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Appendix: Proofs

Proof of Lemma 1

Proof. The function g(r) is continuous and strictly increasing in the
interval [0,∞), its derivative satisfies g′ (r) = tθ

N(r+θ)2
> 0 for all r ≥

0. In addition, it is easy to show that g(0) = c and limg (r) = c + t
N

as r → ∞. Then, there must exist a unique r∗ such that g(r∗) = r∗

that satisfies c < r∗ < c + t
N

. This completes the proof.

Proof of Proposition 1

Proof. For a symmetric equilibrium of the model, there are three
relevant cases for equilibrium prices for any given reference price r,
i.e., p∗ > r, p∗ < r, and p∗ = r. The FOC of this maximization
problem satisfies the following expression:

(pi − c) ∂di

∂pi

+
(

1
N

+ p−pi

t
+ θ

tr
[max {p − r, 0} − max {pi − r, 0}]

)

= 0
(15)
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where ∂di

∂pi

= −
[

1
t

+ θ
tr

(
1+sign(pi−r)

2

)]
and:

sign (x) =
1 if x > 0

−1 if x < 1

Then the best response function of firm i satisfies the following
equation:

c
2

+ tr
2N(r+θ)

+ pr
2(r+θ)

+ θ
2(r+θ)

(max {p − r, 0} + r)

BRi (p) = if pi > r

c
2 + t

2N
+ p

2 + θ
2r

max {p − r, 0} if pi < r

(16)

Hence, the FOC is useful to characterize the first two relevant
cases for the equilibrium price. We know that, in a symmetric equi-
librium, pi = p = p∗. Based on the best response function of firms, it
is easy to show that in the first relevant case of the proof, the equilib-
rium price must satisfy p∗ = c + tr

N(r+θ)
whenever p∗ > r. According

to Lemma 1, this condition holds whenever r∗ > r, where r∗ is the
unique reference price that satisfies r∗ = c + tr∗

N(r∗+θ)
. For the second

case, the equilibrium price satisfies p∗ = c + t
N

whenever c + t
N

> r.
For the third relevant case, i.e., p∗ = r, we must implement

a direct proof since the best response function of firm i is not well-
defined at this point. In general, we have to prove that playing r is the
best response of the firm i whenever all other firms play symmetrically
p = r. Suppose that all firms, except for the firm i, play a price p = r
that satisfies r∗ ≤ r ≤ c + t

N
. There are two cases to be analyzed:

pi > r and pi < r, for a proper ε > 0, respectively. Consider the first
case, it is clear that profits of firm i can be written in the following
way:

(r + ε − c)

(
1

N
− ε

t
− θε

tr

)
= (r − c)

1

N

+

[
1 − (r − c)

(
(r + θ) N

tr

)]
ε

N
−
(

r + θ

tr

)
ε2 (17)






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where (r − c) 1
N

is the profit that is obtained by following the

strategy pi = r. Since r∗ ≤ r ≤ c + t
N

, there must exist r̄ ≥ r such

that r = c + tr̄
N(r̄+θ)

. By substituting in equation (17) and by noting

that tr
N(r+θ) is a continuous and strictly increasing function in r, we

find that:

(r − c)
1

N
+

[
1−

tr̄
N(r̄+θ)

tr
N(r+θ)

]
ε

N
−
(

r + θ

tr

)
ε2 < (r − c)

1

N
(18)

Following a similar argument, in the case where pi < r profits of
firm i can be written as:

(r − ε − c)

(
1

N
+

ε

t

)
= (r − c)

1

N
+

[
(r − c)

N

t
− 1

]
ε

N
− ε2

t
(19)

As before, by substituting r̄ ≥ r such that r = c + tr̄
N(r̄+θ) in

equation (19) we find that:

(r − c)
1

N
+

[
r̄

r̄ + θ
− 1

]
ε

N
− ε2

t
< (r − c)

1

N
(20)

Hence, playing pi = r is a best response for firm i whenever all
other firms are playing p = r. Then, the equilibrium market price is
given by the function:

c + tr
N(r+θ)

if 0 ≤ r < r∗

p∗ (r) = r if r∗ ≤ r ≤ c + t
N

c+
t
N

if c + t
N

< r

(21)

This completes the proof.

Proof of Proposition 2

Proof. Assume that 0 < r < r∗∗, then the derivative of CS(r) satis-
fies:




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∂CS (r)

∂r
= − θ

r2

[
1

2

√
r + θ

r

(
θr

(r + θ)
2

)
√

tF − c−
√

r

r + θ

√
tF

]

−1

2

√
r + θ

r

(
θ

(r + θ)
2

)
√

tF +
1

8

√
r

r + θ

(
θ

r2

)√
tF (22)

By rearranging the previous expression, it is possible to show
that equation (22) satisfies:

∂CS (r)

∂r
=

cθ

r2
− cθ

2r2

√
r

r + θ

(
θ

r + θ
− 2

)√
tF

− cθ

2r2

√
r

r + θ

(
r

r + θ
− 1

4

)√
tF (23)

which reduces to the following expression:

∂CS (r)

∂r
=

cθ

r2

(
1 +

5

8

√
r

r + θ

√
tF

)
> 0 (24)

Then, the consumer surplus is always strictly increasing for 0 <

r < r∗∗. Now consider the case where r∗∗ ≤ r ≤ c+
√

tF , in this case
the derivative of consumer surplus satisfies:

∂CS (r)

∂r
= −1 +

tF

4(r − c)2
(25)

Since r∗∗ > c, this derivative is well defined and the CS(r) attains

a maximum at the reference price r̂ = c + 1
2

√
tF and CS (r̂) = U −

c −
√

tF > U − c − 5
4

√
tF . In addition, note that there are two real

roots r1 > 0 and r2 > 0 that satisfy the condition U − r− 1
4

(
tF
r−c

)
=

U − c− 5
4

√
tF . Given that, it is possible to show that r1 = c + 1

4

√
tF

and r2 = c +
√

tF . Since CS(r) is a continuous function at the point
r∗∗, the following condition is satisfied:
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U − θmax





c +
√

r∗∗

r∗∗+θ

√
tF − r∗∗

r∗∗
, 0



− c−

√
r∗∗

r∗∗ + θ

√
tF

−1

4

√
r∗∗ + θ

r∗∗
√

tF = U − r∗∗ − 1

4

(
tF

r∗∗ − c

)
(26)

This implies that CS (r∗∗) > U − c− 5
4

√
tF for all all r1 < r∗∗ <

r2. Hence, there are two candidates for being the global argmax of the
function CS(r), depending on the values of parameters. Accordingly,
r̂ would be the argmax of CS(r) only if it is on the right side of r∗∗,
otherwise the global argmax will be r∗∗. Hence, r̂ = c + 1

2

√
tF ≥

c +
√

r∗∗

r∗∗+θ

√
tF = r∗∗ whenever 1

4
≥ r∗∗

r∗∗+θ
, which is equivalent to

r∗∗ ≤ θ
3
. This completes the proof.

Proof of Proposition 3

Proof. For the case of r∗∗ ≤ θ
3
, the previously mentioned properties

are trivially satisfied, given that r∗∗∗ takes the closed form solution
of c + 1

2

√
tF . Since the optimal reference price has no closed form

solution when r∗∗ > θ
3
, we can calculate the implicit derivatives from

the function r = c+
√

r
r+θ

√
tF concerning each parameter of interest.

In order to simplify, with some abuse of notation, we use r instead of
r∗∗ to indicate the optimal reference price in this case.

Case 1: By implicitly differentiating r = c+
√

r
r+θ

√
tF with respect

to c, we attain the following expression:

∂r

∂c
= 1 +

1

2

√
r + θ

r

√
tF

(
(r + θ) ∂r

∂c
− r ∂r

∂c

(r + θ)
2

)
(27)

By rearranging equation (27), we obtain:

∂r

∂c
= 1 +

1

2

√
r

r + θ

√
tF

(
1

r + θ

)(
θ

r

)
∂r

∂c
(28)
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Since, by definition, r − c =
√

r
r+θ

√
tF , equation (28) can be

reduced to:

∂r

∂c
=

1

1 − 1
2

(
r−c

r

) (
θ

r+θ

) > 0 (29)

Case 2: Similarly, by implicitly differentiating the reference price
function with respect to t, we obtain:

∂r

∂t
=

1

2

√
r + θ

r

√
tF

(
(r + θ) ∂r

∂t
− r ∂r

∂t

(r + θ)
2

)
+

1

2

√
r

r + θ

√
F

t
(30)

By rearranging this equation and substituting r−c =
√

r
r+θ

√
tF

in equation (30), we have that:

∂r

∂t
=

1
2

(
r−c

t

)

1 − 1
2

(
r−c

r

) (
θ

r+θ

) > 0 (31)

Case 3: Basically, the same procedure as for t. Simply exchange t
by F in the previous implicit derivative.

Case 4: By implicitly differentiating the reference price function
with respect to θ, we obtain:

∂r

∂θ
=

1

2

√
r + θ

r

√
tF

(
(r + θ) ∂r

∂θ
− r

(
∂r
∂θ

+ 1
)

(r + θ)
2

)
(32)

By rearranging equation (31), we can express equation (32) as
follows:

∂r

∂θ
= −

1
2

(
r−c
r+θ

)

1 − 1
2

(
r−c

r

) (
θ

r+θ

) < 0 (33)

This completes the proof.
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Proof of Proposition 4

Proof. Let us consider the function that characterizes the number of
firms given by the expression N (r) = r−c

F
for r∗∗ ≤ r < c +

√
tF .

Case 1: By directly differentiating N (r) with respect to c, we obtain:

∂N (r)

∂c
=

1

F

(
∂r∗∗∗

∂c
− 1

)
(34)

For the case of r∗∗ > θ
3 , equation (34) is equivalent to the fol-

lowing:

∂N (r∗∗∗)

∂c
=

1

F




1
2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)

1− 1
2

(
r∗∗∗−c

r∗∗∗

) (
θ

r∗∗∗+θ

)


 (35)

This equation is positive, since 1 − 1
2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)
> 0. For

the case of r∗∗ ≤ θ
3
, we know that ∂r∗∗∗

∂c
= 1.

Case 2: In a similar way, by differentiating N (r) with respect to t,
we have that:

∂N (r∗∗∗)

∂t
=

1

F

∂r∗∗∗

∂t
(36)

Hence, ∂N(r∗∗∗)
∂t

> 0, since ∂r∗∗∗

∂t
> 0.

Case 3: By directly differentiating N (r) with respect to F , we obtain:

∂N (r)

∂F
=

1

F

(
∂r∗∗∗

∂F
− r∗∗∗ − c

F

)
(37)

We know that ∂r∗∗∗

∂F
=

1
2

(
r
∗∗∗

−c

F

)

1− 1
2 (

r∗∗∗−c

F )( θ

r∗∗∗+θ
)

for the case of r∗∗ >

θ
3 . Hence, equation (37) is equivalent to the following:

∂N (r∗∗∗)

∂F
= − 1

F




1
2
− 1

2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)

1 − 1
2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)


 (38)
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It is clear that 1− 1
2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)
> 1

2
, then 1

2
− 1

2

(
r∗∗∗−c

r∗∗∗

)
(

θ
r∗∗∗+θ

)
> 0, which implies that ∂N(r∗∗∗)

∂F
< 0. When r∗∗ ≤ θ

3 , the

optimal reference price satisfies r∗∗∗ = c + 1
2

√
tF , which implies that

∂r∗∗∗

∂F
= 1

4

√
t
F

and r∗∗∗−c
F

= 1
2

√
t
F

, hence ∂N(r∗∗∗)
∂F

< 0.

Case 4: For the last case, by differentiating N (r) with respect to θ,
we have the expression:

∂N (r∗∗∗)

∂θ
=

1

F

∂r∗∗∗

∂θ
(39)

which directly implies the result, since we know that ∂(r∗∗∗)
∂θ

< 0

whenever r∗∗ > θ
3

and ∂r∗∗∗

∂θ
= 0 whenever r∗∗ ≤ θ

3
. This completes

the proof.

Proof of Proposition 5

Proof. Let us consider the transportation cost function that is relevant

for the analysis given by TC (r) = 1
4

(
tF

r−c

)
for r∗∗ ≤ r < c +

√
tF .

Case 1: By directly differentiating TC(r) with respect to c, we obtain:

∂TC (r∗∗∗)

∂c
= − tF

4(r∗∗∗ − c)
2

(
∂r∗∗∗

∂c
− 1

)
(40)

Since for the case of r∗∗ > θ
3 we know that ∂r∗∗∗

∂c
> 1, this implies

that ∂TC(r∗∗∗)
∂c

< 1. For the case of r∗∗ ≤ θ
3
, we know that ∂r∗∗∗

∂c
= 1,

hence ∂TC(r∗∗∗)
∂c

= 0.

Case 2: In a similar way, by differentiating TC(r) with respect to t,
we have the following:

∂TC (r∗∗∗)

∂t
=

(r∗∗∗ − c)F − tF ∂r∗∗∗

∂t

4(r∗∗∗ − c)
2

(41)

After some manipulation, equation (41) reduces to the following:
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∂TC (r∗∗∗)

∂t
=

tF

4(r∗∗∗ − c)
2

(
r∗∗∗ − c

t
− ∂r∗∗∗

∂t

)
(42)

Given that ∂r∗∗∗

∂t
=

1
2

(
r
∗∗∗

−c

t

)

1− 1

2(
r∗∗∗−c

r∗∗∗
)( θ

r∗∗∗+θ
)

for r∗∗ > θ
3
, , we know

that equation (42) reduces to the following:

∂TC (r∗∗∗)

∂t
=

F

4 (r∗∗∗ − c)




1
2
− 1

2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)

1 − 1
2

(
r∗∗∗−c

r∗∗∗

) (
θ

r∗∗∗+θ

)


 > 0 (43)

This equation is positive, since 1
2 − 1

2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)
> 0.

When r∗∗ ≤ θ
3
, the optimal reference price satisfies r∗∗∗ = c +

1
2

√
tF , which implies that ∂r∗∗∗

∂t
= 1

4

√
F
t

and r∗∗∗−c
t

= 1
2

√
F
t
, hence

∂N(r∗∗∗)
∂F

> 0.

Case 3: Basically, the same case as for t, by substituting t with F and
vice versa. Hence, when r∗∗ > θ

3 the following condition is satisfied:

∂TC (r∗∗∗)

∂F
=

t

4 (r∗∗∗ − c)




1
2
− 1

2

(
r∗∗∗−c

r∗∗∗

)(
θ

r∗∗∗+θ

)

1 − 1
2

(
r∗∗∗−c

r∗∗∗

) (
θ

r∗∗∗+θ

)


 > 0 (44)

and whenever r∗∗ ≤ θ
3

we have:

∂N (r∗∗∗)

∂F
=

tF

4(r∗∗∗ − c)
2

(
r∗∗∗ − c

F
− ∂r∗∗∗

∂F

)
> 0

Case 4: For the last case, by differentiating TC(r) with respect to θ,
we have the following expression:

∂TC (r∗∗∗)

∂θ
= − tF

4(r∗∗∗ − c)
2

∂r∗∗∗

∂θ
(45)
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which directly implies the result, since we know that ∂r∗∗∗

∂θ
< 0

whenever r∗∗ > θ
3
, and ∂r∗∗∗

∂θ
= 0 whenever r∗∗ ≤ θ

3
. This completes

the proof.

Proof of Proposition 6

Proof. For the case of r∗∗ > θ
3 , the social welfare function is not

differentiable at r∗∗, which is the argmax of the policymaker problem.
In this case, it is only possible to determine the lower and upper
bounds of the variation of the value function through the right-hand
and the left-hand side partial derivatives of the objective function
evaluated at the optimal reference price. Otherwise, whenever r∗∗ ≤
θ
3 , the objective function is differentiable at the optimal reference
price r∗∗, and a regular envelope theorem can be applied.

Case 1: By differentiating the right-hand side of the social welfare
function CS(r, c, t, F, θ) with respect to c, we obtain:

∂CS (·)
∂c

= − tF

4(r − c)
2

(46)

Since r∗∗ = c +
√

tFr∗∗

r∗∗+θ
for r∗∗ > θ

3
, after evaluating ∂CS(·)

∂c
, we

have that:

∂CS (·)
∂c

= −r∗∗ + θ

4r∗∗
(47)

Similarly, by differentiating the left-hand side of the social welfare

function and evaluating at r∗∗ = c+
√

tFr∗∗

r∗∗+θ
, we obtain the following:

∂CS (·)
∂c

= −r∗∗ + θ

r∗∗
(48)

Hence, the variation of the social welfare function in the face

of an increase in the marginal cost ∂CS(r∗∗∗,c,t,F,θ)
∂c

must be in the

interval
[
−r∗∗+θ

r∗∗
,−r∗∗+θ

4r∗∗

]
whenever r∗∗ > θ

3 . For the case in which

r∗∗ ≤ θ
3
, the partial derivative of the value function satisfies the

equation (34). Evaluating this expression at the optimal reference

price r∗∗∗ = c + 1
2

√
tF implies that:

∂CS (r∗∗∗, c, t, F, θ)

∂c
= −1 (49)
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Case 2: By differentiating the right-hand side of the social welfare
function CS(r, c, t, F, θ) with respect to t, we obtain

∂CS (·)
∂t

= − F

4(r − c)
(50)

Since r∗∗ = c +
√

tFr∗∗

r∗∗+θ
for r∗∗ > θ

3
, after evaluating ∂CS(\cdotp)

∂t

atr∗∗, we have that:

∂CS (·)
∂t

= −1

4

√
r∗∗ + θ

r∗∗

√
F

t
(51)

Similarly, by differentiating the left-hand side of the social welfare
function, we obtain:

∂CS (·)
∂t

= − θ

2r

√
r

r + θ

√
F

t
− 1

2

√
r

r + θ

√
F

t
− 1

8

√
r + θ

r

√
F

t
(52)

After simplifying and evaluating at r∗∗, equation (52) reduces to
the following:

∂CS (·)
∂t

= −5

8

√
r∗∗ + θ

r∗∗

√
F

t
(53)

Hence, the variation of the social welfare function in the face of

an increase in the transportation cost ∂CS(r∗∗∗,c,t,F,θ)
∂t

must be in the

interval

[
−5

8

√
r∗∗+θ

r∗∗

√
F
t
,−1

4

√
r∗∗+θ

r∗∗

√
F
t

]
whenever r∗∗ > θ

3
. For

the case in which r∗∗ ≤ θ
3 , the partial derivative of the value function

satisfies equation (50). Evaluating this expression at the optimal

reference price r∗∗∗ = c + 1
2

√
tF implies that:

∂CS (r∗∗∗, c, t, F, θ)

∂t
= −1

2

√
F

t
(54)

Case 3: The case of F is identical to the one of t. It suffices to
exchange t with F and vice versa. Hence, ∂CS(r∗∗∗,c,t,F,θ)

∂F
must be

in the interval

[
−5

8

√
r∗∗+θ

r∗∗

√
t
F

,−1
4

√
r∗∗+θ

r∗∗

√
t
F

]
whenever r∗∗ > θ

3
,

and
∂CS(r∗∗∗,c,t,F,θ)

∂F
= −1

2

√
t
F

whenever r∗∗ ≤ θ
3 .
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Case 4: By right-hand side differentiating the social welfare function
CS(r, c, t, F, θ) with respect to θ, we obtain:

∂CS (·)
∂θ

= 0 (55)

Similarly, by differentiating the left-hand side of the social welfare
function with respect to θ, we obtain the following:

∂CS (·)
∂θ

=
θ

2r

√
r

r + θ

(√
tF

r + θ

)
−




c +
√

tFr
r+θ

− r

r




+
1

2

√
r

r + θ

(√
tF

r + θ

)
− 1

8

√
r

r + θ

(√
tF

r

)
(56)

After simplifying and evaluating at r∗∗, equation (56) reduces to
the following:

∂CS (·)
∂θ

=
1

2

√
r∗∗ + θ

r∗∗
√

tF

(
1

r∗∗ + θ
− 1

4r∗∗

)
> 0 (57)

Hence, the variation of the social welfare function in the face of

an increase in the parameter θ, ∂CS(r∗∗∗,c,t,F,θ)
∂θ

must be in the interval[
0, 1

2

√
r∗∗+θ

r∗∗

√
tF
(

1
r∗∗+θ

− 1
4r∗∗

)]
whenever r∗∗ > θ

3 . For the case in

which r∗∗ ≤ θ
3
, the partial derivative of the value function satisfies

equation (55). Evaluating this expression at the optimal reference

price r∗∗∗ = c + 1
2

√
tF implies that:

∂CS (r∗∗∗, c, t, F, θ)

∂θ
= 0 (58)

This completes the proof.

Proof of Corollary 2

Proof. The proof of this Corollary is essentially based on the proof of
Proposition 6. Note that the difference in consumer welfare is defined
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as ∆CS (r, c, t, F, θ) = CS (r, c, t, F, θ) −
(
U − c − 5

4

√
tF
)
. Hence,

the second part of this expression is simply the consumer welfare of

a model with no reference prices, so that the function ĈS = U −
c− 5

4

√
tF is independent of reference prices and their right-hand and

the left-hand side partial derivatives coincide and are equal to their
corresponding partial derivatives. Following the previous argument,

it is easy to show that partial derivatives of the function ĈS are equal

to ∂ĈS(·)
∂c

= −1, ∂ĈS(·)
∂t

= −5
8

√
F
t
, ∂ĈS(·)

∂F
= −5

8

√
t
F

and ∂ĈS(·)
∂θ

= 0.

Following the proof of Proposition 6 and the previous observation

about partial derivatives of ĈS , we can establish the following cases.

Case 1: Assume that r∗∗ > θ
3
, by differentiating the right-hand side of

the difference in social welfare function ∆CS (r, c, t, F, θ) with respect
to c and evaluating it at r∗∗, we obtain:

∂∆CS (·)
∂c

= 1 − r∗∗ + θ

4r∗∗
(59)

Similarly, by the left-hand side differentiating the difference in
social welfare function and evaluating it at r∗∗, we obtain the follow-
ing:

∂∆CS (·)
∂c

= 1 − r∗∗ + θ

r∗∗
(60)

Hence, the variation of the difference in social welfare function
in the face of an increase in the marginal cost must be in the interval[
1 − r∗∗+θ

r∗∗
, 1− r∗∗+θ

4r∗∗

]
whenever r∗∗ > θ

3
. For the case in which r∗∗ ≤

θ
3
, the variation of ∆CS (r, c, t, F, θ) is equal to:

∂∆CS (r∗∗∗, c, t, F, θ)

∂c
= 0 (61)

Case 2: By differentiating the right-hand side of the function ∆CS
(r, c, t, F, θ) with respect to t and evaluating it at r∗∗, we obtain the
following:

∂∆CS (·)
∂t

=
5

8

√
F

t
− 1

4

√
r∗∗ + θ

r∗∗

√
F

t
(62)

Similarly, by differentiating the left-hand side of the social welfare
function, we obtain:
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∂∆CS (·)
∂t

=
5

8

√
F

t
− 5

8

√
r∗∗ + θ

r∗∗

√
F

t
(63)

Hence, the variation of ∆CS function in the face of an increase
in transportation cost must be in the interval:

[
5

8

√
F

t
− 5

8

√
r∗∗ + θ

r∗∗

√
F

t
,
5

8

√
F

t
− 1

4

√
r∗∗ + θ

r∗∗

√
F

t

]

whenever r∗∗ > θ
3
. For the case in which r∗∗ ≤ θ

3
the partial

derivative of ∆CS function is equal to the following:

∂∆CS (r∗∗∗, c, t, F, θ)

∂t
=

5

8

√
F

t
− 1

2

√
F

t
(64)

Case 3: The case of F is very similar to the one of t. It is enough to
interchange t with F and vice versa. Hence:

∂∆CS(r∗∗∗,c,t,F,θ)
∂F

∈
[

5
8

√
t
F
− 5

8

√
r∗∗+θ

r∗∗

√
t
F

, 5
8

√
t
F
− 1

4

√
r∗∗+θ

r∗∗

√
t
F

]

(65)

Otherwise, ∂∆CS(r∗∗∗,c,t,F,θ)
∂F

= 5
8

√
t
F
− 1

2

√
t
F

whenever r∗∗ ≤ θ
3
.

Case 4: Since ∂ĈS(·)
∂θ

= 0, it is clear that whenever r∗∗ > θ
3
, the

following holds:

∂∆CS (r∗∗∗, c, t, F, θ)

∂θ
∈
[
0,

1

2

√
r∗∗ + θ

r∗∗
√

tF

(
1

r∗∗ + θ
− 1

4r∗∗

)]

(66)

For the case in which r∗∗ ≤ θ
3
, it is easy to show that:

∂∆CS (r∗∗∗, c, t, F, θ)

∂θ
= 0 (67)

This completes the proof.
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Proof of Proposition 7

Proof. We know that at the optimal reference price r∗∗∗ the difference
in social welfare function satisfies the expression:

∆CS (r∗∗∗, c, t, F, θ) = U − r∗∗∗ − 1
4

(
tF

r∗∗∗−c

)

−
(
U − c −

√
tF − 1

4

√
tF
)

(68)

We also know that the optimal reference price satisfies r∗∗∗ = r∗∗

whenever r∗∗ > θ
3
, otherwise r∗∗∗ = c + 1

2

√
tF . Hence, for the

case when r∗∗ ≤ θ
3

equation (68) reduces to ∆CS (r∗∗∗, c, t, F, θ) =
1
4

√
tF > 0. When r∗∗ > θ

3 , the optimal reference price satisfies r∗∗∗ =

c+
√

r∗∗∗

r∗∗∗+θ

√
tF ; hence, equation (68) reduces to ∆CS (r∗∗∗, c, t, F, θ)

=

(
5
4
−
√

r∗∗∗

r∗∗∗+θ
− 1

4

√
r∗∗∗+θ

r∗∗∗

)√
tF . It easy to show that the deriva-

tive of the function f (r) =
√

r
r+θ

+ 1
4

√
r+θ

r
satisfies the following:

f ′ (r) =
θ

2r

√
r

r + θ

(
1

r + θ
− 1

r

)
(69)

It is clear that f ′ (r) > 0 whenever r∗∗ > θ
3

and lim f (r) = 5
4

as r → ∞, hence ∆CS (r∗∗∗, c, t, F, θ) > 0 whenever r∗∗ > θ
3
. This

completes the proof.




