
Multi-Instrument Based N-Grams

for Composer Classification Task

Alexander Gelbukh1, Daniel Alejandro Pérez Alvarez1,

Olga Kolesnikova1, Liliana Chanona-Hernandez∗,2, Grigori Sidorov1

1 Instituto Politécnico Nacional,

Centro de Invetigación en Computación,

Mexico

2 Instituto Politécnico Nacional,

Escuela Superior de Ingenierı́a Mecánica y Eléctrica Unidad Zacatenco,

Mexico

lchanona@gmail.com

Abstract. In this research, we address the composer

classification supervised problem from a Natural

Language Processing perspective. Starting from digital

symbolic music files, we build two representations: a

class representation and other based on MIDI pitches.

We use the technique of n-grams to build feature

vectors of musical compositions based on their harmonic

content. For this, we extract n-grams of size 1 to 4 in

harmonic direction, differentiating between all possible

subsets of instruments. We populate a term-frequency

matrix with the vectors of compositions and we classify

by the means of Support Vector Machines (SVM)

classifier. Different classification models are evaluated,

e.g., using feature filters and varying hyperparameters

such as TF-IDF formula, among others. The results

obtained show that n-grams based on MIDI pitches

perform slightly better than n-grams based on class

representation in terms of overall results, but the best

result of each one of these representations is identical.

Some of our best models reach accuracy results that

exceed previous state of the art results based on a

well-known dataset composed of string quartets by

Haydn and Mozart.

Keywords. Composer classification, composer

attribution, composer recognition, composer

identification, composer style, n-grams, harmonic

n-grams, string quartet, mozart, haydn.

1 Introduction

Starting from a list of composers and a list of

compositions, the task of composer classification is

defined as automatically assign each composition

to the correct composer. It can be approached in

unsupervised or supervised manner, but the last its

a more known task. There are two types of formats

to represent music digitally.

These are audio files and symbolic files. Audio

files store recorded sound and are used in the

field of Signal Processing. Our approach is more

close to Natural Language Processing field. That’s

why we use symbolic files, which store information

similar to a stave, as the composer intended it.

Different names have been given to this task.

For example, composer style [30, 29], composer

identification [21, 22], composer recognition [44,

42] and composer attribution [38, 40].

While several datasets have been tested for the

symbolic domain, comparing Mozart and Haydn

remains a challenge due to the similarities between

these composers [39, 21]. These two composers

admired and influenced each other [36, 4, 11].

Datasets involving Mozart and Haydn are often

the most difficult to classify [39, 9, 43]. According

to Hillewaere et al. and Kaliakatsos-Papakostas

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

ISSN 2007-9737

et al. [15, 22] the models for solving classification

tasks related to music (in symbolic format) can be

grouped into two large categories.

The first category includes models based on

global features or statistical descriptors which

express each piece as a vector of features. Each

feature or descriptor represents the measurement

of a certain musical element throughout the entire

piece, for example, frequency of major second

intervals, average pitch of notes, etc.

Among the works that are part of this category

we can mention [2, 38, 23]. The second category

involves predictive models such as n-grams or

Markovian models, which are based on the

counting or prediction of local events. An event

can be the interval between two consecutive notes

or the duration ratio between two consecutive

notes, etc. Examples of studies in this category

include [44, 16, 19].

In recent years, deep learning based models

for composer classification [43, 45, 7, 8, 24]

may also worth a category on his own. If we

look at the more abroad music classification

task we find deep learning approaches based

on Convolutional Neural Network (CNN)

[43], Residual Neural Network [24, 8] and

transformer-based architectures [45, 7, 47]. This

open exciting new possibilities to represent music

but this types of models usually need a lot of

samples to train and many resources to process.

For example, when trying to apply CNN to a

Mozart and Haydn dataset, the efforts by Verma

and Thickstun [43] were unsuccessful, probably

due to the small size of the dataset, which

could introduce overfitting in deep learning models,

and also the need for applying Leave One Out

(LOO) cross validation in order to compare with

previous works, which multiplies the processing

resources needed.

Our approach is based on n-grams, but instead

of the more common melody-based methods [44,

16, 19], we use harmony-based n-grams. Our goal

is to investigate whether harmonic content can be a

good predictor for the composer classification task.

This document is structured as follows.

In Subsection 1.1, we present the dataset

used. In Section 2, we discuss related work. In

Section 3, we show our method. In Section 4, we

discuss our results. Finally, in Section 5, we give

our conclusions.

1.1 Dataset

The dataset we use is composed by 107

movements from string quartets by Haydn and

Mozart. It is a balanced dataset, since

there are 54 movements by Haydn and 53 by

Mozart. This dataset was collected by Van

Kranenburg and Backer [39] in **kern format.

This format store musical information about pitch,

duration, dynamics etc., in a similar fashion to a

musical staff.

The **kern files can be converted into other

popular formats of symbolic music such as

MIDI [20]. The data was gathered from two

different sources: Musedata1 and KernScores2

and generated at the Center for Computer

Assisted Research in the Humanities at Stanford

University3. According to our research, 16 more

works have been built around this dataset or

similar, using accuracy as the measure in all cases.

2 Related Work

In 2005, Van Kranenburg and Backer made

an important contribution to the field of Music

Information Retrieval MIR [39].

Instead of characterizing the style of composers

from different periods [33] or differentiating the

work of a composer among a group of composers

[6], these researchers posed the problem of

differentiating two contemporary and very similar

composers such as the case of Mozart and Haydn.

Several research has been made in this regard,

but solutions to this problem still has room

for improvement.

1musedata.org
2kern.ccarh.org
3www.ccarh.org

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.86

ISSN 2007-9737

(a) (b)

(c) (d) (e) (f)

Fig. 1. Steps to final representations

2.1 Composer Classification

Van Kranenburg and Backer [39] evaluate the

effectiveness of harmony and counterpoint-based

features for detecting the style of the composers

Bach, Handel, Telemann, Haydn and Mozart.

To do this, they extract 20 features, among

which are: fraction of dissonant sounds, average

number of active voices, number of different

harmonic intervals between pairs of voices,

number of parallel thirds, fourths and sixths, etc.

The k-means clustering, k-nearest neighbor

and decision tree classifiers are used on this

feature vector.

The researchers divide the dataset into several

subsets, of which the most difficult to classify turn

out to be those containing the composers Haydn

and Mozart.

The best results are obtained with the

Nearest neighbor classification algorithm in

conjunction with the Fischer transformation for

dimension reduction.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Multi-Instrument Based N-Grams for Composer Classification Task 87

ISSN 2007-9737

Table 1. Accuracy best results of MIDI representation for each subset of instruments

insts results num feat insts results num feat instrums results num feat

1 65.42 48 1-3 86.92 1,208 1-2-3 88.79 8,685

2 70.09 38 1-4 82.24 519 1-2-4 84.11 9,982

3 66.36 38 2-3 75.7 574 1-3-4 83.18 2,102

4 78.5 44 2-4 84.11 650 2-3-4 85.98 7,946

1-2 77.57 1,247 3-4 82.24 566 1-2-3-4 87.85 25,526

Kempfert and Wong [23] explore the use of

features derived from the sonata form, particularly

the use of primary and secondary themes in the

melodic development of the pieces.

As a complement, they add to the feature vector

other style markers based on the rhythm and

melody of individual voices and harmonic features

that capture the interaction between voices, as well

as global features of the pieces, such as average

and standard deviation of pitch and duration of

notes or the ratio of notes and rests during the

piece. Some of these features are derived from

previous studies by other researchers.

They apply a selection of features based on the

Bayesian Information Criterion and classify using

Bayesian Logistic Regression, obtaining state of

the art results for the widely used dataset of

string quartets by Haydn and Mozart. Their

work demonstrates the usefulness of incorporating

features that take into account the sonata structure.

2.2 Harmony Based Classification

Ogihara and Li [30] seek to characterize the style of

composers through the chord progressions of their

works. To do this, they use n-grams of previously

simplified chords and assign weight to these

n-grams depending on the duration of the chords.

These researchers also use a transposition

system to ensure that the key is the same for all

works. With the n-grams obtained, the researchers

create profiles of composers and compare them

with each other using the cosine similarity

measure. Using this method, the researchers

managed to automatically group jazz composers

hierarchically, according to a chronological order.

Something that remained to be demonstrated

in this research is whether the cosine similarity

measure is the most appropriate for comparing

composer profiles because the n-grams that make

up the profiles suffer from dispersion.

Pérez-Sancho et al. [34] face the task of

classifying musical genres. For this, they collect

a corpus of pieces from three genres: popular,

jazz and classical and three subgenres for each

of these genres. These researchers use two

methods to ensure the homogeneity of the data:

to transpose the entire dataset to the same key or

to represent the chords as degrees of the key.

They also use feature selection procedures

based on Average Mutual Information (AMI) on

the chord list of the training set. To classify, they

compare the performance of the n-gram technique

with the Naı̈ve Bayes Classifier, obtaining slightly

better results with n-grams for the data set of three

genres and with Naı̈ve Bayes for the data set of

nine subgenres.

According to [13], the representation of musical

structure can have a significant influence in

the quality of the results of a computational

analysis on a given dataset. In most of the

reviewed research that faces musical classification

tasks based on harmonic content, the classic

symbolic nomenclature of chord representation is

used (e.g., Cmaj, Cmin, Cdim etc.), or some

representation variant.

An example of this is the use of classical

chord labels [30, 34, 46, 13] or a binary

notation based on the present notes [46]. Other

transformations include chord simplification [30,

34, 13], enharmonic representation of chords [35]

or the replacement of chords by degrees or tonal

functions (1st degree, 5th degree etc.) [34].

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.88

ISSN 2007-9737

Table 2. Accuracy best results of class representation for each subset of instruments

instrums results num feat instrums results num feat instrums results num feat

1 63.55 13 1-3 76.64 148 1-2-3 86.92 1,016

2 66.36 13 1-4 71.03 169 1-2-4 75.7 1,725

3 69.16 13 2-3 79.44 140 1-3-4 79.44 1,704

4 52.34 5 2-4 68.22 150 2-3-4 86.92 638

1-2 64.49 135 3-4 62.62 121 1-2-3-4 88.79 2,136

Some researchers also process the duration of

the chords [30, 35, 13] and the vast majority use

transposition to the same key [30, 34, 46, 13].

Our representation specifies not only the notes that

are included in a given chord but also the order

in which these notes are produced. That is, our

representation includes information about which of

the instruments produces a given note within the

chord. In many cases, our representation even

specifies which octave each note is in.

In this way our classifier can know at all times

which instrument produces the tonic note, which

instrument produces the 5th degree, etc. This

information could be important to characterize the

style of a certain composer. The representations

based on chord labels discussed in the previous

paragraph do not offer access to that information.

3 Method

Some aspects of our methodology are shared

with our previous work [1], for example, setting

a minimum note length, which aims to transform

duration information into tonal information. But the

way we generate n-grams is different because we

base our method in harmony instead of melody.

Other aspects are similar to those that have been

observed in prior studies, including feature filtering

and using popular machine learning classifiers

such as SVM.

3.1 Preprocessing

We found some errors in **kern files and we fix

them manually (see subsection 4.1). We also

remove multiple stops keeping the highest note at

any moment for each instrument, as is common

practice [44, 26]. Besides this, we extend the

representation, we convert the pitches from **kern

to MIDI format, we transpose the compositions

and we transform MIDI pitches into classes in

an optional fashion. We explain all this steps in

detail below.

3.2 Extended Representation

Because notes can have different duration is very

hard to generate a n-gram model using more than

one instrument simultaneously. That’s why we

establish a minimum note length, thus transforming

long notes into many notes of minimum length.

Our goal is to convert duration information

into pitch information. For instance, we can

represent a quarter note as two quavers, a half

note as four quavers and a whole note as eight

quavers, if we define the quaver as minimum note

length. However, with such election would be

impossible to represent shorter length notes such

as semiquavers.

That’s why a much smaller base note must be

established to avoid losing too much information.

The downside to this is the high number of

computational resources that a small minimum

note length can take to process. We define as

extended representation the action of converting

a regular staff with regular note lengths into a

representation with only minimum length notes.

Several researchers have tried somewhat

similar procedures, for instance Pape et al. [31]

(they also add one hot encoding representation)

and Velarde et al. [42] (they add multi

hot encoding).

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Multi-Instrument Based N-Grams for Composer Classification Task 89

ISSN 2007-9737

Table 3. Comparison with the state of art (in the last 9

works the same composers were used but with different

datasets)

Comparison with SOTA

4-grams (Class representation) 88.79

Alvarez et al. (2024) [23] 86.92

Kempfert and Wong (2020) [23] 84.11

Lostanlen (2018) [26] 82.2

Velarde et al. (2016) [42] 80.4

Van Kranenburg and Backer (2005) [39] 79.4

Hillewaere et al. (2009) [16] 79.4

Velarde et al. (2018) [41] 79.4

Hajj et. al. (2018) [10] 82.9

Kempfert and Wong (2020) [23] 82.46

Herlands et al. (2014) [14] 80.0

Hillewaere et al. (2010) [17] 75.4

Hontanilla et al. (2013) [19] 74.7

Dor and Reich (2011) [9] 73.75

Pape et al. (2008) [31] 73.5

Taminau et. al. (2010) [37] 73.0

Kaliakatsos et al. (2011) [22] 70.0

3.3 Transposition

Bringing all compositions of the dataset to

the same key it’s required to avoid being

conditioned when classifying by the diverse original

tonalities of the pieces. Otherwise, instead of

classifying by composers, we probably would be

classifying by tonalities.

This follows Wolkowsky’s view [44], which calls

for independence between the features of the

feature vector and the tonalities of the pieces of

dataset. There are ways of avoiding transposition,

for instance using intervals between consecutive

notes [44, 15, 16, 19, 10].

However, we could lose some information

with this type of representation. For example,

the intervals C-G and F-C are both perfect fifth

intervals, so they are represented in the same way

in a interval-based representation.

On the other hand, in a transposed based

representation, they are represented differently.

The interval C-G being equivalent to going from

the tonic to the fifth degree and the interval F-C

being equivalent to going from the fourth degree

to the tonic.

3.4 Class Pitch vs MIDI Pitch

As an optional step in the representation, we

add a class representation. To do so, we use

12 different symbols representing each of the

musical notes and one special symbol for rests.

We use the modulo 12 operation in order to

normalize MIDI pitch into classes. This results

in a reduction of the MIDI values in degrees or

functions (fifth, fourth, third etc). For instance,

after normalization, MIDI values 48, 60 and 72

would be represented as class 0, corresponding

to tonic C, and MIDI values 55, 67 and 79 would

be equivalent to class 7, corresponding to fifth

degree G. This representation is compared with

a representation that preserves the original MIDI

values in Section 4.

3.5 Example of Feature Generation

We summarise the above steps with an example.

Figure 1 shows the processing of the first two bars

of the first movement of Mozart’s string quartet

k499. Clause a) shows the representation on the

staff, as conceived by the composer. In clause b)

the same piece is shown, but now in **kern format.

At the top of this format, some metadata can be

observed (character ‘*’) and at the bottom the notes

can be seen. Each instrument is represented by a

column and the ‘=’ character denotes the beginning

of a new measure. The length of each note is

represented with a number and the pitch with a

combination of letters and symbols.

Clause c) shows how the piece looks after

“extending” the representation, we use a quaver

as the minimum base note in this example. We

discard unused information contained in the **kern

format. The piece in this example begins with

an anacrusis, hence the first thing represented

is the dotted half note rest that precedes the

quarter note f#.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.90

ISSN 2007-9737

Table 4. Most important features for class Haydn and class Mozart based on our two best models

MIDI H 60-52-52, 65-62-53, 67-59-59, 83-r-r, 64-55-55, 64-58-55, r-71-67, 62-53-53, 62-57-57, 65-59-62

rep M 60-57-50, 72-57-52, 71-59-55, 72-57-54, 74-62-r, 62-47-43, 62-50-47, 76-67-60, r-64-55, 72-60-r

Class H 5-2-5-2, 0-4-4-0, 2-9-2-5, 0-4-4-7, 7-0-4-4, 11-5-11-7, 6-9-0-7, 2-9-9-5, 6-2-0-r, 9-0-0-5

rep M 9-5-0-5, 2-7-11-5, r-r-2-2, 10-4-0-0, 4-7-0-r, 5-11-7-7, 2-7-11-2, 5-2-9-2, 11-7-7-4, 2-9-0-6

It can be seen that in this extended

representation the eighth notes are not modified,

the quarter notes are doubled and the dotted half

note rest is replaced by 6 eighth note rests. Clause

d) shows a representation similar to that in clause

c), only the pitches in **kern format have been

replaced by MIDI values.

Clause e) shows the transposition of these MIDI

values to the scale of C. Since the original scale is

D, we subtract 2 from each MIDI value. The rests

remain unchanged. Finally, clause f) shows the

optional step of converting the already transposed

MIDI values into class values. To achieve this, we

calculate each MIDI value by its modulo 12. Once

again, the rests are not modified.

3.5.1 Instrument Filtering

Once we have all preprocessing done we can start

to generate features. We use a simple n-gram alike

method, but instead of words we use groups of

minimum length notes in harmonic direction.

Since we have reduced the content of each

instrument to a single note, in our dataset of string

quartets must be a maximum of 4 voices playing

(or at rest) at any given moment (see 1). Instead

of always using all of these 4 voices, we build

models for all combinations of instruments and we

create n-grams based solely on the current subset

of instruments.

For example, we can have models that use

only viola, models that use only viola and cello,

models that use all voices except for viola etc.

In this way we can analyse based on results if

there is a particular instrument, or combination of

instruments that make the results stand out.

3.5.2 N-grams Generation

Continuing with the example of feature generation,

in figure 1 after building MIDI representation in

clause e) and class representation in clause f), we

can generate 24 − 1 = 15 n-grams in harmonic

(horizontal) direction for each line (time).

Each one of these n-grams will be made from

notes solely from a subset of instruments, so if the

current model uses only first violin and viola, then

we only use columns 1 and 3 to generate a 2-gram

and if the current model uses all instruments except

for second violin then we only use columns 1, 3 and

4 to generate a 3-gram.

We use symbol ‘-’ to concatenate from left

to right the notes within the n-gram. For

instance, for a model using all instruments and

class representation the following 4-grams are

generated: r-r-r-r, r-r-r-r, r-r-r-r, r-r-r-r, r-r-r-r, r-r-r-r,

4-4-4-4, 4-4-4-4, 0-0-0-0... etc.

For a model based on MIDI representation

using only first violin and viola the following

2-grams are generated: r-r, r-r, r-r, r-r, r-r, r-r, 64-76,

64-76, 60-72, ..., etc. and we ignore the information

from remaining columns (for that particular model).

Counting the number of occurrences of each of

the n-grams generated we fill the feature vector that

identifies each composition.

3.6 Feature Filtering

Once each sample is represented as a vector of

occurrences of n-grams of groups of instruments,

we can optionally apply a simple feature selection

criterion. To do this, we set 3 thresholds, a

threshold that filters the most frequent n-grams, a

threshold that filters the most infrequent n-grams

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Multi-Instrument Based N-Grams for Composer Classification Task 91

ISSN 2007-9737

Table 5. Misclassified scores

MIDI H op103-01, op20n3-01, op20n6-04, op50n1-04, op64n1-03, op64n4-04, op71n1-04, op76n4-01, op76n4-03

rep M k138-03, k159-02, k168-04

Class H op1n0-05, op20n3-03, op20n6-04, op33n6-02, op50n2-01, op64n1-02, op64n4-04, op76n4-01

rep M k159-03, k168-02, k168-03, k465-03

and a threshold that limits the number of

features. This is somewhat similar to the way text

is processed by removing stop words and rare

words. We can also alter the TF-IDF formula or the

type of normalization of the feature vector.

Thus, we can compare models with different

degrees of filtering, different norm and different

variations of TF-IDF formula. For more on this, see

subsection 4.1.

3.7 Classification Parameters

We accommodate some NLP concepts to the

field of music with the goal of building the

Term-document matrix [27, 28]. These concepts

are enumerated below:

1. Term frequency (TF): tf(t, c), the frequency of

occurrence of term t in composition c.

2. Inverse document frequency (IDF):

log[n/ df(t)] + 1, where n is the total number

of compositions and df(t) is the number of

compositions in which term t is present.

3. TF-IDF: TF(t, c)× IDF(t), TF multiplied by IDF.

4. Sublinear scaling: 1 + log(TF), is used as

optional replacement for TF.

5. IDF smoothing: log
(

(

1+ n
)

/
(

1+ df(t)
)

)

+1, is

used as optional replacement for IDF.

6. Normalization L1: set the sum of values of the

feature vector equal to 1.

7. Normalization L2: set the sum of squares of

values of the feature vector equal to 1.

As can be observed, we have replaced

documents (for which the original formula was

created) for musical compositions. I the case of

terms, we have defined them as minimum length

groups of notes in harmonic direction, but it also

could be intervals between notes, note duration or

any other element taken from compositions.

4 Results and Discussion

4.1 Quartet Classification

We selected SVM with linear kernel, a classifier

commonly used for text classification, for

quartets classification. Given the computationally

expensive process resulting from vectors with high

dimensionality, we avoided SVM with RBF kernel.

To ensure that the vector size is uniform for all

samples, n-grams which have not been observed

in a particular composition are added to the vector

with an occurrence of zero. We chose to transpose

all the movements to the key of C major.

Changes in tonality may occur within each

movement, that is a peculiarity of string quartet

format. These changes were carefully considered

during the transposition process. The **kern

files were found to contain a certain amount of

encoding errors.

For example, a file whose lines do not match

the humdrum encoding, files or some bars of files

with more instruments than the established ones

(we removed the extra column), files with duplicate

instruments (we ignored the extra columns) and

files with duration errors (see [16, 17].

We use Python as the programming language

for our method.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.92

ISSN 2007-9737

We use scikit-learn [32] and nltk [3] libraries,

as well as Support Vector Classifier (SVC),

CountVectorizer and TfidfTransformer methods of

these libraries. We established the values C for

SVC as C=1,000 and minimum note length g as

g=192. We created models for both MIDI and

class representation.

For each representation, we developed models

for each of the 15 subsets of instruments (first

violin, second violin, viola, cello, first violin and

second violin, first violin and viola etc.).

For each subsets of instruments, we tested

models with and without IDF, sublinear scaling

and IDF smoothing, different types of norms (L1

and L2), values of 0, 5 and 10 for minimum

document frequency and values of L, L-5 and L-10

for maximum document frequency, where L is the

length of the dataset. We use leave one out cross

validation to compare our results with previous

research (See Table 3).

4.2 Analysis of Results

The code and the results for the present work

can be seen at the following address4. Here

we present the best results for each each

subset of instruments and each representation.

Table 1 shows the best results obtained for

each instrument subset using the MIDI pitch

representation. Columns of the table show in order

the instruments used, the results and the average

number of features.

Most of the models listed in this table obtained

good results, above 80% of accuracy. The best

result derived from the MIDI representation (88.79)

is based on a model formed by the union of the first

and second violin and viola. The parameters of this

model are as follows:

L2 norm with sublinear scaling in conjunction

with IDF smoothing, a minimum document

frequency equal to 0 and a maximum document

frequency equal to 97.

On the other hand, the cello was the most

predictive instrument among the models made up

of individual instruments, with a wide difference

over the rest. It is worth highlighting the result

of the model formed by the first violin and viola

4github.com/dapalvarez/harmonic ngrams

(86.92) with just over 1200 features. Several of the

models presented in this table outperform previous

state of the art results. Table 2 shows the best

results obtained for each instrument subset using

the class representation. Compared to the MIDI

pitch representation, most results are inferior.

The best result of this representation (88.79)

equals the best result of the MIDI representation

but with a smaller number of features. Among

the parameters of this best result, we used the

L2 norm and sublinear scaling in conjunction with

the inverse document frequency, and we also set

the minimum document frequency to 5 and the

maximum document frequency to 107.

Among other notable results, we can mention

the mixture of second violin and viola (79.44) with

only 140 features and the union of second violin,

viola and cello (86.92) with only 638 features.

Several models based on this representation also

surpass the results of the state of the art.

Table 3 shows the state of the art results for

the task of composer classification. The first part

of the table shows the results of previous research

using the same dataset we use. The second part

of the table shows the research in which the same

composers (Haydn and Mozart) are classified but

using datasets different than ours. The results

obtained in the present work outperform the results

of the state of the art.

4.3 Musicological Analysis

Table 4 presents the 10 most important features

for Haydn and Mozart based on our two best

models. This was calculated using ELI5 Python

library and taking into account all iterations of the

cross validation process. The features are sorted

by importance. First part of the table shows the

features derived from trigrams of all instruments

except for violoncello and MIDI representation.

It’s difficult to make conclusions about the

chords involved, since we are missing the lower

voice but we can recognize in the Mozart’s row

a likely A minor in second position, a G major in

sixth position and a C major in eighth position.

In the case of features derived from the class

representation model, it’s easier to identify chords.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Multi-Instrument Based N-Grams for Composer Classification Task 93

ISSN 2007-9737

So, in the case of Haydn, we recognize a couple

of D minor chords in first inversion, a couple of C

major chords in second and first inversion, and an

F major. In the case of Mozart, we can see an F

major, a G major 7 in third inversion, a C major, a

G major in second inversion, a D minor, an E minor

and a D major 7 in first inversion.

Most of this chords are shared by both

composers but differences arise in the order of the

notes. When we compare the features from the two

models, applying modulo 12 operation to the MIDI

pitches and comparing them with the three first

notes of the class derived features, we find some

coincidences. So, for Haydn, feature ‘60-52-52’

matches ‘0-4-4-0’ and ‘0-4-4-7’, feature ‘65-62-53’

matches ‘5-2-5-2’ and feature ‘62-57-57’ matches

‘2-9-9-5’. For Mozart, feature ‘76-67-60’ matches

‘4-7-0-r’. Besides, there are no coincidences

between MIDI-based features belonging to one

composer and class-based features belonging to

the other composer, so we can glimpse points of

contact between the procedures of both models.

Table 5 lists the compositions that were

misclassified by the two models with which we

obtained the best results. The first part of the

table shows the pieces misclassified by the model

formed by the union of first violin, second violin and

viola, based on the MIDI pitch representation.

Most of the pieces listed in this segment are

composed by Haydn. Among these is the fugal

finale (4th movement) opus 20 number 6. This

movement has similarities with another Mozart

fugue, the fourth and final movement of the k168

quartet, also misclassified.

Heartz [12] asserts that Mozart’s inclusion of a

fugue at the conclusion of the K168 quartet was

a result of his familiarity with Haydn’s opus 20.

Brown [5] refutes this, noting out that composing

fugal ends is not just a Haydn practice, but rather a

Viennese one.

On the other hand, Hontanilla [18] points out

that fugues are popular throughout the Baroque

era, which makes it difficult to classify because

both composers use them to the same extent.

The second part of the table 5 shows the

compositions misclassified by the model formed by

the union of all the instruments and based on the

class representation.

As with the MIDI-based model, most of the

misclassified pieces belong to Haydn. Several

compositions were misclassified by both models.

These are the fourth movement opus 64 number

4, the first movement opus 76 number 4 and the

fourth movement opus 20 number 6, all by Haydn.

The third movement of the quartet k465, also

misclassified, belongs to the “Haydn Quartets”, a

group of 6 string quartets that Mozart composed

in honor of Haydn. Bonds [4], suggests that with

the “Haydn Quartets”, Mozart intended to show

himself as the master Haydn’s successor rather

than attempting to copy his style.

Maybe that’s why only one movement turned

out to be misclassified among the 18 movements

in the dataset derived from the “Haydn Quartets”.

Regarding this 3rd movement k465, La Rue [25]

identifies a direct influence of Haydn on it.

The movements k168-02, k168-03, k168-04

included in the “Viennese Quartets” were

composed by Mozart in 1973 in the city of

Vienna. There are studies on similarities between

the “Viennese Quartets” and other contemporary

quartets by Haydn [5]. For example Heartz [12],

identifies the quartets opus 9 and opus 17 as

probable sources of inspiration for Mozart.

5 Conclusions

In the present manuscript, we expose a new

approach to the supervised problem of composer

recognition. We adapt to music field some

concepts of NLP domain to create a vectorial

representation of musical pieces based on n-grams

extracted in harmonic direction. We compare the

pros and cons of representing pitches using MIDI

values or class values. We use the SMV classifier

to achieve state of the art results on a dataset of

string quartets by Mozart and Haydn.

We compare models with different subsets of

hyperparameters such as norm, feature filtering

values etc. and we give some musical insight

about the misclassified scores. We think it would

be interesting, as future work, to evaluate models

which can combine different n-gram sizes. That

is, models which integrate unigrams with trigrams,

bigrams with 4-grams, etc.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.94

ISSN 2007-9737

Another proposal would be to apply our method

to datasets used in other music classification

tasks, such as emotion recognition or genre

recognition. Finally, we propose to adapt

recent discoveries from NLP field, for example

transformer models such as BERT, to tackle the

problem of composer classification.

Acknowledgments

The present work was done with partial support

from the Mexican Government through the

grant A1-S-47854 of CONACYT, Mexico, grants

20232138, 20231567 and 20232080 of the

Secretarı́a de Investigación y Posgrado of the

Instituto Politécnico Nacional, Mexico.

The authors thank the CONACYT for the

computing resources brought to them through

the Plataforma de Aprendizaje Profundo para

Tecnologı́as del Lenguaje of the Laboratorio

de Supercómputo of the INAOE, Mexico and

acknowledge the support of Microsoft through the

Microsoft Latin America PhD Award.

References

1. Alvarez, D. A. P., Gelbukh, A., Sidorov, G.
(2024). Composer classification using melodic

combinatorial n-grams. Expert Systems with

Applications, Vol. 249. DOI: 10.1016/j.eswa.

2024.123300.

2. Backer, E., van-Kranenburg, P. (2005).
On musical stylometry—a pattern recognition

approach. Pattern Recognition Letters, Vol. 26,

No. 3, pp. 299–309. DOI: 10.1016/j.patrec.

2004.10.016.

3. Bird, S., Klein, E., Loper, E. (2009). Natural

language processing with Python: Analyzing

text with the natural language toolkit. O’Reilly

Media, Inc.

4. Bonds, M. E. (2007). Replacing haydn:

Mozart’s “Pleyel” quartets. Music and Letters,

Vol. 88, No. 2, pp. 201–225. DOI: 10.1093/ml/

gcl150.

5. Brown, A. P. (1992). Haydn and Mozart’s

1773 stay in Vienna: Weeding a musicological

garden. Journal of Musicology, Vol. 10, No. 2,

pp. 192–230. DOI: 10.2307/763612.

6. Buzzanca, G. (2002). A supervised learning

approach to musical style recognition.

Additional Proceedings of the Second

International Conference on Music and

Artificial Intelligence, Vol. 2002, pp. 167.

7. Chou, Y. H., Chen, I., Chang, C. J., Ching,
J., Yang, Y. H. (2021). MidiBERT-piano:

Large-scale pre-training for symbolic music

understanding. arXiv. DOI: 10.48550/arXiv.

2107.05223.

8. Deepaisarn, S., Buaruk, S.,
Chokphantavee, S., Chokphantavee,
S., Prathipasen, P., Sornlertlamvanich,
V. (2022). Visual-based musical data

representation for composer classification.

17th International Joint Symposium on

Artificial Intelligence and Natural Language

Processing, pp. 1–5. DOI: 10.1109/

iSAI-NLP56921.2022.9960254.

9. Dor, O., Reich, Y. (2011). An evaluation of

musical score characteristics for automatic

classification of composers. Computer Music

Journal, Vol. 35, No. 3, pp. 86–97.

10. Hajj, N., Filo, M., Awad, M. (2018). Automated

composer recognition for multi-voice piano

compositions using rhythmic features, n-grams

and modified cortical algorithms. Complex and

Intelligent Systems, Vol. 4, No. 1, pp. 55–65.

DOI: 10.1007/s40747-017-0052-x.

11. Hatten, R. S. (2017). Mozart’s music of

friends: Social interplay in the chamber works,

Vol. 39. DOI: 10.1093/mts/mtx010.

12. Heartz, D. (1995). Haydn, Mozart, and the

Viennese School, 1740-1780. WW Norton

New York.

13. Hedges, T., Roy, P., Pachet, F. (2014).
Predicting the composer and style of jazz

chord progressions. Journal of New Music

Research, Vol. 43, No. 3, pp. 276–290.

DOI: 10.1080/09298215.2014.925477.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Multi-Instrument Based N-Grams for Composer Classification Task 95

ISSN 2007-9737

10.1016/j.eswa.2024.123300
10.1016/j.eswa.2024.123300
10.1016/j.patrec.2004.10.016
10.1016/j.patrec.2004.10.016
10.1093/ml/gcl150
10.1093/ml/gcl150
10.2307/763612
10.48550/arXiv.2107.05223
10.48550/arXiv.2107.05223
10.1109/iSAI-NLP56921.2022.9960254
10.1109/iSAI-NLP56921.2022.9960254
10.1007/s40747-017-0052-x
10.1093/mts/mtx010
10.1080/09298215.2014.925477

14. Herlands, W., Der, R., Greenberg, Y., Levin,
S. (2014). A machine learning approach

to musically meaningful homogeneous style

classification. Vol. 28, No. 1. DOI: 10.1609/

aaai.v28i1.8738.

15. Hillewaere, R., Manderick, B., Conklin, D.
(2009). Global feature versus event models

for folk song classification. Proceedings of

the International Society for Music Information

Retrieval Conference, Vol. 2009, pp. 729–733.

16. Hillewaere, R., Manderick, B., Conklin, D.
(2009). Melodic models for polyphonic music

classification. Proceedings of the Second

International Workshop on Machine Learning

and Music, pp. 19–24.

17. Hillewaere, R., Manderick, B., Conklin,
D. (2010). String quartet classification with

monophonic models. 11th International

Society for Music Information Retrieval

Conference, pp. 537–542.

18. Hontanilla, M., Pérez-Sancho, C., Inesta,
J. M. (2017). Music style recognition

with language models–beyond statistical

results. Proceedings of the 10th International

Workshop on Machine Learning and Music,

pp. 31–36.

19. Hontanilla, M., Pérez-Sancho, C., Iñesta,
J. M. (2013). Modeling musical style with

language models for composer recognition.

Iberian Conference on Pattern Recognition

and Image Analysis, Pattern Recognition and

Image Analysis, pp. 740–748. DOI: 10.1007/

978-3-642-38628-2 88.

20. Huron, D. (2002). Music information

processing using the humdrum toolkit:

Concepts, examples, and lessons. Computer

Music Journal, Vol. 26, No. 2, pp. 11–26.

DOI: 10.1162/014892602760137158.

21. Kaliakatsos-Papakostas, M. A.,
Epitropakis, M. G., Vrahatis, M. N.
(2010). Musical composer identification

through probabilistic and feedforward

neural networks. Proceedings of the

European Conference on the Applications

of Evolutionary Computation, pp. 411–420.

DOI: 10.1007/978-3-642-12242-2 42.

22. Kaliakatsos-Papakostas, M. A.,
Epitropakis, M. G., Vrahatis, M. N.
(2011). Weighted Markov chain model

for musical composer identification.

European Conference on the Applications

of Evolutionary Computation, pp. 334–343.

DOI: 10.1007/978-3-642-20520-0 34.

23. Kempfert, K. C., Wong, S. W. K. (2020).
Where does Haydn end and Mozart begin?

Composer classification of string quartets.

Journal of New Music Research, Vol. 49, No. 5,

pp. 457–476. DOI: 10.1080/09298215.2020.

1814822.

24. Kim, S., Lee, H., Park, S., Lee, J., Choi,
K. (2020). Deep composer classification using

symbolic representation. Proceedings of the

International Society for Music Information

Retrieval Conference, pp. 1–3. DOI: 10.48550/

arXiv.2010.00823.

25. La-Rue, J. (2001). The haydn-dedication

quartets: Allusion or influence?. Journal of

Musicology, Vol. 18, No. 2, pp. 361–373.

DOI: 10.1525/jm.2001.18.2.361.

26. Lostanlen, V. (2018). Eigentriads and

eigenprogressions on the tonnetz. arXiv.

DOI: 10.48550/arXiv.1810.00790.

27. Manning, C., Schutze, H. (1999).
Foundations of statistical natural language

processing. MIT press.

28. Manning, C. D., Raghavan, P., Schütze, H.
(2009). Introduction to information retrieval.

Cambridge University Press.

29. Mearns, L., Tidhar, D., Dixon, S. (2010).
Characterisation of composer style using

high-level musical features. Proceedings of 3rd

International Workshop on Machine Learning

and Music, pp. 37–40. DOI: 10.1145/1878003.

1878016.

30. Ogihara, M., Li, T. (2008). N-gram chord

profiles for composer style representation.

Proceedings of the 9th International

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.96

ISSN 2007-9737

10.1609/aaai.v28i1.8738
10.1609/aaai.v28i1.8738
10.1007/978-3-642-38628-2_88
10.1007/978-3-642-38628-2_88
10.1162/014892602760137158
10.1007/978-3-642-12242-2_42
10.1007/978-3-642-20520-0_34
10.1080/09298215.2020.1814822
10.1080/09298215.2020.1814822
10.48550/arXiv.2010.00823
10.48550/arXiv.2010.00823
10.1525/jm.2001.18.2.361
10.48550/arXiv.1810.00790
10.1145/1878003.1878016
10.1145/1878003.1878016

Conference on Music Information Retrieval,

pp. 671–676.

31. Pape, L., de-Gruijl, J., Wiering, M.
(2008). Democratic liquid state machines

for music recognition. Speech, Audio,

Image and Biomedical Signal Processing

using Neural Networks, pp. 191–215.

DOI: 10.1007/978-3-540-75398-8 9.

32. Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay,
E. (2011). Scikit-learn: Machine learning

in Python. Journal of Machine Learning

Research, Vol. 12, No. 85, pp. 2825–2830.

DOI: 10.48550/arXiv.1201.0490.

33. Pollastri, E., Simoncelli, G. (2001).
Classification of melodies by composer

with hidden Markov models. Proceedings

of the 1st International Conference on

WEB Delivering of Music, pp. 88–95.

DOI: 10.1109/wdm.2001.990162.

34. Pérez-Sancho, C., Rizo, D., Iñesta, J. M.
(2009). Genre classification using chords

and stochastic language models. Connection

Science, Vol. 21, No. 2–3, pp. 145–159.

DOI: 10.1080/09540090902733780.

35. Rohrmeier, M., Graepel, T. (2012).
Comparing feature-based models of

harmony. Proceedings of the 9th International

Symposium on Computer Music Modelling

and Retrieval, pp. 357–370.

36. Schmid, E. F., Sanders, E. (1956). Mozart

and Haydn. The Musical Quarterly, Vol. 42,

No. 2, pp. 145–161. DOI: 10.1093/mq/XLII.2.

145.

37. Taminau, J., Hillewaere, R., Meganck,
S., Conklin, D., Nowé, A., Manderick,
B. (2010). Applying subgroup discovery for

the analysis of string quartet movements.

Proceedings of 3rd International Workshop on

Machine Learning and Music, Association for

Computing Machinery, pp. 29–32. DOI: 10.

1145/1878003.1878014.

38. van-Kranenburg, P. (2006). Composer

attribution by quantifying compositional

strategies. The International Society for Music

Information Retrieval, pp. 375–376.

39. van-Kranenburg, P., Backer, E.
(2005). Musical style recognition—a

quantitative approach. Handbook of

Pattern Recognition and Computer

Vision, World Scientific, pp. 583–600.

DOI: 10.1142/9789812775320 0031.

40. van-Nuss, J., Giezeman, G. J., Wiering,
F. (2017). Melody retrieval and composer

attribution using sequence alignment on RISM

incipits. Proceedings of 9th International

Conference on Technologies for Music

Notation and Representation, pp. 1–7.

41. Velarde, G., Cancino-Chacón, C., Meredith,
D., Weyde, T., Grachten, M. (2018).
Convolution-based classification of audio and

symbolic representations of music. Journal

of New Music Research, Vol. 47, No. 3,

pp. 191–205. DOI: 10.1080/09298215.2018.

1458885.

42. Velarde, G., Weyde, T., Chacón, C. E. C.,
Meredith, D., Grachten, M. (2016). Composer

recognition based on 2D-filtered piano-rolls.

Proceedings of the 17th International

Conference on Music Information Retrieval,

pp. 115–121.

43. Verma, H., Thickstun, J. (2019).
Convolutional composer classification. arXiv.

DOI: 10.48550/arXiv.1911.11737.

44. Wołkowicz, J., Kulka, Z., Kešelj, V.
(2008). N-Gram-based approach to composer

recognition. Archives of Acoustics, Vol. 33,

No. 1, pp. 43–55.

45. Yang, D., Ji, K., Tsai, T. J. (2021). A deeper

look at sheet music composer classification

using self-supervised pretraining. Applied

Sciences, Vol. 11, No. 4, pp. 1387. DOI: 10.

3390/app11041387.

46. Yoshii, K., Goto, M. (2011). A vocabulary-free

infinity-gram model for nonparametric

bayesian chord progression analysis.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Multi-Instrument Based N-Grams for Composer Classification Task 97

ISSN 2007-9737

10.1007/978-3-540-75398-8_9
10.48550/arXiv.1201.0490
10.1109/wdm.2001.990162
10.1080/09540090902733780
10.1093/mq/XLII.2.145
10.1093/mq/XLII.2.145
10.1145/1878003.1878014
10.1145/1878003.1878014
10.1142/9789812775320_0031
10.1080/09298215.2018.1458885
10.1080/09298215.2018.1458885
10.48550/arXiv.1911.11737
10.3390/app11041387
10.3390/app11041387

Proceedings of the International Society

for Music Information Retrieval Conference,

pp. 645–650.

47. Zeng, M., Tan, X., Wang, R., Ju, Z., Qin, T.,
Liu, T. Y. (2021). MusicBERT: Symbolic music

understanding with large-scale pre-training.

Findings of the Association for Computational

Linguistics, pp. 791–800. DOI: 10.48550/arXiv.

2106.05630.

Article received on 29/09/2023; accepted on 14/12/2023.
∗Corresponding author is Liliana Chanona-Hernandez.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 85–98
doi: 10.13053/CyS-28-1-4903

Alexander Gelbukh, Daniel Alejandro Pérez Alvarez,Olga Kolesnikova, et al.98

ISSN 2007-9737

10.48550/arXiv.2106.05630
10.48550/arXiv.2106.05630

