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Abstract. Water resource management is an
important issue that involves several factors such as
economics, social, politician, among others, for its
adequate administration. Water can be classified
according to its usage purposes since it is used
for human consumption, industrial usage, agriculture,
etc. Thus, correct strategies to manage this vital
liquid are essential to effectively use it. This
paper studies water management from a mathematical
optimization approach by considering factors and
constraints that may suit real-world conditions. The
proposed mathematical model is based on the classical
transportation problem, which is well-known in the
literature. We perform an empirical evaluation of the
proposed model using off-the-shelf optimization software
over a set of proposed instances, and the results show
the feasibility of the proposal. Finally, we discuss the
faced challenges in the research and possible future
research directions that may help the management of
water resources from a computational approach.

Keywords. Water stress, water management
optimization, transportation problem,
mathematical optimization.

1 Introduction

Water, a vital element for the sustenance of
living organisms, faces relentless exploitation due
to the current demands and circumstances of
humanity. The imperative needs of various
economic sectors drive the excessive use of this
indispensable resource.

According to [18], global water consumption
has been on the rise at approximately 1% annually

over the past four decades, and this trend is
anticipated to continue until 2050. Despite the
inherent renewability of water, its consumption
extends beyond human needs, encompassing
commercial, industrial, agricultural, livestock, and
energy production activities, causing the depletion
of water sources, surpassing natural renewal by
the hydrological cycle and causing water stress [3].

Efficient water resource management faces
numerous limitations and uncertainties, making
decision-making very challenging. For example,
water is extracted from different sources such as
basins, rivers, lakes, etc., and its processing varies
depending on the sector in which it is going to
be used, so in the end, you have different types
of water. That is, the water used for human
consumption has different characteristics than that
used for irrigation or industry.

Furthermore, the volume of water to be used
must be adapted based on the different demands
linked to each specific sector (i.e., agricultural,
industrial, etc.), population density, geographical
conditions, and climate change [16, 26], not
to mention that all these aspects require a lot
of bureaucracy, which further complicates the
management of water resources. The study
of the problem of water management using
computational tools has been going on for years,
for example, the estimation of hydrogeological
parameters [7, 9] to establish environmental
policies, studies on saltwater intrusion into coastal
aquifers by using evolutionary algorithms [1, 2],
pollution management in hydrographic basins [24],
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and optimal water allocation for crops and
irrigation [15], are topics of interest in the
computational world.

In addition, alternative methodologies involving
the modeling of water management issues using a
spectrum of tools have arisen. For instance, in [10]
was developed a dynamic model leveraging the
expertise of various domain experts, facilitating the
selection of optimal water management activities to
mitigate water shortages.

In [19] was introduced a hydrological and
system dynamics model specifically designed to
analyze five distinct scenarios about industrial,
agricultural, and domestic water use. [27]
contributed to the field by enhancing the Water
Resources Ecological Footprint, with a particular
emphasis on regional distinctions.

In a different vein, in [29] was introduced
a stochastic multi-criteria decision-making
framework for Water Resource Management,
explicitly considering the challenges posed by
uncertainty. In [28] was presented a synthesis
of key concepts and categories related to urban
drought, elucidating strategies to enhance public
awareness, promote flexibility, optimize water
management efficiency, ensure reliable and
integrated urban water supply, invest in scientific
research and strengthen international cooperation.

In [23], was addressed Water Resource
Management, specifically targeting irrigation
systems through the application of algorithms to
calculate limits. In the domain of agricultural water
management, in [20] was proposed a generalized
spatial fuzzy strategic planning approach,
incorporating multi-criteria decision-making.

A strong trend is the optimal design of
water distribution systems, whether to improve
distribution strategies, pipe rehabilitation, water
quality, avoid leaks, optimize the operation
of pumps, and also the occurrence of water
contamination [13]. Also, parallel evolutionary
algorithms have been proposed for similar
approaches to optimizing the network design for
water distribution.

However, efforts have focused on finding the
best system design (at a local level) that maximizes
the robustness of the network and at the same
time is cost-effective, but the problem of water

management is not addressed in a broad context,
for example, the challenge of balancing water
consumption to promote the replenishment of
water resource sources.

Furthermore, if the restrictions mentioned in
the previous paragraph (i.e. different supply and
demand sources, different types of water, and other
restrictions) are added, the problem becomes more
difficult to solve. Motivated by the lack of such
studies in the literature, we address the challenge
of Water Resource Management, where multiple
types of source water resources are involved.
Besides, other constraints that may suit real-life
conditions are considered.

To propose a computational solution, it is
necessary to mathematically model the problem.
In the state of the art, different approaches could
be used to model the problem. However, given
that the problem in its simplest form consists
of taking water from supply points to demand
points, we consider that an approach based
on the transportation problem could be a good
choice. The Transportation Problem is traditionally
linked to the operations research literature [6],
which can be seen as the simplification of the
objective of minimizing the costs of the carrier that
moves certain cargo from one or more origins to
their corresponding destinations to satisfy demand.

In this work, we propose a mathematical
model as an extension of the transportation
problem, where a bipartite graph is established
that considers supply nodes, demand nodes, and
an associated cost of water transportation. The
aim is to minimize the cost of transportation,
but our approach does not end there, since as
mentioned above, different factors complicate the
efficient management of water resources; these
factors must be considered in our model to propose
solutions that are more in line with reality. It is
for these reasons that we also incorporate different
restrictions that prevent excessive water use. This
is of vital importance since it would allow the
natural renewal of water resource sources.

All these factors make the problem
computationally more interesting. Detailed
information on restrictions is set out in Section 3.
To test the proposal, we designed and coded a
generator of feasible instances that were solved
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Fig. 1. Example scenario: |V | = 6, |U | = 4, |K| = 2 and
|C| = 3

using the proposed mathematical model; however,
due to approached restrictions, there are limits in
the size of the instances that can be generated in
feasible computational time.

It is important to note that the objective of the
work is to show a mathematical model that allows
the management of water resources considering
restrictions attached to reality, so the application
of metaheuristic approaches is outside the scope
of this work. However, in Section 5, we establish
the necessary guidelines to address the problem
through metaheuristic optimization, which is why
we frame it as future work.

To the best of our knowledge, there is no
approach similar to the one proposed in the
literature, so the results reported in the present
work provide valuable knowledge to experts in
the field of computational sciences and water
resources management. Providing an approach
that helps make informed decisions based on data.

The rest of the paper is organized as
follows: Section 2 shows the background
about water resources and mathematical
optimization. Specifically linear programming
and the transportation problem. In Section 3, the

proposal is described in detail, which consists of a
Mixed Integer Quadratically Constrained Program
(MIQCP). This mathematical model takes as basis
the classical transportation problem. Besides, the
assumptions and limitations of this mathematical
model are discussed.

Section 4 describes the followed methodology
and the faced challenges to generate the
instances. Section 5 performs an analysis of the
obtained results. Finally, Section 6 states the
conclusions and discusses the possible future work
directions of this work.

2 Background

2.1 Water Resources

Various types of water resources originate from
natural sources and serve human, agricultural,
or industrial purposes. [3] classify the water
resources into two main categories: surface
water and groundwater. Surface water includes
water flows that traverse the earth’s surface (such
as rivers). It encloses bodies of water gathered
in naturally occurring or human-made depressions,
like dams and lakes, as well as in periodically
or permanently flooded areas, such as swamps
and wetlands.

Groundwater consists of rainwater retained in
impermeable soil. This resource holds significance
as it functions both as a versatile natural water
storage and a distribution network for a country.
The term physical water stress refers to the ratio of
water usage to available water, and it is determined
by a combination of various factors [18]. The
global rise in water scarcity is a consequence of
escalating physical water stress, impacting regions
worldwide. It’s worth noting that the quality and
availability of these water resources vary based
on factors like geographic location, land use
practices, climatic conditions, population growth,
infrastructure development, over-extraction, and
regulatory policies.
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2.2 Water Management

As outlined in The 2030 Agenda for Sustainable
Development [14] presented by the United Nations,
there are 17 established Sustainable Development
Goals. The sixth goal, known as SDG 6, aims
to guarantee the accessibility and sustainable
supervision of water and sanitation, along with
the sustainable handling of water resources, water
quality, integrated water resources management,
water-related ecosystems, and the creation of a
conducive environment.

The 2023 United Nations World Water
Development Report [18] asserts that the demand
for water in agriculture is primarily influenced by
irrigation, with variations dependent on various
determining factors. Another crucial factor to
consider is the per capita water availability, which
has been diminishing due to the growth rates in
population. Therefore, efforts have been made
to implement initiatives aimed at developing
alternatives that streamline decision-making and
enhance the prediction of diverse factors.

The goal is to optimize water management
with greater efficiency. Models can help to
represent the interactions between these factors
and their complex interactions. As highlighted
by [8], mathematical models are primarily
categorized into two main types: simulation-based
or optimization-based models. The last one
can be further sub-categorized into three distinct
groups: conflict resolution models, water resources
planning models, and models addressing water
availability and demand diagnosis.

The last category helps to estimate the water
availability and compare it with the water demand
to find optimal strategies for meeting these
demands efficiently. Although these models can
provide important information, the final decisions
rest with the stakeholders.

2.3 Linear Programming (LP) and
Mathematical Optimization

LP [12] or lineal optimization is a mathematical
method for solving optimization problems
where the objective is to optimize a linear
function under constraints represented as linear
equalities and inequalities.

The main objective is to find the best
combination of all the variables that satisfy all the
constraints for the problem to determine a way to
achieve the best outcome (for example, determine
the lowest cost). The following equations (1)-(6)
represents the standard form of a LP [25]:

Maximize

c1 x1 + c2 x2 + . . .+ cn xn. (1)

Subject to:

a11 x1 + a12 x2 + . . .+ a1n xn ≤ b1, (2)
a21 x1 + a22 x2 + . . .+ a2n xn ≤ b2, (3)

... (4)
am1 x1 + am2 x2 + . . .+ amn xn ≤ bm, (5)

x1, x2, . . . , xn ≥ 0, (6)

where the bis, cis, and aijs are fixed real constant
numbers, and the xis are real numbers to be
determined which are called decision variables.
Generally, a classical LP satisfies the following
conditions: the variables of the problem must
be non-negative, the objective function should
express a linear combination of variables through a
linear function, and the constraint set must consist
of linear equations or inequalities.

The model should adapt to the problem
by considering all the specific variables and
constraints it must fulfill. LP has been widely used
in different problems such as the routing selection
problem [17], the transportation problem [21], and
the supply-chain problem [22].

In addition to LP, there are other practical
mathematical optimization approaches for
scenarios that cannot satisfy linearity. Mixed
Integer Programming (MIP) is a mathematical
optimization approach based on the general
principles of LP, but its decision variables consist
of both integer and real values.

The classification of MIP problems depends on
the nature of the objective function and constraints.
The problem is called a Mixed Integer Linear
Program (MILP) when the objective function and
constraints are linear. However, if the objective
function includes a quadratic term, it is called a
Mixed Integer Quadratic Problem (MIQP).
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In addition, a model is said to be a Mixed Integer
Quadratically Constrained Program (MIQCP) [30]
if it contains constraints with quadratic terms,
regardless of the form of the objective function.

2.4 The Transportation Problem

The transportation problem stands as an essential
optimization problem widely investigated in the field
of operations research. Its main application lies in
the efficient distribution of goods from a predefined
set of source vertices to a designated set of
destination vertices, with the general objective of
minimizing the associated costs.

As a fundamental element in various
economic, social, and market scenarios, the
Transportation Problem assumes a critical role in
optimizing logistics processes [6]. Formally, the
Transportation Problem is stated as follows:

Consider the set of supply vertices, denoted
as V = {v1, v2, · · · vn}, and a supply function
S : V → R+, where each vertex vi ∈ V is
endowed with the capacity to transport up to S (vi)
units of goods. Let U = {u1,u2, · · ·um} represent
the set of demand vertices corresponding to sites
necessitating the delivery of goods.

The demand function is defined as D : U → R+,
specifying that each vertex uj ∈ U requires the
fulfillment of a demand amounting to D (uj). The
classical transportation problem can be formally
characterized through Expressions (7)-(10):

min
∑
vi∈V

∑
uj∈U

ci,jxi,j . (7)

Such that (s.t.):∑
vi∈V

xij ≥ D(uj)∀uj ∈ U , (8)

∑
uj∈U

xij ≤ S(vi)∀vi ∈ V , (9)

xij ∈ R+∀vi ∈ V ,∀uj ∈ U . (10)

The equations presented make up a Linear
Programming (LP) formulation, where ci,j is the
associated cost of transporting one unit of goods
from source vertex vi to demand vertex uj , and

xij denotes the quantity of goods units transported
from vi to uj . Consequently, if xij goods units are
transported from vi to uj , the corresponding cost is
ci,j xi,j . In this LP framework, (7) is the objective
function to minimize the total transportation cost
from source to demand vertices.

The constraints stated in (8), ensure the
satisfaction of demand for each uj , while the (9)
constraints state that the total goods shipped from
the origin vertex vi do not exceed the available
quantity. Finally, the expression (10) defines the
decision variables. It is important to note that this
model assumes viability, that is, total supply equals
or exceeds total demand, as established in the
following equation:∑

uj∈U

D (uj) ≤
∑
vi∈V

S (vi) . (11)

It is well-known that the classical transportation
problem can be solved efficiently using LP
techniques [4, 5], but real-world scenarios often
require more complex constraints, which pose
challenges in solving these types of problems.

In the next section, we present a model based
on the transportation problem that abstracts
the problem of Water Resources Management.
However, it presents additional restrictions
that may arise in real-world scenarios, which
complicate the optimization problem and increase
computational demand.

3 Proposal

In this section, we propose a Mixed Integer
Quadratically Constrained Program (MIQCP)
specifically designed to address the Water
Resources Management problem. Rooted in
the fundamental principles of the transportation
problem, this model incorporates additional
constraints essential to address the complications
inherent to the problem studied. The integration
of these constraints enriches the model, which
resembles real-world conditions.
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3.1 Proposed Mathematical Model

In the context of water resources management,
we propose to address the challenge of water
distribution by modeling a scenario in which
water is supplied from different water sources
V = {v1, v2, ..., vn} to different demand locations
U = {u1,u2, ...,un}, considering that each source
and demand location manages a different type of
water included in the set K = {k1, k2, · · · , kp},
where p is the number of types of water, and ki
the type of water.

In addition, we establish a supply function S, a
demand function D, and a function T : V ∪U → K,
the latter guaranteeing that each source vertex vi ∈
V can supply exclusively to the demand vertices
within the set {uj ∈ U : T (uj) = T (vi)}. That is,
a demand vertex that requires a specific type of
water ki, can only be satisfied by source vertices
that supply the same type of water.

Since in a real context, processed water for the
industry would not be sent to a place for human
consumption. This delineation of water types and
the associated constraints through the function T
introduces an added layer of complexity to the
classical transportation problem, catering to the
nuanced requirements of the problem considered
in this study.

In this scenario, the method of water
transportation is inconsequential; That is, we
ignore the specific mode of transportation
and instead introduce the term “carriers”,
which fulfill the function of transporting water
units from the source vertices to the demand
vertices, establishing a cost associated with
said transportation, which can be different
between carriers.

This cost is a crucial factor since it is a function
of all the aforementioned variables, and quantifying
and optimizing it becomes essential in our study.
To elaborate, we define a set of carriers, denoted
as C = {1, 2, 3, . . . , |C|}, where each carrier l ∈ C
sets an associated cost cli,j to the transport of a unit
of water from a source vertex vi ∈ V to the demand
vertex uj ∈ U . To achieve load balancing between
carriers, each operator l ∈ C is assigned a capacity
L(l) ∈ N, which represents the maximum number
of source vertices that it can drive.

In line with our general objective, based on this
mathematical model we seek to minimize the cost
of transporting water satisfying all demands. Given
the multitude of constraints and variables involved,
we provide a concise summary of the key
assumptions underlying the problem at hand for
clarity and precision:

1. All carriers can deal with any type of water, any
source vertex, and any demand vertex.

2. It is established that there is sufficient capacity
among carriers to operate at all origin vertices.
See the following equation:∑

l∈C

L (l) ≥ |V | holds. (12)

3. It is vitally important to consider that for each
type of water, the total supply equals or
exceeds the demand. This is stated in the
following equation:∑

uj∈U :T(uj)=kt

D (uj) ≤
∑

vi∈V :T (vi)=kt

S (vi) . (13)

Holds ∀kt ∈ K. Equations (14)-(22) introduce a
mathematical model for the described problem:

min
∑
l∈C

∑
vi∈V

∑
uj∈U

cli, j x
l
i, j . (14)

Such that: ∑
l∈C

∑
uj ∈ U :

T (vi) ̸= T (uj)

(15)

xl
i,j = 0∀vi ∈ V , (16)∑

vi∈V

∑
l∈C

yl,ix
l
i,j ≥ D(uj)∀uj ∈ U , (17)

∑
l∈C

∑
uj∈U

xl
i,j ≤ S(vi)∀vi ∈ V , (18)

∑
vi∈V

yl,i ≤ L(l)∀l ∈ C, (19)

xl
i,j ∈ R+∀(vi ∈ V ,uj ∈ U , l ∈ C), (20)

yl,i ∈ {0, 1}∀l ∈ C,∀vi ∈ V , (21)
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where xl
i,j is the amount of water units to be

shipped from vi to uj through carrier l, and:

yl, i =

{
1, if carrier l is assigned to vertex vi,

0, otherwise.
(22)

In this model, the objective function (14) seeks
to minimize transportation costs, encompassing
all carriers. Constraint (16) dictates that demand
vertices are exclusively supplied by source vertices
with matching water types. Ensuring the
satisfaction of water demands, constraint (17)
plays a crucial role. To prevent excessive extraction
and potential stress on water bodies, constraint
(18) curtail the amount of water drawn from each
source vertex to within its available capacity.

Pertinently, these constraints hold significant
implications in the context of water supply.
Meanwhile, constraint (19) safeguards against
exceeding carrier capacities when attending
to source vertices. Finally, the decision
variables are defined and described through
expressions (20)–(22).

3.2 Water Resources Optimization through
Mathematical Optimization

To show the feasibility of the proposal, we show
an example to clarify how the mathematical
model works.

3.2.1 Objective Function Evaluation

Next, the process of evaluating the objective
function is shown. That is, to find the values of
the decision variables that optimize the function
and simultaneously satisfy the constraints. First,
we establish the scenario to optimize. Visually,
this can be represented through a bipartite graph
where the set of supply nodes V , the set of demand
nodes U , the set of types of water K, and the set
of carriers C are established.

It is important to remember that each carrier
l ∈ C establishes a cost cli,j for transporting a
unit of water from vi ∈ V to uj ∈ U , and a
capacity L(l) of supply nodes that it can attend.
Furthermore, each scenario must satisfy (12) and
(13), as well as the constraints (16)–(22) imposed
on the model, this allows the problem to have a

Table 1. Water units xij obtained by LP

Carriers Transportation cost Water units

l = 1 c13, 2 = 1 x1
3, 2 = 8

c13, 4 = 3 x1
3, 4 = 7

c15, 3 = 3 x1
5, 3 = 9

l = 3 c36, 1 = 1 x3
6, 1 = 9

feasible solution. However, this feature makes the
optimization problem difficult since a solution must
be in the feasible space. Fig. 1 show an example
scenario with |V | = 6 source vertices, |U | = 4
demand vertices, |K| = 2 types of water, and
|C| = 3 carriers. Concerning the capacity of the
carriers L(l), the supply water units S(vi) and the
demand water units D(uj), these are established
randomly but complying with the restrictions (12),
(13) and (16) to find a scenario with feasible
solutions. Finally, transportation costs are also
randomly assigned to a range of positive numbers.

The complete instance of this scenario can
be consulted in the link provided in the Test
Instances section. To calculate the objective
value using (14), the transportation costs of the
instance above are used, which are summarized
in Table (1), along with the water units xl

i,j obtained
by the mathematical model to optimize the problem
established in Fig. 1, for each carrier l ∈ C and
its associated transportation costs cli,j . Using the
values from Table (1), the objective value obtained
is 65. Fig. 2 shows the optimal solution found
using the mathematical model. We can verify this
solution meets all established restrictions.

4 Experimental Design and Results

4.1 Test Instances

To assess the robustness of the proposed
model, we formulate 30 instances that satisfy
the constraints described in Section 3.1.
Table (2) presents these instances along with
their respective parameters, where |V | and |U |
are the number of supply and demand vertices
respectively, |K| is the number of water types, and
|C| is the number of carriers.
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Fig. 2. Solution for the example scenario: |V | = 6,
|U | = 4, |K| = 2, and |C| = 3.

The design of these instances is deliberate and
features a gradual escalation of difficulty, either
by adding supply and demand vertices, variations
in water types, or an increase in the number of
carriers. Instances 1–5 represent the simplest
cases, featuring 2 types of water and 2 carriers.

The number of supply nodes |S| is twice that of
demand nodes |D| in each instance. In contrast,
Instances 6–10 mirror Instances 1–5, with the
number of demand nodes |D| being half that of
supply nodes |S|. This deliberate design allows us
to evaluate the model’s performance under varied
scenarios with unequal supply and demand nodes.

Instances 11–15 and 16–20 present a
considerable increase in problem difficulty. Here,
the number of water types grows by increments
of 5, ranging from 5 to 25. Simultaneously, the
number of carriers increases by 10 for each
instance, starting at 10 and concluding at 50.
Instances 11–15 and 16–20 are mirror instances,
enabling a comprehensive assessment of the
model’s adaptability to varied configurations.

In this study, the most challenging scenarios are
Instances 21–25 and 26–30, designed to push the
model’s limits. The complexity is heightened by
increasing the number of water types by 5, from
30 to 50.

Additionally, the number of carriers increases
by 50, starting at 50 and concluding at 250 for
each instance. Instances 21–25 and 26–30 are
mirror instances, providing a thorough exploration
of the model’s capabilities under difficult conditions.
Finally, for these instances, water units for
both supply and demand vertices were randomly
assigned within the following ranges: S(vi) ∈
[1000, 5000], D(uj) ∈ [100, 500]. The capacity of
carriers was set randomly within the range L(l) ∈
[1, |V |]. Finally, transportation costs associated
with each carrier were randomly established within
the range cli,j ∈ [100, 1000]. The complete
instances can be consulted at https://github.com/
alex-cornejo/WaterManagement-ComSis.

4.2 Parameter Configuration

The mathematical model was implemented in
the Python programming language by using the
off-the-shelf optimization software Gurobi v10. The
Gurobi software implements different mathematical
optimization algorithms, such as LP algorithms like
Simplex and Barrier, Branch-and-Bound for MIP
problems, among others [11]. All the experiments
were run on a computer with a Windows 11 OS, 40
GB of RAM, and an Intel i7-10750H processor.

For the mathematical model, we tested three
different relaxations available in the Gurobi
software: Primal Simplex (PS), Dual Simplex
(DS), and Barrier (B). Table (3) shows the results
obtained from the experimentation. From this table,
OPT refers to the optimal solutions, whereas PS
t(s), DS t(s), and B t(s) refer to the running time
per instance for each relaxation method.

5 Analysis and Discussion of Results

In this section, we explore challenges in optimizing
the proposed model with added types of water
and carriers, impacting solution space, instance
generation, and resolution dynamics. The obtained
results showcase the potential applicability in
real-world scenarios. The results reported in Table
(3) affirm the feasibility of optimizing our proposal
using a mathematical optimization approach. In all
the cases, the optimal solutions were found.
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Table 2. Test instances configuration

Instance |V | |U | |K| |C|
1 1 2 2 2

2 2 4 2 2

3 3 6 2 2

4 4 8 2 2

5 5 10 2 2

6 2 1 2 2

7 4 2 2 2

8 6 3 2 2

9 8 4 2 2

10 10 5 2 2

11 15 30 5 10

12 20 40 10 20

13 30 60 15 30

14 40 80 20 40

15 50 100 25 50

16 30 15 5 10

17 40 20 10 20

18 60 30 15 30

19 80 40 20 40

20 100 50 25 50

21 150 350 30 50

22 200 300 35 100

23 250 250 40 150

24 300 200 45 200

25 350 150 50 250

26 350 150 30 50

27 300 200 35 100

28 250 250 40 150

29 200 300 45 200

30 150 350 50 250

For this experimentation, we can appreciate
that using different relaxation techniques does not
change radically the running time.

However, for bigger instances, we could
not ensure this. Through experimentation, we
noticed that the running time of different relaxation
algorithms can change drastically for some
instances with |V | > 600. Nevertheless, we could
not include experimentation for bigger instances
due to the practical issues discussed below. The
escalating complexity introduced by including more
types of water and carriers imposes significant
challenges on the problem. The imposed
constraints not only shape the feasible solution
space but also impact both the instance generation
process and the optimization procedure.

Through empirical experimentation, we
observed that the water type constraint poses
a more intricate challenge for the optimization
process than the carrier capacity constraint. This
complexity is evident in the increased time required
to resolve instances. Conversely, with a growing
number of carriers, the memory requirements for
processing instances also surge.

Each carrier, having an associated
transportation cost expressed in a cost matrix,
contributes to the memory load. For instance,
if there are 200 carriers, there would be 200
distinct cost matrices per instance stored in
memory. Furthermore, the size of the matrix
(|V | × |U |) is contingent on the number of supply
and demand nodes. Therefore, spatial complexity
becomes a critical consideration for both instance
generation and optimization.

These challenges could be effectively
addressed by adopting other optimization
techniques, such as evolutionary computation
of metaheuristics. For instance, solution
representation in metaheuristics could involve
a set of genes encoding the assignment of
water types to carriers alongside other pertinent
parameters. Designing crossover and mutation
operators respecting problem constraints ensures
the generation of feasible solutions.

Selection operators favoring diversity and
exploration of the search space can be
implemented. Strategies can be integrated to
handle specific constraints on the type of water,
such as sanctions in the objective function for
non-compliance, or remedial mechanisms for
infeasible solutions.
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Table 3. Optimization results for each instance, reporting
its optimal value OPT and the execution time for each
strategy measured in seconds t(s)

Instance OPT PS t(s) DS t(s) B t(s)

1 235,044 0.003 0.034 0.036
2 405,326 0.001 0.002 0.000
3 656,886 0.004 0.004 0.013
4 793,611 0.003 0.004 0.004
5 489,604 0.003 0.003 0.007
6 96,280 0.002 0.001 0.001
7 227,303 0.002 0.000 0.000
8 85,908 0.004 0.005 0.004
9 249,383 0.003 0.000 0.001

10 304,674 0.004 0.004 0.006
11 1,310,305 0.027 0.022 0.081
12 1,290,357 0.034 0.031 0.050
13 2,180,535 0.081 0.086 0.083
14 2,527,523 0.162 0.146 0.167
15 3,582,503 0.270 0.297 0.283
16 705,887 0.019 0.029 0.033
17 703,887 0.022 0.016 0.017
18 1,034,468 0.068 0.062 0.066
19 1,308,086 0.140 0.159 0.150
20 1,680,449 0.296 0.303 0.299
21 10,854,584 4.454 3.864 5.518
22 9,084,413 11.084 9.272 13.205
23 7,580,286 18.027 15.151 21.556
24 6,212,880 22.829 19.389 26.393
25 4,544,234 22.190 22.589 22.874
26 4,744,219 5.067 4.297 5.902
27 5,871,442 11.502 10.102 13.886
28 7,716,824 17.815 15.057 21.407
29 9,287,937 19.743 18.116 20.121
30 10,517,914 22.349 20.405 23.261

Metaheuristics also allows for the consideration
of parallelism or distribution strategies to optimize
execution time, particularly crucial for large
optimization problems.

Lastly, while a comprehensive study of the
computational complexity of the problem would be
valuable, this aspect will be rigorously addressed
in future work.

6 Conclusion and Future Work

This paper introduces an innovative approach to
tackling the global water stress challenge through
the application of mathematical optimization,
framing the Water Resources Management
problem. We performed this by proposing a
mathematical model, specifically an MIQCP.
The proposed mathematical model is akin to
the classical transportation problem, which is
well-known in the field of operations research.
Then, we used off-the-shelf optimization software
to test the mathematical model over a set of
proposed instances that consider restrictions of
possible real scenarios.

The results serve as a robust affirmation,
supporting the effectiveness and utility of the
proposed model in addressing optimization
challenges related to water use. These findings
underscore the model’s practical applicability
and its efficacy in solving real-world problems
associated with Water Resource Management
optimization. Our study reveals that the inclusion
of multiple water types introduces increased
complexity. Instances with over 50 different water
types proved more intricate, necessitating a scaling
of computational resources. This adaptation
becomes crucial to overcome model limitations
and enhance the likelihood of finding viable
solutions, hinting at the potential for specialized
optimization strategies such as evolutionary
computation and heuristics/metaheuristics.

In future work, we will focus on refining the
model to increasingly align it with real-world
scenarios, which will involve deep analysis of water
management information. The complexity of the
problem will also be rigorously studied, together
with the possibility of improving the model by
looking to linearize the constraints or propose new
mathematical models with practical advantages.
Finally, other strategies may be considered,
particularly the implementation of evolutionary
computing or heuristic/metaheuristic approaches.
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17. Pascariu, B., Samà, M., Pellegrini, P.,
D’Ariano, A., Pacciarelli, D., Rodriguez,
J. (2021). Train routing selection problem:
Ant colony optimization versus integer linear
programming. IFAC-PapersOnLine, Vol. 54,
No. 2, pp. 167–172. DOI: 10.1016/j.ifacol.
2021.06.060.

18. Programa mundial de la UNESCO de
evaluación de los recursos hı́dricos (2023).
The United Nations World Water Development
Report 2023: partnerships and cooperation for
water. Un Water.

19. Qin, H., Zheng, C., He, X., Refsgaard,
J. C. (2019). Analysis of water management
scenarios using coupled hydrological and
system dynamics modeling. Water Resources
Management, Vol. 33, No. 14, pp. 4849–4863.
DOI: 10.1007/s11269-019-02410-9.

20. Radmehr, A., Bozorg-Haddad, O., Loáiciga,
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