
Corn/Weed Plants Detection Under Authentic Fields

based on Patching Segmentation and Classification Networks

Francisco Garibaldi-Márquez1,2, Gerardo Flores1,

Luis M. Valentı́n-Coronado∗,1,3

1 Centro de Investigaciones en Óptica A. C., Guanajuato,
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Abstract. Effective weed control in crop fields

at an early stage is a crucial aspect of modern

agriculture. Nonetheless, detecting and identifying these

plants in environments with unpredictable conditions

remain a challenging task for the agricultural industry.

Thus, a two-stage deep learning-based methodology

to effectively address the issue is proposed in this

work. In the first stage, multi-plant image segmentation

is performed, whereas regions of interest (ROIs) are

classified in the second stage. In the segmentation

stage, a Deep learning model, specifically a UNet-like

architecture, has been used to segment the plants within

an image following two approaches: resizing the image

or dividing the image into patches. In the classification

stage, four architectures, including ResNet101, VGG16,

Xception, and MobileNetV2, have been implemented to

classify different types of plants, including corn and weed

plants. A large image dataset was used for training the

models. After resizing the images, the segmentation

network achieved a Dice Similarity Coefficient (DSC)

of around 84% and a mean Intersection over Union

(mIoU) of around 74%. On the other hand, when the

images were divided into patches, the segmentation

network achieved a mean DSC of 87.48% and a

mIoU of 78.17%. Regarding the classification, the best

performance was achieved by the Xception network with

a 97.43% Accuracy. Then, According to the results, the

proposed approach is a beneficial alternative for farmers

as it offers a method for detecting crops and weeds

under natural field conditions.

Keywords. Deep learning, weed detection,

segmentation and classification, corn field variabilities.

1 Introduction

Corn holds great gastronomical and economic

significance for many countries across the globe.

In Mexico, for instance, the sown area has

kept steadily in the last decade (2010 – 2020),

with an average sown surface of 8 million

hectares annually.

Nonetheless, the demand for this cereal

increased by 136% in the same period [3], which

has been compensated with importations. In

this sense, factors such as land tenure, weather

change, and crop management could avoid the

self-sufficiency of this cereal for the country.

Among management practices, weeds

elimination is one of the most important tasks

in agriculture because these unwanted herbs

compete with crop plants for nutrients, sunlight,
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Fig. 1. Propose a method for detecting crop and weed plants in authentic corn fields, utilizing segmentation and

classification networks.The resulting image output comprises of green, red, and blue boxes, each representing the

Crop, NLW, and BLW classes, respectively

and water [19] and could lead to 90% of kernel

yield reduction if not controlled in time [13]. The

most commonly employed control strategy to

eradicate weeds from cornfields is through the

application of herbicides.

However, the excessive use of herbicides has

resulted in environmental pollution [9]. This is

predominantly due to the uniform application of

significant volumes of these chemicals throughout

the entire field, even in regions where weeds

are absent [11]. Consequently, to address

the environmental impact of herbicides while

sustaining crop yield, researchers have developed

a sophisticated technique termed site-specific

weed management (SSWM). This method involves

the targeted application of chemicals exclusively

in areas where weeds are present, thereby

minimizing environmental pollution.

Operating systems that can effectively distribute

adequate herbicides on individual weed plants or

patches of them in the fields is plausible [14].

Nevertheless, detecting (localizing and classifying)

these plants in natural crop environments has

been reported to be a demanding and intricate

task [6]. This challenge is primarily attributed

to diverse parameters, such as the intensity of

sunlight, the density of plants, foliage occlusions,

and the variety of plant species.

The implementation of Convolutional Neural

Networks (CNNs) for identifying crop and weed

plants has gained significant traction in recent

times. YOLO [11] and Faster-RCNN [10] are
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Fig. 2. Visualization of the experimental dataset

showcasing plant species grouped into distinct classes,

with corresponding labels meticulously traced per

individual plant species

among the popular architectures employed for this

purpose. However, their efficacy is limited when

detecting plants in densely populated fields.

A promising alternative is the technique of

semantic segmentation, which separates the

plants from the background, although it requires

additional algorithms for classification.

While established architectures exist for

the semantic segmentation of objects within

images, there has been limited research on

weed segmentation in corn fields, mainly due

to the unavailability of a large and diverse

corn/weed dataset.

Here, we use deep learning models to segment

and classify corn and weed plants under authentic

environments and high plant density.

1.1 Related Works

The segmentation of plants in natural conditions

poses a significant challenge due to the complexity

of the variables involved. These variables include

the plant species, density, foliage occlusion,

morphological changes across growth stages, soil

appearance, and sunlight intensities.

The presence of these variables makes it

challenging to extract and classify the unique

features of plants. Few works in the literature have

been conducted on the segmentation of weeds

in corn crops. However, Fawakherji et al. [5]

recently proposed a method for segmenting a

multispectral dataset.

The images were captured using an unmanned

aerial vehicle (UAV) within a natural cornfield

environment and classified into soil and green

plants. A VGG-UNet model was then trained using

four sub-dataset images derived from Red, NIR,

synthetic images from the Normalized Difference

Vegetation Index (NDVI), and RED+NIR+NDVI.

Results showed a mean accuracy of 73%, 85%,

92%, and 88%, respectively. It is worth noting that

multispectral channels offer better segmentation

performance compared to the visible spectrum [2,

12]. However, the associated cost of infrared

sensors would present a challenge for autonomous

weed control systems.

Visible spectrum cameras have been utilized

in discriminating between corn and weeds in real

fields. For instance, in the work of Quan et al. [16],

the segregation of weeds under complex cornfield

environments was explored using the BlendMask

network. An extensive dataset of 5,700 images

was formed, which included two broadleaf weeds

and one narrowleaf weed.

Results indicated that a ResNet101 backbone

yielded a higher mIoU of 60.7% compared to

50.2% with ResNet50. More recently, Picon

et al. [15] employed the PSPNet network in

segmenting a corn/weed dataset in natural

fields, resulting in a Dice Similarity Coefficient

(DSC) of 25.32%.

This dataset consisted of corn, narrowleaf

weed (three species), and broadleaf weed (three

species). However, the authors acknowledged that
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Fig. 3. Sample of the plant species of the experimental

dataset. a) Zea mays, b) Cynodon dactylon, c) Eleusine

indica, d) Digitaria sanguinalis, e) Cyperus esculentus,

f) Portulaca oleracea, g) Tithonia tubeoformis, h)

Amarantus spinosus and i) Malva parviflora

the narrowleaf class was not correctly classified

due to its visual similarity to the crop class.

In this work, we present a large dataset of corn

and weed images that were captured in authentic

natural corn fields. This dataset includes four

monocotyledon plant species and four dicotyledon

plant species as weeds, as well as corn plants

as the crop.

To detect the Crop, narrowleaf weeds (NLW),

and broadleaf weeds (BLW), we propose a deep

learning-based approach. Each weed class, NLW

and BLW, groups the four plant species of weeds,

respectively. The proposed approach performs

well despite the challenging conditions presented

in the acquired images.

The rest of the document is structured as

follows: Section 2 contains the dataset description

as well as the implementation details of the

segmentation approaches. Section 3 presents the

primary results of the experiments, and Section 4

provides the conclusions of the work.

2 Materials and Methods

According to the results obtained from our previous

work [7], the UNet-like model [17], whose encoder

layer was the network ResNet101, performs the

segmentation of plants adequately. However,

it has been observed that the model often

misclassifies the pixels of the isolated Regions of

Interest (ROIs).

This evidenced the necessity of developing

a vision system with the ability to detect corn

plants, narrowleaf weeds, and broadleaf weeds

under authentic corn fields, giving the excessive

field variabilities. This gap is covered by

proposing a detection method based on deep

learning segmentation and classification networks,

as shown in Figure 1.

The algorithm comprises two main stages:

a segmentation stage and a subsequent

classification stage. In the segmentation stage, an

image with multiple plants is segmented using a

UNet-like architecture. The segmentation process

has been carried out under two approaches.

In the first approach, the input images are

segmented in a simple step by simply resizing

them, whereas in the second approach, the input

images are divided first into patches to avoid the

loss of significant features, and then each patch

is segmented. Subsequently, in the classification

stage, the pixels belonging to each class (Crop,

NLW, or BLW), from the segmented image are first

separated into single-class images, and then each

image is transformed into binary masks for the

easy extraction of the ROIs under scenarios of high

density of plants.

These ROIs are extracted using the well-known

connected component analysis (CCA) [8].

Then, in the final stage, an image is obtained

within the detected plants that have been

detected. To perform this task, the networks

ResNet101, VGG16, Xception, and MobileNetV2

have been implemented and evaluated. The

implementation details of the segmentation
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Table 1. Metrics adopted for evaluating the UNet-Like

model

Name Acronym Definition

Dice Similarity

Coefficient
DSC

2 TP

2 TP+FP+FN

Intersection

over Union
IoU

TP

TP+FP+FN

Mean

Intersection

over Union

mIoU
1

N

N∑

j=1

IoUj

and classification networks are covered in

Sections 2.2.1 and 2.2.2, respectively.

2.1 Dataset Description and Image
Pre-Processing

The dataset consisted of 12,000 visible spectrum

images captured from five corn fields in

Aguascalientes, Mexico. Three corn fields were

established during the spring-summer agricultural

cycle of the year 2020, and two additional corn

fields in the same cycle of the year 2021.

The dataset images have varying dimensions,

including 4,608 × 3,456 pixels, 2,460 × 1,080

pixels and 1,600 × 720 pixels. During the

process of capturing images, the camera was

positioned at a distance between 0.4 m and

1.5 m above the soil surface. Consequently, a

significant number of images were captured from

a top-down perspective, while a limited number

had a side view.

Furthermore, it is noteworthy that most

top-down view images were captured from

a distance greater than 1 m to avert dust

accumulation on the camera lens, which can be

caused by agricultural tractors traveling through

crop fields.

It is, therefore, recommended that during the

tentative instrumentation, the camera should be

positioned at a height of more than 1 m from the

ground to avoid such issues. The dataset contains

various factors that introduce variability.

The plants’ variability is determined by the

number of species, instances in a single image,

and occlusion and foliage overlap. Changes in

zoom and side views also affect the scale and

perspective of the plants.

Furthermore, the dataset includes plants in

different growth stages, starting from two true

leaves to seven true leaves, captured every five

days. Soil status is another parameter that affects

the dataset, including humidity conditions, organic

matter content, and changes in its appearance,

such as color and texture. The images were

captured in different sunlight intensities, including

morning, noon, and evening, as well as on sunny

and cloudy days.

After integrating the dataset, meticulous manual

annotation of each image at a pixel level was

conducted. The aim of this process was to

precisely quantify not only the crop species (Zea

mays L.), but also eight different weed plant

species: four narrow-leaf weeds (NLW) and four

broadleaf weeds (BLW). Figure 2 summarized the

plant species and the labels traced per each of

them. Noticed that they have been grouped into

the classes Crop, NLW, and BLW. Furthermore,

Figure 3 shows a sample of the plant species of

the dataset.

To develop an effective detection strategy, a

Convolutional Neural Network (CNN) was trained

using a sub-dataset comprising of individual-plant

images that were extracted from the original

experimental dataset’s multi-plant images. This

approach ensured that the dataset used for training

the classification networks was well-balanced, with

18,000 images per class.

2.2 Training of the Architectures

The detection approach proposed involves two

stages, as previously mentioned. The first stage

employs a UNet-like network for the segmentation

process. The second stage involves implementing

and evaluating ResNet101, VGG16, Xception,

and MobileNetV2 networks for the classification

process. The CNN architectures were trained

on a desktop computer that boasted a Core i7

processor, 32 GB of RAM, and an NVIDIA GeForce

RTX 3070Ti GPU with 8GB of memory.

The implementation was carried out in Python

3.8, utilizing the Keras framework with Tensorflow

2.5.0 as the backend.
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Table 2. Metrics adopted for evaluating the classification

models

Name Definition

Accuracy
TP+TN

TP+TN+FP+FN

Precision
TP

TP+FP

Recall
TP

TP+FN

F1-score 2×
Precision × Recall

Precision + Recall

2.2.1 UNet-Like

First of all, to train the UNet-like proposed model, a

fine-tuning of the hyper-parameter was performed.

Therefore, a few training steps were implemented

before figuring out the better configuration of

UNet-like network. In a first trial, the encoder

and decoder blocks were trained, and their weights

were randomly initialized.

Then, in a second trial, a transfer learning

strategy was implemented to the network, i.e., the

weights of the convolutional layers of ResNet101

(encoder) were imported from that when it was

trained in the ImageNet dataset [4], and then they

were frozen. The learning rate, the optimizer, and

the number of epochs also were changed.

In the segmentation approach where all input

images are segmented in a single step, it was

only necessary to resize the image and train the

network. On the other hand, an image padding

pre-processed was implemented in the approach in

which the input images were divided into patches.

Thus, the original size of input images remains

unchanged, and pixels of value 0 were added on

two sides of them to obtain fixed-size patches.

The loss function always was the dice loss,

since it is very strict for segmentation tasks

because it penalizes those predominant pixels of

certain classes.

The computation of dice loss is as follows:

LDice = 1−
2 y y∗ + 1

y + y∗ + 1
, (1)

where y and y∗ refer to the ground truth and the

predicted model value, respectively.

2.2.2 Classification Networks

In all the cases, the convolutional layers of the

classification networks were the original from the

architectures, but the Fully Connected (FC) layers

were proposed. Then, we have established

the parameters and hyper-parameters of these

architectures, following a similar approach to that

of the segmentation network. Firstly, the weights

of the convolutional and FC layers were initialized

randomly and trained. Secondly, the convolutional

layers were initialized with weights obtained from

the ImageNet dataset and subsequently retrained

with our own dataset.

In this step, only the FC layers were trained.

Furthermore, we have changed the FC layers

from two to three. Thus, the neural network

architecture employed in our study consisted of

variable numbers of neurons, ranging from 512

to 4,096, with increments of 512 for the first and

second layers. The ReLu activation function was

used for the first two layers, while the output, which

was the third layer, comprised three neurons with a

softmax activation function.

This choice of activation function was motivated

by the three specific classes of our dataset,

namely Crop, NLW, and BLW. To optimize the

neural network’s performance, we employed a

fine-tuning process that involved varying the

optimizer, learning rate, loss function, and number

of epochs. This approach allowed us to achieve

superior results and ensure the accuracy of

our model.

2.3 Evaluation Metrics

The proposed approach was evaluated in two

stages. The initial stage involved the assessment

of the segmentation process, followed by an

evaluation of the classification stage.

The chosen evaluation metrics for the

UNet-like segmentation network are Dice Similarity

Coefficient (DSC), Intersection over Union (IoU),

and mean Intersection over Union (mIoU).

These metrics have been selected to assess the
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Fig. 4. DSC achieved by the UNet-like model when the

input images were resized and divided into patches

Fig. 5. IoU reached by the UNet-like model when the

input images were resized and divided into patches

network’s performance and provide an accurate

representation of its effectiveness.

DSC pixel-wise compares the similarity

between the ground truth and the predicted mask,

reflecting their size and localization agreement as

perceptual quality [1]. IoU is employed to calculate

the percentage of overlap and align concerning

the desired outcome.

The metrics utilized to evaluate the networks’

performance are presented in Table 1. Noticed

that the mIoU is computed considering the total

number of classes (N) of the dataset.

The performance assessment of our

classification models was conducted using

the established metrics of Accuracy, Precision,

Recall, and F1-score. Table 2 offers an insightful

overview of these metrics. In Table 1 and 2, the

TP (true positive), TN (true negative), FP (false

positive), and FN (false negative) values are

directly estimated from the confusion matrix.

3 Results and Discussion

This section provides an overview of the results

obtained from the segmentation network UNet, as

well as the classification networks’ performance.

Furthermore, we will undertake a comprehensive

analysis of the achievements of each task. A set

of representative images showcasing the accurate

detection of crop and weed plants is also presented

to understand the system output better.

3.1 Performance of the Unet-Like Model

The segmentation stage has been carried out

under two approaches. The first one consists

of segmenting the resized input images, whereas

in the second approach, the input images

are divided first into patches, and then each

patch is segmented.

In either case, the best results were obtained

when the transfer learning technique was

implemented to train the UNet-like model.

Regardless of the approach, the network input

image size was 512 × 512. In addition, and

according to the experimentation, the Adam

optimizer with a learning rate of 0.0001 was

observed to fit better into our dataset. The number

of epochs used to train the model was 100.

The performance of the DSC metric of the

trained UNet-like model, when images were

resized and divided into patches is depicted in

Figure 4. It is observed that the four classes of the

dataset were better segmented by the UNet-like

model when the images were divided into patches

since the DSC of the four classes is superior

under this scenario. Specifically, the BLW class

was found to be better segmented by the network,

followed by the Corn class, and finally, the NLW

class, when focusing solely on the plant classes.

A narrow analysis indicates that the classes

Crop, NLW, and BLW were 2.75%, 4.90% and

4.96% better segmented respectively when images

were divided into patches, in contrast when they

were resized and segmented in a step.
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Fig. 6. Confusion matrix obtained when the images were

solely resized for segmenting

Fig. 7. Confusion matrix obtained when the images were

divided in patches for segmenting

The same behavior of the UNet-like model

is observed for the metric IoU under the two

segmentation scenarios, as Figure 5 shows.

That is, the UNet-like model performs better for

all the classes when images are divided into

patches. The IoU reaffirms that the BLW was the

best-segmented class, then the class Crop and the

worst was the class NLW.

Segmenting the patches increased 4.82%,

5.93%, and 4.45% the IoU metric for classes

Crop, NLW, and BLW, respectively, concerning

the IoU obtained where images were resized.

Segmenting the patches obtained from the input

images, without modifying the original size, may

help to preserve significant features of the classes,

then, the performance of the UNet-like model,

under this scenario, is superior.

Fig. 8. Performance classification networks

In summary, when the images were resized

during segmentation, the UNet-like model achieved

a mean DSC of 84.27% and mIoU of 74.21%. In

the other condition, when the images have been

divided into patches, the UNet-like model achieved

a mean DSC of 87.48% and a mIoU of 78.17%.

It is important to note that the magnitude values

of the metrics used in our study are deemed

acceptable as they surpass the performance of

similar works reported in the literature. These

works encompassed the segmentation of corn

and weed plants in natural environments, as

exemplified by the works of Quan et al. [16] and

Picon et al. [15].

Additionally, our trained model can potentially

segment other monocotyledon and dicotyledon

plant species, given that the classes NLW and

BLW, for which the architecture was trained,

contain four species of each group with distinct

growth stages. Moreover, the field variability was

varied enough, making our trained model useful for

segmenting a range of plant species.

In Figure 6 and Figure 7, we present two

confusion matrices in which the performance of

the UNet-like model can be appreciated. These

matrices showcase the percentage of correctly and

incorrectly classified pixels. In particular, Figure 6

shows the confusion matrix for the scenario where

the input images were resized. In contrast, Figure 7

shows the confusion matrix for the scenario where

the input images were divided into patches.

Under the two segmentation approaches, the

classes Crop and BLW were better segmented
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Fig. 9. MobileNetV2 classification performance

than the class NLW. In the first approach, the

model was able to classify the pixels belonging to

the Crop and BLW classes with a high degree of

similarity, achieving an accuracy of 85%. However,

the model’s ability to classify the pixels of the

NLW class was relatively lower, with an accuracy

of only 61%.

In contrast, when the images were divided into

patches, the pixels of the class BLW were better

classified as such (91.0%), next the pixels of the

class Crop (89.0%) and the worse classified were

the pixels belonging to the class NLW.

In all the cases, the UNet-like model classified

better the pixels belonging to the classes of plants

into their corresponding class when the images

were divided into patches, compared to that when

they were solely resized.

It is also observed that the UNet-like model

confused in more magnitude the pixels belonging

to the classes of plants as if they were soil, under

the two scenarios.

3.2 Performance of the Classification Networks

The implementation of transfer learning resulted

in a notable improvement in classification

performance. Specifically, the fully connected

(FC) layers were tuned to our dataset to achieve

this. The FC block comprised three layers, and

it was observed that the classification accuracy

was enhanced when the first two layers had

2,048 neurons.

Furthermore, the Adam optimizer with a

learning rate of 0.0001 was utilized, and the

categorical cross-entropy loss function was

employed to minimize the error. The model was

trained for 50 epochs on the complete dataset,

with input images sized at 224 × 224 pixels

for networks.

The macro performance of the networks

ResNet101, VGG16, Xception, and MobileNetV2

on classifying the ROIs extracted from the

segmented images are shown in Figure 8. It is

worth mentioning that these metrics have been

estimated under the segmentation scenario when

the images were divided into patches.

As it is appreciated, Xception performed better,

then MobiNetV2, and subsequently ResNet101,

and the worse performance was depicted by

VGG16, as the metrics Accuracy, Precision, Recall,

and F1-score indicate. In real-field applications, the

inference time is crucial.

In this way, from the studied classification

networks, the computation cost of MobileNetV2

network could be 8 to 9 times smaller than the rest

of the architectures since it implements depthwise

separable convolution (depthwise convolutions and

pointwise convolutions), instead of conventional

convolutions. Depthwise separable convolutions

reduce trainable parameters [18].

For this reason, it was decided to present in

Figure 9 the fine performance of MobileNetV2

model on classifying plants that belong to the

classes Crop, NLW, and BLW. Analyzing first the

metric Recall, it indicates that 100% of the images

belonging to the class Crop were classified as

such, 90% of the images of the class NLW were

classified as such and 99% of the images from

the class BLW were correctly classified by the

MobileNetV2 model. Since the precision of the

class Crop is 90%, it indicated that the model is

misclassifying 10% of the plants of the class NLW

as if they were corn, because the precision of

this class, NLW, is 100%. Therefore, the metrics

Precision, Recall, and F1-score make us realize

that the better classified class was BLW. Finally, the

mean classification performance among classes

was 95%, 95% and 99%, for Crop, NLW, and BLW,

accordingly, which is indicated by the F1-score.
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Fig. 10. Examples of the output images generated

through the implemented detection method, utilizing both

the segmentation and classification networks. The initial

two rows exhibit images with low plant density, while

the subsequent two rows showcase images featuring

high plant density. Across all samples, the visual

annotations include a green box denoting the crop, a

red box indicating non-leaf weeds (NLW), and a blue box

highlighting broadleaf weeds (BLW)

3.3 Detection Approach Visualization

Detecting objects in an image involves identifying

the location and class of every object within the

image. Figure 10 shows a sample of images

in which the plant classes have been detected

by applying our proposal. The first two rows of

Figure 10 contain images that have a low density of

plants, and occlusion of the foliage does not exist.

On the contrary, the images in the third and

fourth rows show a high density of plants, and

the foliage is partially covered in both cases. It’s

worth noting that the green boxes in all samples

represent the Crop class, the red boxes represent

the NLW class, and the blue boxes represent the

BLW class. A visual inspection of the images with a

low plant density indicates that almost all the green

regions have been detected.

Nonetheless, since the localization of the plants

is slightly related to the region provided by the

segmentation model, more than one bounding box

often appears in a simple image.

When high-density plant images are analyzed,

it has been observed that most plant classes are

accurately detected.

Nevertheless, due to the segmentation model’s

region extraction, it is common for multiple plants

of the same classification to share a bounding box

due to the density of foliage.

It is also appreciated that certain high-density

plant images were not detected by the

segmentation model due to the confusion of the

pixels that belong to the plant classes with those

of the soil. Although, in some cases, the detection

covers part of the foliage of the plants, the

implementation of this vision system for spraying

herbicides under real corn fields is still adequate.

It is because the systemic herbicides are

absorbed by the plants and gradually propagated

throughout their vascular system, killing all their

organs. Therefore, it has been observed that

applying herbicides on a targeted section of plant

foliage is adequate to eliminate them.

When the trained segmentation model

considers multiple plants in a region, it could

be tackled by subdividing the bounding box for

spraying less area of the foliage.
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4 Conclusion and Future Work

In this work, we present a method for detecting

corn plants, as well as four narrowleaf (NLW) and

four broadleaf (BLW) weed species in authentic

corn fields. The proposed methodology comprises

two distinct stages, namely segmentation

and classification. A UNet-like architecture is

employed from two different perspectives during

the segmentation stage. The first consider

segmenting the images entirely by resizing them,

and the second approach consists of dividing the

images into patches and then segmenting them.

In the classification stage, the four architectures

ResNet101, VGG16, Xception, and MobileNetV2

have been evaluated on classifying the ROIs from

the segmented images. Upon resizing the input

images, the UNet-like model was able to attain a

DSC of 84.27% and a mIoU of 74.21%. In the

other scenario, when the images were divided into

patches, the UNet-like model achieved a mean

DSC of 87.48% and a mIoU of 78.17%. Regarding

the classification networks, Xception performed

better than MobiNetV2 and ResNet101. VGG16

showed the worst performance.

The segmentation model exhibited some

limitations in accurately identifying the three

classes of plants and the soil class. A significant

proportion of pixels was frequently misclassified

between these categories. Moreover, the models

performed better in classifying the BLW class, but

struggled with the NLW class, both in segmentation

and classification. Notably, the models frequently

mislabeled NLW as Crop.

In general, the models perform well despite

the complexity of the dataset. In future work,

we aim to enhance the segmentation performance

of networks operating under high-density plants

and develop a robust model capable of adapting

to various field variabilities. Then, the dataset

will be enlarged with more plant species and

blur images captured with cameras mounted over

moving agricultural tractors.
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