite their achievements, these applications 
cope with a critical shortfall in both explainability 
and reliability. 

Deep learning models are commonly perceived 
as complex black boxes, presenting challenges in 
understanding their intricate underlying 
mechanisms. Their inability to justify decisions and 
predictions undermines human trust, heightening 
concerns, especially considering the potential life-
threatening errors that artificial intelligence 
algorithms may make depending on 
the application. 

For example, a flaw in the computer vision 
system of an autonomous car could result in a 
catastrophic crash, while in healthcare, where 
decisions directly impact human lives, the stakes 
are considerably high. 

In response to these challenges, many 
methods have emerged to address the need for 
transparency and reliability in deep learning 
applications. Notably, explainable Artificial 
Intelligence has emerged as a focal point in 
machine learning research. 

These methods aim to explain machine and 
deep learning models in a manner easily 
understandable by humans. The categorization of 
interpretability methods is based on how they 
provide explanation information, encompassing 
visual, textual, and mathematical or numerical 
approaches. This paper evaluates different visual 
interpretability methods for classifying Acute 
Lymphoblastic Leukemia cells. 
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1.1 The Problem 

In the medical field, there has been an increase in 
the activity of digitizing pathological studies for 
medical diagnosis. The digitalization opens the 
door to life-saving artificial intelligence (AI) 
applications. One of the branches of application of 
these explanatory methods is to use them as an 
auxiliary tool in validating the predictions made by 
a neural network. 

However, to diagnose some diseases through 
digital microscopic images, as in the case of Acute 
Lymphoblastic Leukemia (ALL), it is necessary to 
pay attention to the morphological characteristics 
present in the cells of interest. 

From this arises the need to evaluate whether 
heat maps, as a visual explanatory method, are 
appropriate to highlight the morphological 
characteristics present. Thus, the expert can 
consider them as an aid for the corroboration of the 
classification, giving rise to the diagnosis of 
the disease. 

1.2 Cell Morphology of Acute Lymphoblastic 
Leukemia 

White blood cells are essential to the human body's 
immune system. They have a specific morphology 
depending on the type of blood component. 
Leukemia is an alteration in the production and 
malformation of these cells. 

The French-American-British (FAB) classifies 
Leukemia into Acute and Chronic Lymphoblastic 
Leukemia. It also categorizes them into ALL-L1: 
small uniform cells; ALL-L2: large, varied cells; and 
ALL-L3: large, mixed cells with vacuoles (bubble 
like features). 

The nuclear and cytoplasmic structures can 
differentiate between healthy and diseased cells. 
Acute Myeloid Leukemia (AML) and Chronic 
Myeloid Leukemia (CML) are also caused by 
abnormal myelocytes. 

The authors in [1, 2, 3], argue that benign and 
malignant cells can be discriminated by their 
nuclear structure, nucleus-to-cytoplasm ratio, 
color, and texture. Fig. 1 illustrates an example of 
the difference between the structure of healthy and 
cancerous cells. 

It shows that cancer cells have an irregular 
structure, and the shape of the nucleus is 

collapsed; this is how hematologists describe 
the ALL. 

This work evaluates whether the heat maps 
produced by selected methods are related to at 
least one of these morphological features. This 
work evaluates whether the heat maps produced 
by selected methods are related to at least one of 
these morphological features. 

1.3 Explanatory Methods 

In this work, we use methods that generate heat 
maps; these are considered a way to explain the 
functioning of a neural network. In [4] define three 
concepts that are usually misused and 
interchanged. As a result of their research, they 
conclude the following definitions: 

– Interpretability is the ability to explain or 
provide meaning in terms understandable to a 
human being. 

– Explainability is associated with the notion of 
explanation as an interface between humans 
and decision-makers. At the same time, it 
accurately represents the decision-maker and 
is understandable to humans. 

– Transparency: A model is considered 
transparent if it is understandable. Since a 
model can have different degrees 
of  comprehensibility, transparent models 
are  divided into three categories: 
simulatable,  decomposable, and 
algorithmically transparent. 

Explainability is critical for the safety, approval, 
and acceptance of AI systems for clinical use. At 
work [5] is a comprehensive overview of 
techniques that apply XAI to improve various 
properties of ML models and systematically 

 

Fig. 1. Example of the difference between the structure 
of healthy and cancerous cells 
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classifies these approaches, comparing their 
respective strengths and weaknesses. 

In recent years, different heat map generation 
algorithms have been proposed to understand 
neural networks better. These methods include 
Deep Taylor, Input*Gradient, and LRP, among 
others. However, comparing results between these 
methods is somewhat complex because it is 
necessary to replicate each of these 
methods separately. 

The author in [6] made available the 
iNNvestigate library; this tool solves the problem of 
method comparison, providing a standard interface 
and implementing several published methods for 
heat map generation, facilitating the analysis of 
neural network predictions by generating heat 
maps. This work uses this library to create heat 
maps of the strategies implemented therein, 
specifically the Deep Taylor, Input*Gradient, and 
LRP methods. 

Grad-Cam [7], uses the gradient of the 
classification score related to the convolutional 
features determined by the network to understand 
which parts of the image are most important for 
classification. For this work, the algorithm 
implemented in MATLAB software is used. 

1.4 Retrained Models 

Four different models of CNNs were used in 
this work: 

– VGG-19 is a convolutional neural network with 
19 depth layers [8]. 

– ResNet18 is a neural network with 18 depth 
layers [9]. 

– ResNet50 is a neural network with 50 depth 
layers [9]. 

– GoogleNet is a neural network with 22 depth 
layers [10]. 

These neural networks were pre-trained with 
more than one million images from the ImageNet 
database. The pre-trained network can classify 
images into 1000 object categories (e.g., 
keyboard, mouse, pencil, and many animals). As a 
result, the network has learned feature-rich 
representations for a wide range of objects. The 
size of the network's image input is 224 by 
224 pixels. 

The idea behind selecting these architectures 
was to experiment with small and large models. In 
addition to belonging to the best-known models, 
these models usually perform better when transfer 
learning is done using other datasets. Therefore, 
these models were retrained with the database 
images described in section 3.1. 

2 Related Work 

Table 1 compares recent works that present 
different techniques to solve the problem. All 
authors focus on classifying images containing 
ALL cell types, using techniques to relate them to 
the morphology of the cell. Most authors using 
CNN models highlight the ResNet50, VGG's, and 
Inceptions models. On the other hand, few authors 
use a method of visual explanation. 

The authors in [11], evaluate different 
algorithms to calculate heat maps using a 
hematologist specialized in ALL diagnosis. 
Generated heat maps were assessed with the help 
of five hematologists and experts in morphological 
cell classification. The evaluation focused on the 
amount of information provided by the heat maps 
and how they relate to morphological 
characteristics present in the classified cells. 

Results of the best heatmaps and hematologist 
evaluations are presented in this work. The central 
outcome is that the heatmaps must include 
morphological information to be a valuable tool for 
medical diagnosis systems. 

Following the same line of research expressed 
in [11], the present work represents an extension 
in the sense that a reference map with the 
morphology of each cell in the analyzed images 
was produced, which allows quantification of what 
percentages of the pixels marked as significant by 
the heat map, fall into morphologically coherent 
entities. This way, evaluating which algorithm is 
more relevant concerning cell morphology 
is possible. 

In [22] it is proposed a method of classification 
and explanation. The proposed method 
contemplates segmentation of the morphological 
characteristics of the cells. Subsequently, the 
method uses a ResNet50 network that performs 
the classification, obtains the respective heat map, 
and generates an explanation of spatial features. 
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Both steps are considered visual explanatory 
methods. In addition, they perform heat map 
generation experiments, with the cell segmented 
and unsegmented. They conclude that better 
results are obtained when the heat map is 
generated with the segmented cell. 

The main difference between the work 
presented here and the work discussed above is 
that we evaluate the number of most relevant 
pixels according to the segmentation categories. 
Experiments are also performed by combining 
different CNN models and heat mapping methods. 

The experiments aim to identify which 
combination is the most efficient in relating relevant 
pixels against morphological features using the 
unsegmented image. Consequently, our work 
differs substantially from the work 
explained above. 

3 Methodology 

This section describes the database used for 
retraining and evaluation. It also presents the semi-
manual segmentation procedure to create the 
reference map. This map will be used to compare 
the heat maps and thus evaluate the position of the 
most relevant pixels. Finally, the general 
methodology of this article is described. 

3.1 Image Database 

The Acute Lymphoblastic Leukemia Imaging 
Database for Image Processing (IDB-ALL) [17] is 
publicly accessible, and the categories are 
balanced. It features microscopic images of blood 
samples. It is a database intended to evaluate and 
compare algorithms for image segmentation and 
classification in Acute Lymphoblastic 
Leukemia (ALL). 

Each image in the database was identified and 
classified by a group of oncologists with expertise 
in identifying ALL diseased cells. The photos are 
divided into diseased and healthy, with 130 images 
for each category. The images have a resolution of 
257 x 257 pixels in RGB.  

This work divided the images into 100 images 
for each category (healthy and diseased). With the 
remaining subset of images, 30 per category, a 
section of never-before-seen images was created. 
The latter will be used exclusively to evaluate the 
models after the entire retraining process and 
generate heat maps. 

As described in [16], the typical datasets used 
for leukemia cell recognition have drawbacks 
related to category imbalance problems. In other 
cases, they were constructed from different 
sources or acquisition conditions. Leukemia cells 

Table 1. Comparative table of related works 

Author Type Blood Cell Model XAI Method 

N. Jiwani et al. in [12] ALL No No 

Jiang et al. [13] ALL Wavelet No 

Abir et al. [14] ALL 
Resnet50, DenseNet121 and 

VGG16 
LIME 

Nayeon Kim  [15] 
ALL  Pro-B 

 
InceptionV3, Res-Net101V2, 

InceptionResNetV2, and VGG19 
LIME and DCN 

Ochoa-Montiel et al. [16] 
ALL 

 
Random Forest, LeNet, AlexNet No 

Maaliw R.R. et al. [17] ALL 
Transfer learning InceptionV3, 
Xception InceptionResNetV2 

No 

Velázquez-Arreola et al. 
[19] 

ALL 
VGG16, VGG19, ResNet50, and 

MobileNet V1 
LRP, Deep Taylor, and 
Input*Gradient methods 

Diaz R. J. et al. [22] ALL Modified ResNet-50 Grad CAM 
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contain two or more categories of Leukemia, 
including its subtypes (Lymphocytic Leukemia and 
Myeloid Leukemia, Chronic or Acute). For our 
purpose, this work is focused on the ALL type. 

The ALL-IDB2 dataset [17] is small. However, it 
is one of the most widely used datasets. For 
example, in [3, 16, 18], is publicly accessible, and 
the categories are balanced. For this reason, an 
ALL-IDB2 data set was selected for this work. 

3.2 Data Segmentation (Semi-Manual) 

As mentioned in section 1.2, cell morphology is 
used to identify ALL diseased cells. The main 
characteristics focus on the nucleus and 
cytoplasm. For this reason, a semi-manual 
segmentation is performed, highlighting five 
classes: nucleus, cytoplasm, vacuoles, red blood 
cells, and background. 

The segmentation results will be considered the 
base reference (ground truth), which will later be 
used to evaluate the heat maps. The evaluation 
compares the most relevant pixels in each heat 
map and the ground truth corresponding to the 
original image. 

The segmentation was performed using the 
MATLAB Image Labeler [19].  This application 
allows labeling reference images from a collection 
of pictures, defining rectangular region of interest 
(ROI) labels with aligned or rotated axes, line ROI 
labels, pixel ROI labels, polygon ROI labels, point 
ROI labels, projected cuboid ROI labels, and 
scene labels. 

Fig. 2 illustrates how image segmentation from 
the IDB-ALL2 database was performed with the 
Image Labeler application. The segmentation 
process was carried out by two doctoral students 

who worked on this research and supervised by 
two hematologists with experience in cellular 
morphology from the Mexican public health 
system. The image was segmented into five 
categories: nucleus, cytoplasm, vacuole, red blood 
cells, and background. These categories were 
chosen at the suggestion of the hematologists. 

3.3 General Methodological Process 

The general methodology is composed of the 
following steps: 

1. Obtaining the image database (ALL-IDB2). 
Then, separate the images into two folders: 
200 images for training and 60 images that will 
be used as never-seen-before. Photographs of 
healthy and diseased cells are included. 

2. Segmentation of each image using the Image 
Labeler application [19].  A matrix of the same 
size as the segmented image will be 
generated. These matrices will be the ground 
truth reference used for the evaluation. 

3. Using the 200 images for retraining, we applied 
data augmentation by the traditional method 
(rotation and reflection) [20] to have 1000 
images at the end for each type of cell (Healthy 
or ALL). Using these images, we finally 
retrained the neural networks GoogleNet, 
ResNet18, ResNet50, and VGG19. 

4. Generate the heat maps using the retrained 
models. Heat maps are generated with the 
Deep Taylor, Input*Gradient, and LRP 
methods using the iNNvestigate library. Grad-
Cam type heat maps are generated with 
Matlab software. 

5. Evaluation of the heat maps. For this process, 
only the most essential pixels for the neural 
network during classification are considered. 
Due to the color map used, it is evident that the 
pixels with the highest relevance are located in 
the red channel of the heat map images. 
Therefore, this channel is used to evaluate the 
heat maps. The evaluation process is 
described as follows: 

a. We used the pixels of the red channel. 
Calculate the mean color depth of all 
pixels in this channel. The obtained 
value will be the reference value to 

 

Fig. 2. Segmentation of an image from the IDB-ALL2 
database using Image Labeler software 
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narrow down the pixels with the 
highest relevance. 

b. Identify the pixels above the reference 
value, then locate each pixel in the 
image of heat maps and the ground 
truth matrix. Then, count all pixels for 
each class according to 
the segmentation. 

c. Save the number of pixels in each 
category in a table for later analysis. 

6. We produce some graphs of the results and 
analyze them. The results and their analysis 
are described in the following section. 

4 Experiments and Results 

This section describes the experiments and their 
results, such as images generated, results tables, 
and graphs to analyze them. 

4.1 Heatmaps Generated with iNNvestigate 

As mentioned at the end of section 2, this work is 
an extension of [11]. That work explains the 
reasons why the iNNvestigate library is used and 
why only the Deep Taylor, Input*Gradient, and 
LRP methods were used. The same procedures 
are analyzed in the present work by continuing that 
research. Fig. 3 shows some heat maps obtained 
for a cell classified as healthy and a cell classified 
as unhealthy. 

The heat map generated with the Deep Taylor 
method shows over the entire image different 
degrees of relevance, using a single color to show 
the significance of the pixels for the neural network. 
However, most of the time, it offers higher levels of 
relevance at the edges of the cells of interest. 

The heat maps obtained by the Input*Gradient 
method generate pixels according to the color 
scale ranging from blue to red, with blue being the 
pixels with the lowest relevance and red pixels with 
the highest relevance. 

With this method, identifying the shapes or 
regions of greater importance to the neural network 
in classification is a little more complex. The 
complexity arises because it generates relevant 
and non-relevant pixels very close to each other 
and with poorly defined regions compared to 
other methods. 

Finally, with the LRP method, the heat maps 
obtained, like the previous method, handle the 
color scale of blue and red. Unlike the 
Input*Gradient method, these heat maps show 
more clearly the regions of greater relevance to the 
neural network than those unimportant. 

Fig. 4 shows two cells where the heat map is 
not defined for the Deep Taylor method. These 
cases, according to [6], are inherent to the 
technique since a value that works as a threshold 
is calculated. If this threshold is not exceeded, the 
heat map is not generated. 

4.2 Grad-Cam Heat Maps 

The authors in [7] propose a method of generating 
heat maps to provide "visual explanations" for 
decisions of a large class of convolutional neural 
network (CNN) based models, making them 
more transparent. 

Their approach, Gradient Weighted Class 
Activation Mapping (Grad-CAM), uses the 
gradients of any target concept, flowing into the 
final convolutional layer to produce an approximate 

 

Fig. 3. Examples of heat maps obtained with the 
iNNvestigate library 

 

Fig. 4. Examples of heat maps where the Deep Taylor 
method is not defined 
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location map that highlights the most essential 
pixels for the CNN network in class prediction. 

Grad-CAM applies to a wide variety of CNN 
model families. These include CNNs with fully 
connected layers (e.g., VGG), CNNs used for 
structured outputs (e.g., subtitles), CNNs used in 
tasks with multimodal inputs (e.g., visual response 
to questions), or reinforcement learning without 
architectural changes or retraining. 

In the context of image classification models, 
heat maps generated with this method provide 

insight into the failure modes of these models 
(showing that seemingly unreasonable predictions 
have reasonable explanations), outperforming the 
approaches described in the previous section. 

Finally, the authors designed and conducted 
human studies to measure whether Grad-CAM 
explanations help users establish adequate 
confidence in deep network predictions and 
showed that Grad-CAM enables untrained users to 
successfully discern a "stronger" deep network 
from a "weaker" one, even when both make 
identical predictions. 

Figure 5 visualizes some heat maps obtained 
with the Grad-Cam method for the GoogleNet, 
ResNet18, and ResNet50 models, for a diseased 
and healthy cell image. This figure shows that the 
most relevant pixels with the GoogleNet model are 
mainly located within the same location as the cell 
of interest. 

In the heat maps obtained with the ResNet18 
model, some regions of interest are positioned 
within the concerned cell. However, most of these 
pixels are located outside the target cell. 

Finally, in the heat maps that correspond to the 
ResNet50 model, the regions of interest usually 
are not related to the cell represented in the image. 
At first glance, it could be said that the Grad-Cam 
method, in combination with the GoogleNet model, 
is the best combination to generate heat maps that 
relate to the morphology of the target cell. 

However, in Figure 6, we can see the results 
obtained with cells different from the previous 
figure. In this image, it is visualized that the heat 
map obtained is not always the best. 

4.3 Evaluation by Experts 

The authors in [11] present the results of 
evaluating the heat maps generated with the Deep 
Taylor, Input*Gradient, and LRP methods. The 
evaluation was performed by five pathologists with 
expertise in ALL cell classification. 

From this work, it was obtained that the 
Input*Gradient method was the one that best 
visually related to the morphology of the target cell. 
The results are shown in Table 2. However, a 
database of segmented cells from the background 
was used in that work. 

The paper presents feedback from one of the 
experts. It indicates that heat maps have low 

 

Fig. 5. The Figure shows results obtained with the Grad-
Cam method and the GoogleNet, ResNet18, and 
ResNet50 models 

 

Fig. 6. The Figure shows results obtained with the Grad-
Cam method and the GoogleNet, ResNet18, and 
ResNet50 models 

Table 2. Table of heat map evaluation results. Retrieved 
from [19] 

General Evaluation of the three models and cells types 

Method Average 
% 

Morphological 
Information 

Num. Heat 
maps with the 
highest score 

LRP 1.19 24% 4 

Deep Taylor 1.69 34% 8 

Input*Gradient 2.30 46% 25 
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correlated information with the morphology 
of interest. 

The present work is derived from the results 
presented in that paper. Here, we perform a 
computational evaluation of the heat maps using a 
semi-manual segmentation of the most significant 
morphological features, adding to the assessment 
of the Grad-Cam method. 

We decided to use unsegmented images, i.e., 
the photos contain the cell of interest, the 
background, and other blood elements. 

4.4 Heatmap Evaluation 

Section 3.3 describes the methodological process 
used to evaluate the heat maps. The results 
obtained are shown here. In Fig. 7 shows the heat 
maps generated by the approaches and Fig. 8 
shows an overlay of the heat map and the 
diseased cell with which they were produced as 
comparative images of the heat maps generated 
with the models and methods described above are 
displayed for an ALL-diseased cell. 

If we know the number of relevant pixels placed 
within each segmented region, each category's 
percentage of pixels can be calculated based on a 
total of appropriate pixels. 

The results of the evaluation performed in this 
work are shown in the graph in Fig. 9. From these 
results, it can be seen that the GoogleNet model 
and the Grad-Cam method is the combination of 
model and approach that best relates to the 
morphological characteristics of the cell of interest 
since 43.61% of the pixels marked as significant 
are located on the cell, 26.75% of the pixels are 
positioned in the red blood cells and the remaining 
29.63% in the background. 

In the second place, the ResNet18 model and 
the Grad-Cam method were set with 31.78% of the 
relevant pixels inside the interest cell, 29.66% in 
the red blood cells, and 38.56% in the background. 
The combination that obtained the worst result was 
the VGG19 model with the Deep Taylor method, 
with percentages of relevant pixels within the target 
cell of 20.81%, 35.92% in red blood cells, and the 
highest rate in the background at 43.28%. 

We calculate the mean number of relevant 
pixels for each category. It is observed that the 
combination of the GoogleNet model and the 
GradCam architecture has a mean of 8071 pixels 
within the cell. In contrast, the red blood cell and 
background categories have the values of 4951 
and 5484, respectively. 

It is the only combination where the difference 
is more significant to a considerable extent 
between the complete cell versus the red blood 
cells and background categories. The results are 
shown in the graph of Fig. 10. The evaluation 

 

Fig. 7. Comparative image of the results obtained with 
the models and heat map generation methods 
evaluated 

 

Fig. 8. Comparative image of the heat maps obtained 
superimposed on the ALL cell with which they 
were generated 

 

Fig. 9. Comparison between model and heat map 
generation method and their relationship with the 
central cell, red blood cells, and background, regarding 
percentages of relevant pixels 
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results in percentage terms of the best model-
method combination are shown in Fig. 11. 

The results show that the most relevant pixels 
for healthy cells are 54.26% within the nucleus and 
45.74% in the cytoplasm. In the case of ALL cells, 
91.90% are located within the nucleus, and 8.10% 
are located in the cytoplasm. The latter is related 
to the morphological characteristics that describe 
the disease because, in ALL cells, the cell's 
nucleus tends to have a larger area than the 
nucleus of a healthy cell. 

In the database with which the heat maps were 
evaluated, there are three images where vacuoles 
were visualized. For this combination of the CNN 
model and heat map generation method, no pixels 
are of great relevance in their locations. Therefore, 
the vacuole category has 0% relevance. 

5 Discussion 

Performing a computational evaluation of the 
generated heat maps based on a map of 

morphological features (nucleus, cytoplasm, 
vacuoles) for the classification of ALL cells, as well 
as red blood cells and background, allows to 
evaluate whether the CNN focuses on cell features 
of interest or other elements present in the image. 
In addition, it will enable the comparison of heat 
map generation methods to define which 
correlates with such morphological features. 

According to the results obtained in this 
research, the GoogleNet model and the Grad-Cam 
method are the ones that best relate the natural 
morphological characteristics of the cell with the 
heat maps. 

According to the results obtained in the present 
work, the evaluation made by expert pathologists 
in [11] can be corroborated. 

6 Conclusion 

Implementing heat maps in a neural network aims 
to identify the most critical regions or pixels for the 
neural network classification process. In this work, 
we generated heat maps with four different 
methods (Deep Taylor, Input*Gradient, LRP, and 
Grad-Cam) implemented on four different 
architectures (GoogleNet, ResNet18, 
ResNet50, VGG19). 

The ALL-IDB2 database containing 
unsegmented images of the cell of interest with 
background and other blood elements present 
was used. 

A ground truth map was generated and divided 
into three morphological features (nucleus, 
cytoplasm, and vacuoles), red blood cells, and 
background. Using the reference map, we 
evaluated the generated heat maps. 

This evaluation concludes that the GoogleNet 
model focuses primarily on features present in the 
cell of interest. The Grad-Cam method is the heat 
map generation method that best expresses the 
relevance of CNNs. Combined with the GoogleNet 
model, it yields results that focus exclusively on the 
target cell. 

7 Future Work 

The generation of heat maps as a tool to explain 
the result of a prediction in an image is promising. 

 

Fig. 10 Mean number of relevant pixels for each 
category using a combination of heatmap generation 
versus model 

 

Fig. 11. Percentage of pixels with higher relevance 
located within the cell morphology of interest. Heat maps 
were created with the Google Net model and the Grad-
Cam method 
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However, research is still required because the 
results of the heat maps should focus on showing 
the outcomes that hematologists expect. Most 
importantly, the construction of heat maps must 
include morphological features to be useful for 
medical specialists, so we will continue to explore 
the line of generating visual explanatory methods 
that focus exclusively on morphological features 
present in the cell of interest. 
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